1
|
Takamatsu K, Toyofuku M, Okutani F, Yamazaki S, Nakayasu M, Aoki Y, Kobayashi M, Ifuku K, Yazaki K, Sugiyama A. α-Tomatine gradient across artificial roots recreates the recruitment of tomato root-associated Sphingobium. PLANT DIRECT 2023; 7:e550. [PMID: 38116181 PMCID: PMC10728018 DOI: 10.1002/pld3.550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
α-Tomatine is a major saponin that accumulates in tomatoes (Solanum lycopersicum). We previously reported that α-tomatine secreted from tomato roots modulates root-associated bacterial communities, particularly by enriching the abundance of Sphingobium belonging to the family Sphingomonadaceae. To further characterize the α-tomatine-mediated interactions between tomato plants and soil bacterial microbiota, we first cultivated tomato plants in pots containing different microbial inoculants originating from three field soils. Four bacterial genera, namely, Sphingobium, Bradyrhizobium, Cupriavidus, and Rhizobacter, were found to be commonly enriched in tomato root-associated bacterial communities. We constructed a pseudo-rhizosphere system using a mullite ceramic tube as an artificial root to investigate the influence of α-tomatine in modifying bacterial communities. The addition of α-tomatine from the artificial root resulted in the formation of a concentration gradient of α-tomatine that mimicked the tomato rhizosphere, and distinctive bacterial communities were observed in the soil close to the artificial root. Sphingobium was enriched according to the α-tomatine concentration gradient, whereas Bradyrhizobium, Cupriavidus, and Rhizobacter were not enriched in α-tomatine-treated soil. The tomato root-associated bacterial communities were similar to the soil bacterial communities in the vicinity of artificial root-secreting exudates; however, hierarchical cluster analysis revealed a distinction between root-associated and pseudo-rhizosphere bacterial communities. These results suggest that the pseudo-rhizosphere device at least partially creates a rhizosphere environment in which α-tomatine enhances the abundance of Sphingobium in the vicinity of the root. Enrichment of Sphingobium in the tomato rhizosphere was also apparent in publicly available microbiota data, further supporting the tight association between tomato roots and Sphingobium mediated by α-tomatine.
Collapse
Affiliation(s)
- Kyoko Takamatsu
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan
| | - Miwako Toyofuku
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan
| | - Fuki Okutani
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan
| | | | - Masaru Nakayasu
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan
| | - Yuichi Aoki
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Masaru Kobayashi
- Division of Applied Life Sciences, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Kentaro Ifuku
- Division of Applied Life Sciences, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Kazufumi Yazaki
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan
| | - Akifumi Sugiyama
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan
| |
Collapse
|
2
|
Di Pierro F, Campedelli I, De Marta P, Fracchetti F, Del Casale A, Cavecchia I, Matera M, Cazzaniga M, Bertuccioli A, Guasti L, Zerbinati N. Bifidobacterium breve PRL2020: Antibiotic-Resistant Profile and Genomic Detection of Antibiotic Resistance Determinants. Microorganisms 2023; 11:1649. [PMID: 37512822 PMCID: PMC10383950 DOI: 10.3390/microorganisms11071649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Antibiotics are one of the greatest scientific achievements of modern medicine, but excessive use is creating challenges for the future of medicine. Antibiotic resistance (AR) is thought to cause changes in bowel habits and an increased risk of gastroenteritis, but it may also increase the risk of overweight, obesity, autoimmune and atopic diseases, and a low response to vaccines and cancer, likely mediated by antibiotic-induced gut dysbiosis. Probiotic add-on therapy could partially prevent antibiotic-induced gut dysbiosis, but their antibiotic sensitivity features likely limits this potential. The EFSA (European Food Safety Authority) guidelines consider the use of probiotics whose antibiotic-resistant profile could be transferable an important hazard. Recently, a strain of B. breve (PRL2020) has shown to be resistant to amoxicillin and amoxicillin-clavulanate (AC) by applying the microdilution protocol according EFSA guidelines. After verifying that horizontal gene transfer is unlikely to take place, this feature suggests its concomitant use with these specific antibiotics. The results of our tests demonstrated that the strain PRL2020 is indeed endowed with amoxicillin- and AC-resistant properties and that it is also insensitive to ampicillin. In-depth analysis of the annotated genome sequence of B. breve PRL2020 was employed to query the Comprehensive Antibiotic Resistance Database (CARD) using Resistance Gene Identifier (RGI) software (version 5.2.1). The similarity among the AR determinants found was studied through nucleotide sequence alignment, and it was possible to verify not only the absence of genes explaining these features in the flanking regions but also the presence of genetic sequences (rpoB and erm(X)) putatively responsible for rifampicin and erythromycin resistance. Both features are not phenotypically expressed, and for these antibiotics, the strain is within the EFSA limits. Analysis of the flanking regions of these genes revealed possible mobile elements upstream and downstream only in the case of the erm(X) gene, but the features of the Insertion Sequences (IS) are described as not to cause horizontal transfer. Our findings on strain PRL2020 demonstrate that its AR profile is compatible with antibiotics when taken with the aim of reducing the risk of dysbiosis.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Scientific & Research Department, Velleja Research, 20125 Milan, Italy
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | | | | | | | | | | | - Mariarosaria Matera
