1
|
Liu P, Zhang Z, Wu D, Li W, Chen W, Yang Y. The prospect of mushroom as an alterative protein: From acquisition routes to nutritional quality, biological activity, application and beyond. Food Chem 2025; 469:142600. [PMID: 39733565 DOI: 10.1016/j.foodchem.2024.142600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
There is a need for new protein sources to sustainably feed the world. Mushroom proteins are regarded as a future protein alternative considering their low cost, high nutritional quality, and excellent digestibility, have attracted increasing attention. Proteins with multiple structural characteristics endow mushroom with various bioactivities, which has also broadened application of mushroom in nutrition, food fields, as well as in emerging industries. Therefore, the present review narrates the recent developments in nutritional quality of mushroom proteins, while paying considerable attention to cultivation technologies and preparation strategies of mushroom proteins. Moreover, the types, properties and biological benefits of mushroom proteins were summarized, herein the latest research on applications of mushroom or their proteins was highlighted. Eventually, the challenges confronting their widespread utility, despite their high nutritional content were discussed. This review would provide a new appreciation for the future use of mushroom proteins.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
2
|
Niazi AR, Ghafoor A, Mushtaq A. Systematic characterisation, and effect of nutritional and physical parameters on culturability, laccase production and dye decolorisation potential by P. pistillaris from Pakistan. Nat Prod Res 2024; 38:3519-3527. [PMID: 37665202 DOI: 10.1080/14786419.2023.2253558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Podaxis pistillaris is neutraceutically, cosmoceutically and medicinally recognised macrofungus. During this research work, this edible mushroom was systematically characterised. Its culturability, laccase production, and dye decolorisation potential were evaluated and optimised. Among the different media tested, PDA proved as most efficient medium for culturability of P. pistillaris. Conditions for laccase production were optimised in submerged state fermentation. Maximum laccase secretion was noted after 14th day of Incubation at 35 °C with 130 rpm and 5 pH of medium. Fructose and ammonium-phosphate was found as best carbon and nitrogen source, while wheat straw revealed as good ligno-cellulosic source for strengthening laccase production. Congo-red dye decolorisation capability by crude laccase enzyme was evaluated and found maximum decolorisation potential (92.2%) after 288h of incubation. From this pilot study, it was confirmed that this edible macrofungus has culturability, laccase production and dye decolorisation attributes that will further contribute in delignification, biosorption and bioremediation.
Collapse
Affiliation(s)
| | - Aneeqa Ghafoor
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Asma Mushtaq
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
3
|
Hamed AA, Abd-Elaziz AM, Ghanem MME, ElAwady ME, Abdel-Aziz MS. Production of laccase enzyme from Curvularia lunata MY3: purification and characterization. Folia Microbiol (Praha) 2024; 69:221-234. [PMID: 37691075 PMCID: PMC10876717 DOI: 10.1007/s12223-023-01088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
Laccase-producing fungus (MY3) was successfully isolated from soil samples collected from Mansoura Governorate, Egypt. This fungal isolate has shown a high laccase production level over other isolated fungi. The identity of this isolate was determined by the molecular technique 18SrRNA as Curvularia lunata MY3. The enzyme purification was performed using ammonium sulfate precipitation followed by Sephacryl S-200 and DEAE-Sepharose column chromatography. The denatured enzyme using SDS-PAGE had a molar mass of 65 kDa. The purified laccase had an optimum temperature at 40 °C for enzyme activity with 57.3 kJ/mol activation energy for 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) oxidation. The enzyme had an optimum pH of 5.0, and it has shown a high stability at the acidic range (4.5 to 5.5). Mn2+ and Mg2+ ions enhanced the enzyme activity, while most of the enzyme activity was inhibited by Hg2+. Some compounds such as 2-mercaptoethanol, L-cysteine, and sodium azide at a concentration of 10 mmol/L had shown a high suppression effect on the enzyme activity. The enzyme strongly oxidized ABTS and syringaldazine and moderately oxidized DMP and guaiacol. The antimicrobial activity of the purified enzyme towards three pathogenic strains (Escherichia coli ATCC-25922, Staphylococcus aureus NRRLB-767, and Candida albicans ATCC-10231) was evaluated for the potential use as an antimicrobial therapeutic enzyme.
Collapse
Affiliation(s)
- Ahmed A Hamed
- Microbial Chemistry Department, National Research Center, 33-El Bohouthst, P.O.12622, Dokki, Giza, Egypt
| | - Ahmed M Abd-Elaziz
- Molecular Biology Department, National Research Center, 33-El Bohouthst, P.O.12622, Dokki, Giza, Egypt
| | - Manal M E Ghanem
- Molecular Biology Department, National Research Center, 33-El Bohouthst, P.O.12622, Dokki, Giza, Egypt.
| | - Mohamed E ElAwady
- Department of Microbial Biotechnology, National Research Center, 33-El Bohouthst, P.O.12622, Dokki, Giza, Egypt
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, National Research Center, 33-El Bohouthst, P.O.12622, Dokki, Giza, Egypt
| |
Collapse
|
4
|
Lone SA, Wani AH, Bhat MY, Iqbal PF. Diversity and Ethno-Mycopharmacological Insights of Medicinal Mushrooms of the Bangus Valley of Jammu and Kashmir, India. Int J Med Mushrooms 2024; 26:51-63. [PMID: 39093401 DOI: 10.1615/intjmedmushrooms.2024054174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The present study was carried out in various regions of Jammu and Kashmir, India, for the diversity and pharmacology of wild mushrooms. The valley is bestowed with alpine meadows and dense coniferous forest. Because of its isolation, security concerns, and line of control, most of these locations either have been little investigated or are entirely undiscovered. During the intensive survey of various locations, 20 mushroom species were collected from the surveyed areas. The ethno-mycological information was gathered from tribal communities and local herbalists (hakims). It was observed that 16 species were used against cold, constipation, liver and skin disorders, digestion problems, wound healing, and the like. However, these medicinal mushrooms are losing their relevance, so there is an urgent need to explore and preserve this knowledge for future use as medicine.
Collapse
Affiliation(s)
- Shoaib Ahmad Lone
- Department of Botany, Section of Mycology, Plant Pathology and Microbiology, University of Kashmir, Srinagar (190006), India
| | - Abdul Hamid Wani
- Section of Mycology and Plant Pathology, Department of Botany, University of Kashmir, Hazratbal Srinagar, India
| | | | - Prince Firdoos Iqbal
- Department of Chemistry, Government Degree College, Hyderpora Srinagar, Kashmir 190014, India
| |
Collapse
|
5
|
Williams LM, Berthon BS, Stoodley IL, Williams EJ, Wood LG. Medicinal Mushroom Extracts from Hericium coralloides and Trametes versicolor Exert Differential Immunomodulatory Effects on Immune Cells from Older Adults In Vitro. Nutrients 2023; 15:2227. [PMID: 37432355 DOI: 10.3390/nu15092227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 07/12/2023] Open
Abstract
Medicinal mushroom extracts (MMEs) exert immunomodulatory effects on innate immunity. The present study aimed to examine the effect of medicinal mushroom components on in vitro immune cell responses to inflammatory stimuli by peripheral blood mononuclear cells (PBMCs) isolated from older adults, where immune function is altered. PBMCs were treated with extracts from Hericium coralloides (HC) and Trametes versicolor (TV) prior to stimulation with rhinovirus A1 (RVA1), influenza A/H1N1pdm09 (H1N1), lipopolysaccharide (LPS), or house dust mite (HDM) for 48 h. In the presence of virus, type I and II IFN significantly (p < 0.05) decreased following treatment with at least one concentration of all extracts compared to the untreated cell controls, along with significant increases in pro-inflammatory cytokines (IL-1β, IL-6, IL-8). In the presence of LPS, extracts from TV reduced IL-1β compared to untreated cells. In the presence of HDM, the concentration of IL-5 and/or IL-13 was significantly decreased with at least one dose of all extracts. MMEs exert differential effects on the release of inflammatory and antiviral mediators in vitro. Reduced type 2 cytokine responses to HDM may be beneficial in conditions where allergic inflammation is present, including asthma, allergic rhinitis, and eczema. Further research is needed to examine extracts in vivo.