- Department of Pediatric Emergencies, Misericordia Hospital, 58100 Grosseto, Italy
| | | | - Alexander Bertuccioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
3
|
Root-Associated Bacterial Community Shifts in Hydroponic Lettuce Cultured with Urine-Derived Fertilizer. Microorganisms 2021; 9:microorganisms9061326. [PMID: 34207399 PMCID: PMC8233860 DOI: 10.3390/microorganisms9061326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Recovery of nutrients from source-separated urine can truncate our dependency on synthetic fertilizers, contributing to more sustainable food production. Urine-derived fertilizers have been successfully applied in soilless cultures. However, little is known about the adaptation of the plant to the nutrient environment. This study investigated the impact of urine-derived fertilizers on plant performance and the root-associated bacterial community of hydroponically grown lettuce (Lactuca sativa L.). Shoot biomass, chlorophyll, phenolic, antioxidant, and mineral content were associated with shifts in the root-associated bacterial community structures. K-struvite, a high-performing urine-derived fertilizer, supported root-associated bacterial communities that overlapped most strongly with control NPK fertilizer. Contrarily, lettuce performed poorly with electrodialysis (ED) concentrate and hydrolyzed urine and hosted distinct root-associated bacterial communities. Comparing the identified operational taxonomic units (OTU) across the fertilizer conditions revealed strong correlations between specific bacterial genera and the plant physiological characteristics, salinity, and NO3−/NH4+ ratio. The root-associated bacterial community networks of K-struvite and NPK control fertilized plants displayed fewer nodes and node edges, suggesting that good plant growth performance does not require highly complex ecological interactions in hydroponic growth conditions.
Collapse
|
4
|
Lee HH, Park J, Jung H, Seo YS. Pan-Genome Analysis Reveals Host-Specific Functional Divergences in Burkholderia gladioli. Microorganisms 2021; 9:1123. [PMID: 34067383 PMCID: PMC8224644 DOI: 10.3390/microorganisms9061123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Burkholderia gladioli has high versatility and adaptability to various ecological niches. Here, we constructed a pan-genome using 14 genome sequences of B. gladioli, which originate from different niches, including gladiolus, rice, humans, and nature. Functional roles of core and niche-associated genomes were investigated by pathway enrichment analyses. Consequently, we inferred the uniquely important role of niche-associated genomes in (1) selenium availability during competition with gladiolus host; (2) aromatic compound degradation in seed-borne and crude oil-accumulated environments, and (3) stress-induced DNA repair system/recombination in the cystic fibrosis-niche. We also identified the conservation of the rhizomide biosynthetic gene cluster in all the B. gladioli strains and the concentrated distribution of this cluster in human isolates. It was confirmed the absence of complete CRISPR/Cas system in both plant and human pathogenic B. gladioli and the presence of the system in B. gladioli living in nature, possibly reflecting the inverse relationship between CRISPR/Cas system and virulence.
Collapse
Affiliation(s)
- Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| | - Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
- Environmental Microbiology Research Team, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Korea
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| |
Collapse
|
5
|
Martin-Pozas T, Sanchez-Moral S, Cuezva S, Jurado V, Saiz-Jimenez C, Perez-Lopez R, Carrey R, Otero N, Giesemann A, Well R, Calaforra JM, Fernandez-Cortes A. Biologically mediated release of endogenous N 2O and NO 2 gases in a hydrothermal, hypoxic subterranean environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141218. [PMID: 32777502 DOI: 10.1016/j.scitotenv.2020.141218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
The migration of geogenic gases in continental areas with geothermal activity and active faults is an important process releasing greenhouse gases (GHG) to the lower troposphere. In this respect, caves in hypogenic environments are natural laboratories to study the compositional evolution of deep-endogenous fluids through the Critical Zone. Vapour Cave (Alhama, Murcia, Spain) is a hypogenic cave formed by the upwelling of hydrothermal CO2-rich fluids. Anomalous concentrations of N2O and NO2 were registered in the cave's subterranean atmosphere, averaging ten and five times the typical atmospheric backgrounds, respectively. We characterised the thermal conditions, gaseous compositions, sediments, and microbial communities at different depths in the cave. We did so to understand the relation between N-cycling microbial groups and the production and transformation of nitrogenous gases, as well as their coupled evolution with CO2 and CH4 during their migration through the Critical Zone to the lower troposphere. Our results showed an evident vertical stratification of selected microbial groups (Archaea and Bacteria) depending on the environmental parameters, including O2, temperature, and GHG concentration. Both the N2O isotope ratios and the predicted ecological functions of bacterial and archaeal communities suggest that N2O and NO2 emissions mainly depend on the nitrification by ammonia-oxidising microorganisms. Denitrification and abiotic reactions of the reactive intermediates NH2OH, NO, and NO2- are also plausible according to the results of the phylogenetic analyses of the microbial communities. Nitrite-dependent anaerobic methane oxidation by denitrifying methanotrophs of the NC10 phylum was also identified as a post-genetic process during migration of this gas to the surface. To the best of our knowledge, our report provides, for the first time, evidence of a niche densely populated by Micrarchaeia, which represents more than 50% of the total archaeal abundance. This raises many questions on the metabolic behaviour of this and other archaeal phyla.