Collapse
Affiliation(s)
- Lily M Williams
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Bronwyn S Berthon
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Isobel L Stoodley
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Evan J Williams
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Lisa G Wood
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
6
|
Gujjala LKS, Won W. Process development, techno-economic analysis and life-cycle assessment for laccase catalyzed synthesis of lignin hydrogel. BIORESOURCE TECHNOLOGY 2022; 364:128028. [PMID: 36174893 DOI: 10.1016/j.biortech.2022.128028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
In this study, an effort has been undertaken to study process design, techno-economic analysis, and life-cycle assessment (LCA) of lignin hydrogel (LH) which has potential applications in environmental remediation. Minimum selling price (MSP) of LHs has been estimated to be 2,141 US$/ton and it lies within the range of market price (1,420-2,280 US$/ton) for commercial coagulants. Further, sensitivity analysis has been conducted and it was observed that "% efficiency of lignin hydrogel production" and "lignin price" were the most influential parameters. Uncertainty analysis has also been conducted to study the influence of volatility in the market price of lignin and total capital investment on MSP of LH. From LCA study, it was estimated that the proposed process will emit 2.8 kg CO2 eq. and 1.1 kg Oil eq./kg lignin hydrogel. The developed process can be utilized for lignin upgradation in biorefineries to develop economically feasible and sustainable processes.
Collapse
Affiliation(s)
- Lohit Kumar Srinivas Gujjala
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Wangyun Won
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
7
|
Umar A, Ahmed S. Optimization, purification and characterization of laccase from Ganoderma leucocontextum along with its phylogenetic relationship. Sci Rep 2022; 12:2416. [PMID: 35165332 PMCID: PMC8844424 DOI: 10.1038/s41598-022-06111-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
The aim of this work to study an efficient laccase producing fungus Ganoderma leucocontextum, which was identified by ITS regions of DNA and phylogenetic tree was constructed. This study showed the laccase first-time from G. leucocontextum by using medium containing guaiacol. The growth cultural (pH, temperature, incubation days, rpm) and nutritional (carbon and nitrogen sources) conditions were optimized, which enhanced the enzyme production up to 4.5-folds. Laccase production increased 855 U/L at 40 °C. The pH 5.0 was suitable for laccase secretion (2517 U/L) on the 7th day of incubation at 100 rpm (698.3 U/L). Glucose and sucrose were good carbon source to enhance the laccase synthesis. The 10 g/L beef (4671 U/L) and yeast extract (5776 U/L) were the best nitrogen source for laccase secretion from G. leucocontextum. The laccase was purified from the 80% ammonium sulphate precipitations of protein identified by nucleotides sequence. The molecular weight (65.0 kDa) of purified laccase was identified through SDS and native PAGE entitled as Glacc110. The Glacc110 was characterized under different parameters. It retained > 90% of its activity for 16 min incubation at 60 °C in acidic medium (pH 4.0). This enzyme exerted its optimal activity at pH 3.0 and temperature 70 °C with guaiacol substrate. The catalytic parameters Km and Vmax was 1.658 (mM) and 2.452 (mM/min), respectively. The thermo stability of the laccase produced by submerged fermentation of G. leucocontextum has potential for industrial and biotechnology applications. The results remarked the G. leucocontextum is a good source for laccase production.