Collapse
Affiliation(s)
- Tamara Martin-Pozas
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | - Sergio Sanchez-Moral
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | - Soledad Cuezva
- Plants and Ecosystems, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Valme Jurado
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Cesareo Saiz-Jimenez
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Raul Perez-Lopez
- Geological Hazard Division, Geological Survey of Spain (IGME), 28003 Madrid, Spain.
| | - Raul Carrey
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), UB, 08001 Barcelona, Spain.
| | - Neus Otero
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), UB, 08001 Barcelona, Spain.
| | - Anette Giesemann
- Thünen Institute of Climate-Smart Agriculture, Federal Research Institute for Rural Areas, Forestry and Fisheries, 38116 Braunschweig, Germany.
| | - Reinhard Well
- Thünen Institute of Climate-Smart Agriculture, Federal Research Institute for Rural Areas, Forestry and Fisheries, 38116 Braunschweig, Germany.
| | - Jose M Calaforra
- Department of Biology and Geology, University of Almeria, 04120 Almeria, Spain.
| | | |
Collapse
|
6
|
Tapia-García EY, Hernández-Trejo V, Guevara-Luna J, Rojas-Rojas FU, Arroyo-Herrera I, Meza-Radilla G, Vásquez-Murrieta MS, Estrada-de los Santos P. Plant growth-promoting bacteria isolated from wild legume nodules and nodules of Phaseolus vulgaris L. trap plants in central and southern Mexico. Microbiol Res 2020; 239:126522. [DOI: 10.1016/j.micres.2020.126522] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/24/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023]
|
7
|
Paraburkholderia lycopersici sp. nov., a nitrogen-fixing species isolated from rhizoplane of Lycopersicon esculentum Mill. var. Saladette in Mexico. Syst Appl Microbiol 2020; 43:126133. [PMID: 32998072 DOI: 10.1016/j.syapm.2020.126133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 01/29/2023]
Abstract
A survey of our in-house bacterial collection identified a group of six strains isolated from the tomato rhizoplane that possessed 16S rRNA gene sequences with 98.2% sequence similarity to Paraburkholderia pallida, suggesting that these strains represented a novel species. Multilocus sequence analysis using gltB, lepA and recA gene sequences showed the clustering of the strains and the BOX-PCR patterns were similar among these strains. The average nucleotide identity and the DNA-DNA virtual hybridization of strain TNe-862T was <89% and <34%, respectively, to the genomes of any sequenced Paraburkholderia species. The genome of strain TNe-862T possessed all the genes necessary for nitrogen fixation and biosynthesis of indoleacetic acid and antimicrobials terpenes, phosphonates and bacteriocins. It also contained genes for metal resistance, xenobiotic degradation, and hydrolytic enzymes such as a putative chitinase and isoamylase. Even though the strain contained potential genes for degradation of cellulose and starch, the bacterium was unable to utilize these substrates in culture medium. The genome encoded flagella and pili as well as multiple chemotaxis systems. In addition, genes encoding for the type I, II, IV, V and VI secretion systems were also present. The strains grow up to 42°C and 5% NaCl. The optimum growth pH was 8. The major cellular fatty acids were C16:0 and C18:1 ω7c. Based on this polyphasic analysis, these strains represent a novel species in the genus Paraburkholderia, for which the name Paraburkholderia lycopersici sp. nov. is proposed. The type strain is TNe-862T (=LMG 26415T=CIP 110323T).
Collapse
|
8
|
Cupriavidus agavae sp. nov., a species isolated from Agave L. rhizosphere in northeast Mexico. Int J Syst Evol Microbiol 2020; 70:4165-4170. [DOI: 10.1099/ijsem.0.004263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During the isolation of bacteria from the Agave L. rhizosphere in northeast Mexico, four strains with similar BOX-PCR patterns were collected. The 16S rRNA gene sequences of all four strains were very similar to each other and that of the type strains of
Cupriavidus metallidurans
CH34T (98.49 % sequence similarity) and
Cupriavidus necator
N-1T (98.35 %). The genome of strain ASC-9842T was sequenced and compared to those of other
Cupriavidus
species. ANIb and ANIm values with the most closely related species were lower than 95%, while the in silico DNA–DNA hybridization values were also much lower than 70 %, consistent with the proposal that they represent a novel species. This conclusion was supported by additional phenotypic and chemotaxonomic analyses. Therefore, the name Cupriavidus agavae sp. nov. is proposed with the type strain ASC-9842T (=LMG 26414T=CIP 110327T).
Collapse
|
9
|
Arroyo-Herrera I, Rojas-Rojas FU, Lozano-Cervantes KD, Larios-Serrato V, Vásquez-Murrieta MS, Whtiman WB, Ibarra JA, Estrada-de Los Santos P. Draft genome of five Cupriavidus plantarum strains: agave, maize and sorghum plant-associated bacteria with resistance to metals. 3 Biotech 2020; 10:242. [PMID: 32405446 DOI: 10.1007/s13205-020-02210-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/15/2020] [Indexed: 11/27/2022] Open
Abstract
Five strains of Cupriavidus plantarum, a metal-resistant, plant-associated bacterium, were selected for genome sequencing through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) Phase IV project at the Joint Genome Institute (JGI) of the U.S. Department of Energy (DOE). The genome of the strains was in the size range of 6.2-6.4 Mbp and encoded 5605-5834 proteins; 16.9-23.7% of these genes could not be assigned to a COG-associated functional category. The G + C content was 65.83-65.99%, and the genomes encoded 59-67 stable RNAs. The strains were resistant in vitro to arsenite, arsenate, cobalt, chromium, copper, nickel and zinc, and their genomes possessed the resistance genes for these metals. The genomes also encoded the biosynthesis of potential antimicrobial compounds, such as terpenes, phosphonates, bacteriocins, betalactones, nonribosomal peptides, phenazine and siderophores, as well as the biosynthesis of cellulose and enzymes such as chitinase and trehalase. The average nucleotide identity (ANI) and DNA-DNA in silico hybridization of the genomes confirmed that C. plantarum is a single species. Moreover, the strains cluster within a single group upon multilocus sequence analyses with eight genes and a phylogenomic analyses. Noteworthy, the ability of the species to tolerate high concentrations of different metals might prove useful for bioremediation of naturally contaminated environments.
Collapse
Affiliation(s)
- Ivan Arroyo-Herrera
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala S/N. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340 Cd. de México, Mexico
| | - Fernando Uriel Rojas-Rojas
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala S/N. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340 Cd. de México, Mexico
- 2Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, León, Guanajuato, Mexico
| | - Karla Daniela Lozano-Cervantes
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala S/N. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340 Cd. de México, Mexico
| | - Violeta Larios-Serrato
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala S/N. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340 Cd. de México, Mexico
| | - María Soledad Vásquez-Murrieta
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala S/N. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340 Cd. de México, Mexico
| | | | - J Antonio Ibarra
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala S/N. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340 Cd. de México, Mexico
| | - Paulina Estrada-de Los Santos
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala S/N. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340 Cd. de México, Mexico
| |
Collapse
|
10
|
De Meyer SE, Ruthrof KX, Edwards T, Hopkins AJ, Hardy G, O’Hara G, Howieson J. Diversity of endemic rhizobia on Christmas Island: Implications for agriculture following phosphate mining. Syst Appl Microbiol 2018; 41:641-649. [DOI: 10.1016/j.syapm.2018.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022]
|
11
|
[The controversial Burkholderia cepacia complex, a group of plant growth promoting species and plant, animals and human pathogens]. Rev Argent Microbiol 2018; 51:84-92. [PMID: 29691107 DOI: 10.1016/j.ram.2018.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 10/10/2017] [Accepted: 01/03/2018] [Indexed: 11/22/2022] Open
Abstract
The Burkholderia cepacia complex is a group of 22 species, which are known as opportunistic pathogens in immunocompromised people, especially those suffering from cystic fibrosis. It is also found in nosocomial infections and is difficult to eradicate due to intrinsic resistance to several antibiotics. The species have large genomes (up to 9 Mbp), distributed into 2-5 replicons. These features significantly contribute to genome plasticity, which makes them thrive in different environments like soil, water, plants or even producing nodules in legume plants. Some B. cepacia complex species are beneficial in bioremediation, biocontrol and plant-growth promotion. However, because the B. cepacia complex is involved in human infection, its use in agriculture is restricted. B. cepacia complex is being constantly studied due to the health problems that it causes and because of its agricultural potential. In this review, the history of B. cepacia complex and the most recently published information related to this complex are revised.