Collapse
|
8
|
Genome Sequencing of Hericium coralloides by a Combination of PacBio RS II and Next-Generation Sequencing Platforms. Int J Genomics 2022; 2022:4017654. [PMID: 35141329 PMCID: PMC8820905 DOI: 10.1155/2022/4017654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/07/2021] [Accepted: 01/09/2022] [Indexed: 11/17/2022] Open
Abstract
The fruiting bodies or mycelia of Hericium coralloides (H. coralloides) contain many physiologically active compounds that are used to treat various diseases, including cardiovascular disorders and cancers. However, the genome of H. coralloides has not been sequenced, which hinders further investigations into aspects, such as bioactivity or evolutionary events. The present study is aimed at (i) performing de novo sequencing of the assembled genome; (ii) mapping the reads from PE400 DNA into the assembled genome; (iii) identifying the full length of all the repeated sequences; and (iv) annotating protein-coding genes using GO, eggNOG, and KEGG databases. The assembled genome comprised 5,59,05,675 bp, including 307 contigs. The mapping rate of reads obtained from PE400 DNA in the assembled genome was 92.46%. We identified 2,525 repeated sequences of 14,23,274 bp length. We predicted ncRNAs of 48,895 bp and 11,736 genes encoding proteins that were annotated in the GO, eggNOG, and KEGG databases. We are the first to sequence the entire H. coralloides genome (NCBI; Assembly: ASM367540v1), which will serve as a reference for studying the evolutionary diversification of edible and medicinal mushrooms and facilitate the application of bioactivity in H. coralloides.
Collapse
|
9
|
Mushroom Ligninolytic Enzymes―Features and Application of Potential Enzymes for Conversion of Lignin into Bio-Based Chemicals and Materials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mushroom ligninolytic enzymes are attractive biocatalysts that can degrade lignin through oxido-reduction. Laccase, lignin peroxidase, manganese peroxidase, and versatile peroxidase are the main enzymes that depolymerize highly complex lignin structures containing aromatic or aliphatic moieties and oxidize the subunits of monolignol associated with oxidizing agents. Among these enzymes, mushroom laccases are secreted glycoproteins, belonging to a polyphenol oxidase family, which have a powerful oxidizing capability that catalyzes the modification of lignin using synthetic or natural mediators by radical mechanisms via lignin bond cleavage. The high redox potential laccase within mediators can catalyze the oxidation of a wide range of substrates and the polymerization of lignin derivatives for value-added chemicals and materials. The chemoenzymatic process using mushroom laccases has been applied effectively for lignin utilization and the degradation of recalcitrant chemicals as an eco-friendly technology. Laccase-mediated grafting has also been employed to modify lignin and other polymers to obtain novel functional groups able to conjugate small and macro-biomolecules. In this review, the biochemical features of mushroom ligninolytic enzymes and their potential applications in catalytic reactions involving lignin and its derivatives to obtain value-added chemicals and novel materials in lignin valorization are discussed.
Collapse
|
10
|
Serna-Arbeláez MS, Florez-Sampedro L, Orozco LP, Ramírez K, Galeano E, Zapata W. Natural Products with Inhibitory Activity against Human Immunodeficiency Virus Type 1. Adv Virol 2021; 2021:5552088. [PMID: 34194504 PMCID: PMC8181102 DOI: 10.1155/2021/5552088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Infections caused by human immunodeficiency virus (HIV) are considered one of the main public health problems worldwide. Antiretroviral therapy (ART) is the current modality of treatment for HIV-1 infection. It comprises the combined use of several drugs and can decrease the viral load and increase the CD4+ T cell count in patients with HIV-1 infection, thereby proving to be an effective modality. This therapy significantly decreases the rate of morbidity and mortality owing to acquired immunodeficiency syndrome (AIDS) and prolongs and improves the quality of life of infected patients. However, nonadherence to ART may increase viral resistance to antiretroviral drugs and transmission of drug-resistant strains of HIV. Therefore, it is necessary to continue research for compounds with anti-HIV-1 activity, exhibiting a potential for the development of an alternative or complementary therapy to ART with low cost and fewer side effects. Natural products and their derivatives represent an excellent option owing to their therapeutic potential against HIV. Currently, the derivatives of natural products available as anti-HIV-1 agents include zidovudine, an arabinonucleoside derivative of the Caribbean marine sponge (Tectitethya crypta), which inhibits the reverse transcriptase of the virus. This was the first antiviral agent approved for treatment of HIV infection. Additionally, bevirimat (isolated from Syzygium claviflorum) and calanolide A (isolated from Calophyllum sp.) are inhibitors of viral maturation and reverse transcription process, respectively. In the present review, we aimed to describe the wide repertoire of natural compounds exhibiting anti-HIV-1 activity that can be considered for designing new therapeutic strategies to curb the HIV pandemic.