Collapse
|
12
|
Dludlu MN, Chimphango SBM, Stirton CH, Muasya AM. Differential Preference of Burkholderia and Mesorhizobium to pH and Soil Types in the Core Cape Subregion, South Africa. Genes (Basel) 2017; 9:genes9010002. [PMID: 29271943 PMCID: PMC5793155 DOI: 10.3390/genes9010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 12/02/2022] Open
Abstract
Over 760 legume species occur in the ecologically-heterogeneous Core Cape Subregion (CCR) of South Africa. This study tested whether the main symbionts of CCR legumes (Burkholderia and Mesorhizobium) are phylogenetically structured by altitude, pH and soil types. Rhizobial strains were isolated from field nodules of diverse CCR legumes and sequenced for 16S ribosomic RNA (rRNA), recombinase A (recA) and N-acyltransferase (nodA). Phylogenetic analyses were performed using Bayesian and maximum likelihood techniques. Phylogenetic signals were determined using the D statistic for soil types and Pagel’s λ for altitude and pH. Phylogenetic relationships between symbionts of the narrowly-distributed Indigofera superba and those of some widespread CCR legumes were also determined. Results showed that Burkholderia is restricted to acidic soils, while Mesorhizobium occurs in both acidic and alkaline soils. Both genera showed significant phylogenetic clustering for pH and most soil types, but not for altitude. Therefore, pH and soil types influence the distribution of Burkholderia and Mesorhizobium in the CCR. All strains of Indigofera superba were identified as Burkholderia, and they were nested within various clades containing strains from outside its distribution range. It is, therefore, hypothesized that I. superba does not exhibit rhizobial specificity at the intragenic level. Implications for CCR legume distributions are discussed.
Collapse
Affiliation(s)
- Meshack Nkosinathi Dludlu
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa.
| | - Samson B M Chimphango
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa.
| | - Charles H Stirton
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa.
| | - A Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa.
| |
Collapse
|
13
|
de León-Martínez JA, Yañez-Ocampo G, Wong-Villarreal A. Burkholderia species associated with legumes of Chiapas, Mexico, exhibit stress tolerance and growth in aromatic compounds. Rev Argent Microbiol 2017; 49:394-401. [PMID: 28864228 DOI: 10.1016/j.ram.2017.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 02/09/2017] [Accepted: 04/20/2017] [Indexed: 11/18/2022] Open
Abstract
Leguminous plants have received special interest for the diversity of β-proteobacteria in their nodules and are promising candidates for biotechnological applications. In this study, 15 bacterial strains were isolated from the nodules of the following legumes: Indigofera thibaudiana, Mimosa diplotricha, Mimosa albida, Mimosa pigra, and Mimosa pudica, collected in 9 areas of Chiapas, Mexico. The strains were grouped into four profiles of genomic fingerprints through BOX-PCR and identified based on their morphology, API 20NE biochemical tests, sequencing of the 16S rRNA, nifH and nodC genes as bacteria of the Burkholderia genus, genetically related to Burkholderia phenoliruptrix, Burkholderia phymatum, Burkholderia sabiae, and Burkholderia tuberum. The Burkholderia strains were grown under stress conditions with 4% NaCl, 45°C, and benzene presence at 0.1% as the sole carbon source. This is the first report on the isolation of these nodulating species of the Burkholderia genus in legumes in Mexico.
Collapse
Affiliation(s)
- José A de León-Martínez
- Instituto de Biociencias, Universidad Autónoma de Chiapas, C.P. 30700 Tapachula, Chiapas, Mexico
| | - Gustavo Yañez-Ocampo
- Laboratorio de Edafología y Ambiente Universidad Autónoma del Estado de México, Instituto Literario 100, C.P. 50000 Toluca, Mexico
| | - Arnoldo Wong-Villarreal
- División Agroalimentaria, Universidad Tecnológica de la Selva, C.P. 29950 Ocosingo, Chiapas, Mexico.
| |
Collapse
|
14
|
Draft Genome Sequence of Heavy Metal-Resistant Cupriavidus alkaliphilus ASC-732T, Isolated from Agave Rhizosphere in the Northeast of Mexico. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01013-16. [PMID: 27660789 PMCID: PMC5034140 DOI: 10.1128/genomea.01013-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cupriavidus alkaliphilus ASC-732T was isolated from the rhizosphere of agave plant growing in alkaline soils in San Carlos, Tamaulipas, Mexico. The species is able to grow in the presence of arsenic, zinc, and copper. The genome sequence of strain ASC-732T is 6,125,055 bp with 5,586 genes and an average G+C content of 67.81%.
Collapse
|
15
|
Puigserver D, Herrero J, Torres M, Cortés A, Nijenhuis I, Kuntze K, Parker BL, Carmona JM. Reductive dechlorination in recalcitrant sources of chloroethenes in the transition zone between aquifers and aquitards. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18724-41. [PMID: 27314420 DOI: 10.1007/s11356-016-7068-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/09/2016] [Indexed: 05/20/2023]
Abstract
In the transition zone between aquifers and basal aquitards, the perchloroethene pools at an early time in their evolution are more recalcitrant than those elsewhere in the aquifer. The aim of this study is to demonstrate that the biodegradation of chloroethenes from aged pools (i.e., pools after decades of continuous groundwater flushing and dissolution) of perchloroethene is favored in the transition zone. A field site was selected where an aged pool exists at the bottom of a transition zone. Two boreholes were drilled to obtain sediment and groundwater samples to perform chemical, isotopic, molecular, and clone library analyses and microcosm experiments. The main results were as follows: (i) the transition zone is characterized by a high microbial richness; (ii) reductively dechlorinating microorganisms are present and partial reductive dechlorination coexists with denitrification, Fe and Mn reduction, and sulfate reduction; (iii) reductively dechlorinating microorganisms were also present in the zone of the aged pool; (v) the high concentrations of perchloroethene in this zone resulted in a decrease in microbial richness; (vi) however, the presence of fermenting microorganisms supplying electrons for the reductively dechlorinating microorganisms prevented the reductive dechlorination to be inhibited. These findings suggest that biostimulation and/or bioaugmentation could be applied to promote complete reductive dechlorination and to enhance the dissolution of more nonaqueous phase liquids (DNAPL).
Collapse
Affiliation(s)
- Diana Puigserver
- Department de Gequímica, Petrologia i Prospecció Geològica, Facultat de Geologia, Universitat de Barcelona, C/ Martí i Franquès, s/n, 08028, Barcelona, Spain
| | - Jofre Herrero
- Department de Gequímica, Petrologia i Prospecció Geològica, Facultat de Geologia, Universitat de Barcelona, C/ Martí i Franquès, s/n, 08028, Barcelona, Spain
| | - Mònica Torres
- Department de Gequímica, Petrologia i Prospecció Geològica, Facultat de Geologia, Universitat de Barcelona, C/ Martí i Franquès, s/n, 08028, Barcelona, Spain
| | - Amparo Cortés
- Departament de Productes Naturals, Biologia Vegetal i Edafologia, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, s/n., 08028, Barcelona, Spain
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15., 04318, Leipzig, Germany
| | - Kevin Kuntze
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15., 04318, Leipzig, Germany
| | - Beth L Parker
- School of Engineering, University of Guelph, 50, Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - José M Carmona
- Department de Gequímica, Petrologia i Prospecció Geològica, Facultat de Geologia, Universitat de Barcelona, C/ Martí i Franquès, s/n, 08028, Barcelona, Spain.
| |
Collapse
|
16
|
Lv YY, Chen MH, Xia F, Wang J, Qiu LH. Paraburkholderiapallidirosea sp. nov., isolated from a monsoon evergreen broad-leaved forest soil. Int J Syst Evol Microbiol 2016; 66:4537-4542. [PMID: 27499129 DOI: 10.1099/ijsem.0.001387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, rod-shaped, aerobic and motile bacterial strain, DHOK13T, was isolated from the forest soils of Dinghushan Biosphere Reserve, Guangdong Province, PR China (112° 31' E, 23° 10' N). It grew optimally at 28-33 °C and pH 7.0-7.5. The main fatty acids were C16 : 0, C17 : 0 cyclo, C19 : 0 cycloω8c, summed feature 2 (C12 : 0 aldehyde and/or unknown 10.9525) and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The organism contained ubiquinone Q-8 as the predominant isoprenoid quinone. The total DNA G+C content of strain DHOK13T was 62.0 mol%. Phylogenetic analysis of the 16S rRNA gene, as well as the sequence of the partial housekeeping genes, gyrB and recA, showed consistently that strain DHOK13T formed an independent cluster with Paraburkholderia phenazinium LMG 2247T. DNA-DNA hybridization studies showed relatively low relatedness values (39 %) of strain DHOK13T with P. phenazinium LMG 2247T. The phenotypic, chemotaxonomic and phylogenetic data showed that strain DHOK13T represents a novel species of the genus Paraburkholderia for which the name Paraburkholderia pallidirosea sp. nov. is proposed. The type strain is DHOK13T (=KCTC 42626T=LMG 28846T).