Collapse
Affiliation(s)
- Maria S. Serna-Arbeláez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo de Investigacion en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Laura Florez-Sampedro
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Lina P. Orozco
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Katherin Ramírez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Elkin Galeano
- Productos Naturales Marinos, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Wildeman Zapata
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
11
|
ElyasiGhahfarokhi A, Hashemi S, Saeedi M, Khanavi M, Faramarzi MA. Phytocatalytic and cytotoxic activity of the purified laccase from bled resin of Pistacia atlantica Desf. Int J Biol Macromol 2021; 176:394-403. [PMID: 33548319 DOI: 10.1016/j.ijbiomac.2021.01.212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 11/28/2022]
Abstract
This study reports an efficient and fast procedure for the purification of laccase (PaL) obtained from the resin of Pistacia atlantica Desf. It was purified by one-step affinity chromatography and showed the specific activity of 393 U/mg with 81.9-fold purification. The molecular weight of PaL was estimated to be approximately 60 kDa using gel electrophoresis SDS-PAGE. Moreover, it depicted diphenolase activity and high affinity towards 2,6-dimethoxy phenol (Km = 10.01 ± 0.5 mM) and syringaldazine (Km = 6.57 ± 0.2 mM) comparing with plant-origin polyphenol oxidases reported in the literature. It should be noted that PaL possessed optimal activity at pH 7.5 and 45 °C. It also remained stable under different conditions of pH (6.5-8.0), temperature (25-45 °C), and when it was exposed to several metal ions. The MTT and flow cytometry assays demonstrated that the enzyme treatment significantly affected growth of HeLa, HepG2, and MDA-MB-231 cells with LC50 values of 4.83 ± 0.02, 61 ± 0.31, and 26.83 ± 0.11 μM after 72 h, respectively. NOVELTY STATEMENT: This is the first attempt to isolate and characterize a new oxidoreductase from the resin of Pistacia atlantica Desf., native species of Iran, to recruit it in cytotoxicity researches. In the purification process by an efficient affinity column (SBA-NH2-GA), the enzyme was eluted promptly with a satisfied yield. The purified laccase exerted higher affinity to diphenolic compounds and pH-thermal stability compared to other plant-derived polyphenol oxidases. The purified enzyme was found to show anti-oxidant capacity and significantly inhibited the growth of cancerous cells in vitro. PaL showed more cytotoxic activity towards HeLa and MDA-MB-231 cells by induction of apoptosis. The cytotoxic activity of the laccase was measured by flow cytometry.
Collapse
Affiliation(s)
- Azam ElyasiGhahfarokhi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Saba Hashemi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Khanavi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada.
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran.
| |
Collapse
|
12
|
Navada KK, Kulal A. Kinetic characterization of purified laccase from Trametes hirsuta: a study on laccase catalyzed biotransformation of 1,4-dioxane. Biotechnol Lett 2020; 43:613-626. [PMID: 33146857 DOI: 10.1007/s10529-020-03038-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 10/26/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Laccase is one of the best known biocatalysts which degrade wide varieties of complex molecules that are both non-cyclic and cyclic in structure. The study focused on enzyme kinetics of a purified laccase from Trametes hirsuta L. fungus and its application on biotransformation of a carcinogenic molecule 1,4-dioxane. RESULTS Laccase was purified from white-rot fungus T. hirsuta L. which showed specific activity of 978.34 U/mg after the purification fold of 54.08. The stable laccase activity (up to 16 h) is shown at 4-6 pH and 20-40 °C temperature range. The purified enzyme exhibited significant stability for 10 metal ions up to 10 mM concentration, except for Fe2+ and Hg2+. The Cu2+ ion induced laccase activity up to 142% higher than the control at 10 mM concentration. The laccase enzyme kinetic parameters Km was 20 ± 5 µM and 400 ± 60 µM, whereas Kcat was 198.29 ± 0.18/s and 80.20 ± 1.59/s for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and guaiacol respectively. The cyclic ether 1,4-dioxane (100 ppm) was completely degraded in presence of purified laccase within 2 h of incubation and it was confirmed by HPLC and GC analysis. The oxidation reaction was accelerated by 25, 22, 6 and 19% in presence of 1 mM syringaldehyde, vanillin, ABTS and guaiacol mediators respectively. CONCLUSIONS In this study, fungal laccase (a natural biocatalyst) based degradation of synthetic chemical 1,4-dioxane was reported for the first time. This method has added advantages over the multiple methods reported earlier being a natural remedy.
Collapse
Affiliation(s)
- Kavitha Keshava Navada
- Biological Sciences, Poornaprajna Institute of Scientific Research, Bidalur post, Devanahalli, Bengaluru Rural, 562110, India
- Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ananda Kulal
- Biological Sciences, Poornaprajna Institute of Scientific Research, Bidalur post, Devanahalli, Bengaluru Rural, 562110, India.
| |
Collapse
|
13
|
Mohit E, Tabarzad M, Faramarzi MA. Biomedical and Pharmaceutical-Related Applications of Laccases. Curr Protein Pept Sci 2020; 21:78-98. [DOI: 10.2174/1389203720666191011105624] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 12/07/2022]
Abstract
The oxidation of a vast range of phenolic and non-phenolic substrates has been catalyzed by
laccases. Given a wide range of substrates, laccases can be applied in different biotechnological applications.
The present review was conducted to provide a broad context in pharmaceutical- and biomedical-
related applications of laccases for academic and industrial researchers. First, an overview of biological
roles of laccases was presented. Furthermore, laccase-mediated strategies for imparting antimicrobial
and antioxidant properties to different surfaces were discussed. In this review, laccase-mediated
mechanisms for endowing antimicrobial properties were divided into laccase-mediated bio-grafting of
phenolic compounds on lignocellulosic fiber, chitosan and catheters, and laccase-catalyzed iodination.
Accordingly, a special emphasis was placed on laccase-mediated functionalization for creating antimicrobials,
particularly chitosan-based wound dressings. Additionally, oxidative bio-grafting and oxidative
polymerization were described as the two main laccase-catalyzed reactions for imparting antioxidant
properties. Recent laccase-related studies were also summarized regarding the synthesis of antibacterial
and antiproliferative agents and the degradation of pharmaceuticals and personal care products.
Collapse
Affiliation(s)
- Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| |
Collapse
|
14
|
Zhou R, Liu ZK, Zhang YN, Wong JH, Ng TB, Liu F. Research Progress of Bioactive Proteins from the Edible and Medicinal Mushrooms. Curr Protein Pept Sci 2019; 20:196-219. [DOI: 10.2174/1389203719666180613090710] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/25/2018] [Indexed: 01/04/2023]
Abstract
For centuries, mushrooms have been widely used as traditional Chinese medicine in Asia.