Collapse
Affiliation(s)
- Ying-Ying Lv
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Mei-Hong Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Fan Xia
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jia Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Li-Hong Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
17
|
Rusch A, Islam S, Savalia P, Amend JP. Burkholderia insulsa sp. nov., a facultatively chemolithotrophic bacterium isolated from an arsenic-rich shallow marine hydrothermal system. Int J Syst Evol Microbiol 2014; 65:189-194. [PMID: 25323596 DOI: 10.1099/ijs.0.064477-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enrichment cultures inoculated with hydrothermally influenced nearshore sediment from Papua New Guinea led to the isolation of an arsenic-tolerant, acidophilic, facultatively aerobic bacterial strain designated PNG-April(T). Cells of this strain were Gram-stain-negative, rod-shaped, motile and did not form spores. Strain PNG-April(T) grew at temperatures between 4 °C and 40 °C (optimum 30-37 °C), at pH 3.5 to 8.3 (optimum pH 5-6) and in the presence of up to 2.7% NaCl (optimum 0-1.0%). Both arsenate and arsenite were tolerated up to concentrations of at least 0.5 mM. Metabolism in strain PNG-April(T) was strictly respiratory. Heterotrophic growth occurred with O2 or nitrate as electron acceptors, and aerobic lithoautotrophic growth was observed with thiosulfate or nitrite as electron donors. The novel isolate was capable of N2-fixation. The respiratory quinones were Q-8 and Q-7. Phylogenetically, strain PNG-April(T) belongs to the genus Burkholderia and shares the highest 16S rRNA gene sequence similarity with the type strains of Burkholderia fungorum (99.8%), Burkholderia phytofirmans (98.8%), Burkholderia caledonica (98.4%) and Burkholderia sediminicola (98.4%). Differences from these related species in several physiological characteristics (lipid composition, carbohydrate utilization, enzyme profiles) and DNA-DNA hybridization suggested the isolate represents a novel species of the genus Burkholderia, for which we propose the name Burkholderia insulsa sp. nov. The type strain is PNG-April(T) ( = DSM 28142(T) = LMG 28183(T)).
Collapse
Affiliation(s)
- Antje Rusch
- Center for Ecology, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901, USA.,Department of Microbiology, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901, USA
| | - Shaer Islam
- Department of Microbiology, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901, USA
| | - Pratixa Savalia
- Department of Earth Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| | - Jan P Amend
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA.,Department of Earth Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| |
Collapse
|
18
|
Estrada-de los Santos P, Solano-Rodríguez R, Matsumura-Paz LT, Vásquez-Murrieta MS, Martínez-Aguilar L. Cupriavidus plantarum sp. nov., a plant-associated species. Arch Microbiol 2014; 196:811-7. [DOI: 10.1007/s00203-014-1018-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/13/2014] [Accepted: 07/15/2014] [Indexed: 11/25/2022]
|
19
|
Castanheira N, Dourado AC, Alves PI, Cortés-Pallero AM, Delgado-Rodríguez AI, Prazeres Â, Borges N, Sánchez C, Barreto Crespo MT, Fareleira P. Annual ryegrass-associated bacteria with potential for plant growth promotion. Microbiol Res 2014; 169:768-79. [PMID: 24485300 DOI: 10.1016/j.micres.2013.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/30/2013] [Accepted: 12/31/2013] [Indexed: 11/27/2022]
Abstract
Annual ryegrass is a fast-growing cool-season grass broadly present in the Portuguese "montado", a typically Mediterranean agro-forestry-pastoral ecosystem. A culture-dependent approach was used to investigate natural associations of this crop with potentially beneficial bacteria, aiming to identify strains suitable for biofertilization purposes. Annual ryegrass seedlings were used to trap bacteria from three different soils in laboratory conditions. Using a nitrogen-free microaerophilic medium, 147 isolates were recovered from the rhizosphere, rhizoplane, and surface-sterilized plant tissues, which were assigned to 12 genera in classes Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacilli and Actinobacteria. All isolates were able to grow in the absence of nitrogen and several of them were able to perform in vitro activities related to plant growth promotion. Isolates of the genera Sphingomonas and Achromobacter were found to be the most effective stimulators of annual ryegrass growth under nitrogen limitation (47-92% biomass increases). Major enhancements were obtained with isolates G3Dc4 (Achromobacter sp.) and G2Ac10 (Sphingomonas sp.). The latest isolate was also able to increment plant growth in nitrogen-supplemented medium, as well as the phosphate solubilizer and siderophore producer, G1Dc10 (Pseudomonas sp.), and the cellulose/pectin hydrolyser, G3Ac9 (Paenibacillus sp.). This study represents the first survey of annual ryegrass-associated bacteria in the "montado" ecosystem and unveiled a set of strains with potential for use as inoculants.
Collapse
Affiliation(s)
- Nádia Castanheira
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Av. da República, 2780-159 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Catarina Dourado
- iBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Paula Isabel Alves
- iBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | | | - Ângela Prazeres
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Av. da República, 2780-159 Oeiras, Portugal
| | - Nuno Borges
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Claudia Sánchez
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Av. da República, 2780-159 Oeiras, Portugal
| | - Maria Teresa Barreto Crespo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Paula Fareleira
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Av. da República, 2780-159 Oeiras, Portugal.
| |
Collapse
|
20
|
Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris. Antonie van Leeuwenhoek 2013; 104:1063-71. [DOI: 10.1007/s10482-013-0028-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
|
21
|
Stopnisek N, Bodenhausen N, Frey B, Fierer N, Eberl L, Weisskopf L. Genus-wide acid tolerance accounts for the biogeographical distribution of soil Burkholderia populations. Environ Microbiol 2013; 16:1503-12. [PMID: 23945027 DOI: 10.1111/1462-2920.12211] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 11/30/2022]
Abstract
Bacteria belonging to the genus Burkholderia are highly versatile with respect to their ecological niches and lifestyles, ranging from nodulating tropical plants to causing melioidosis and fatal infections in cystic fibrosis patients. Despite the clinical importance and agronomical relevance of Burkholderia species, information about the factors influencing their occurrence, abundance and diversity in the environment is scarce. Recent findings have demonstrated that pH is the main predictor of soil bacterial diversity and community structure, with the highest diversity observed in neutral pH soils. As many Burkholderia species have been isolated from low pH environments, we hypothesized that acid tolerance may be a general feature of this genus, and pH a good predictor of their occurrence in soils. Using a combination of environmental surveys at trans-continental and local scales, as well as in vitro assays, we show that, unlike most bacteria, Burkholderia species have a competitive advantage in acidic soils, but are outcompeted in alkaline soils. Physiological assays and diversity analysis based on 16S rRNA clone libraries demonstrate that pH tolerance is a general phenotypic trait of the genus Burkholderia. Our results provide a basis for building a predictive understanding of the biogeographical patterns exhibited by Burkholderia sp.
Collapse
Affiliation(s)
- Nejc Stopnisek
- Institute of Plant Biology, University of Zurich, Zürich, CH-8008, Switzerland; Swiss Federal Research Station for Agronomy and Nature, Agroscope Reckenholz-Tänikon, Zürich, CH-8046, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Estrada-de los Santos P, Martínez-Aguilar L, López-Lara IM, Caballero-Mellado J. Cupriavidus alkaliphilus sp. nov., a new species associated with agricultural plants that grow in alkaline soils. Syst Appl Microbiol 2012; 35:310-4. [DOI: 10.1016/j.syapm.2012.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 04/04/2012] [Accepted: 05/25/2012] [Indexed: 11/25/2022]
|
23
|
Martínez-Aguilar L, Caballero-Mellado J, Estrada-de Los Santos P. Transfer of Wautersia numazuensis to the genus Cupriavidus as Cupriavidus numazuensis comb. nov. Int J Syst Evol Microbiol 2012; 63:208-211. [PMID: 22389284 DOI: 10.1099/ijs.0.038729-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic analysis of the 16S rRNA gene sequences of strains TE26(T) and K6 belonging to Wautersia numazuensis Kageyama et al. 2005 showed the strains to be deeply intermingled among the species of the genus Cupriavidus. The comparison showed that strain TE26(T) was closely related to the type strains of Cupriavidus pinatubonensis (99.1 % 16S rRNA gene sequence similarity), C. basilensis (98.7 %), C. necator (98.7 %) and C. gilardii (98.0 %). However, DNA-DNA hybridization experiments (less than 20 % relatedness) demonstrated that strain TE26(T) is different from these Cupriavidus species. A comparative phenotypic and chemotaxonomic analysis (based on fatty acid profiles) in combination with the 16S rRNA gene sequence phylogenetic analysis and the DNA-DNA hybridization results supported the incorporation of Wautersia numazuensis into the genus Cupriavidus as Cupriavidus numazuensis comb. nov.; the type strain is TE26(T) (=LMG 26411(T) =DSM 15562(T) = CIP 108892(T)).
Collapse
Affiliation(s)
- Lourdes Martínez-Aguilar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Ap. Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Jesús Caballero-Mellado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Ap. Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Paulina Estrada-de Los Santos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Ap. Postal 565-A, Cuernavaca, Morelos, Mexico
| |
Collapse
|