Apart from polysaccharides and some small-molecule components, such as flavones, polyphenols and
terpenes, mushrooms produce a large number of pharmaceutically active proteins, which have become
popular sources of natural antitumor, antimicrobial, immunoenhancing agents. These bioactive proteins
include lectins, laccases, Ribosome Inactivating Proteins (RIPs), nucleases, and Fungal Immunomodulatory
Proteins (FIPs). The review is to summarize the characterstics of structure and bioactivities involved
in antitumor, antiviral, antifungal, antibacterial and immunoenhancing activities of proteins from
edible mushrooms, to better understand their mechanisms, and to direct research.
Collapse
Affiliation(s)
- Rong Zhou
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Zhao Kun Liu
- Department of History, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Ye Ni Zhang
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Fang Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, 300071, China
| |
Collapse
|
15
|
Molecular cloning, expression and characterization of poxa1b gene from Pleurotus ostreatus. Mol Biol Rep 2018; 46:981-990. [DOI: 10.1007/s11033-018-4555-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
|
16
|
Kim JY, Woo EE, Lee IK, Yun BS. New antioxidants from the culture broth of Hericium coralloides. J Antibiot (Tokyo) 2018; 71:822-825. [PMID: 29773898 DOI: 10.1038/s41429-018-0067-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 11/09/2022]
Abstract
In our effort to find antioxidants from the higher fungi, we isolated three new compounds (1-3) with a known compound, spirobenzofuran (4), from the culture broth of Hericium coralloides. Bioassay-guided fractionation led to the isolation of these compounds, and we determined the chemical structures through spectroscopic methods. These compounds exhibited antioxidant activity in the range of IC50 values of 29-66 μM in the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging assay.
Collapse
Affiliation(s)
- Ji-Yul Kim
- Division of Biotechnology and Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan-si, Korea
| | - E-Eum Woo
- Division of Biotechnology and Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan-si, Korea
| | - In-Kyoung Lee
- Division of Biotechnology and Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan-si, Korea
| | - Bong-Sik Yun
- Division of Biotechnology and Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan-si, Korea.
| |
Collapse
|
17
|
Yuan X, Zhu M, Tian G, Zhao Y, Zhao L, Ng TB, Wang H. Biochemical characteristics of a novel protease from the basidiomycete Amanita virgineoides. Biotechnol Appl Biochem 2017; 64:532-540. [PMID: 27302036 DOI: 10.1002/bab.1519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/07/2016] [Indexed: 11/06/2022]
Abstract
The characterization of a novel protease from Amanita virgineoides is described. The A. virgineoides protease was purified to homogeneity using Q-Sepharose, carboxymethyl-cellulose, diethylaminoethyl-cellulose, and a gel filtration step on Superdex 75. The molecular mass of the purified protease was estimated to be 16.6 kDa. The protease was purified 32.1-fold, and its specific activity was 301.4 U/mg. The optimum pH was 4.0, and the optimum temperature was 50 °C. Kinetic constants (Km , Vmax ) were determined under the optimum reaction conditions, with Km and Vmax , being 3.74 mg/mL and 9.98 μg mL-1 Min-1 , respectively. The activity of the protease was curtailed by Cu2+ , Pb2+ , Fe3+ , Cd2+ , and Hg2+ ions but enhanced by Mg2+ , Ca2+ , and K+ ions at low concentrations. The protease activity was adversely affected by ethylene diamine tetraacetic acid, suggesting that it is a metalloprotease. Four peptide sequences were obtained from liquid chromatography-tandem mass spectrometry, including KQALSGIR, TIAMDGTEGLVR, VALTGLTVAEYFR, and AGAGSATLSMAYAGAR, which showed 86%, 64%, 60%, and 75% identity with peptides of Hypsizygus marmoreus, Dacryopinax sp. DJM-731 SS1, Trametes versicolor FP-101664 SS1, and Paxillus involutus ATCC 200175, respectively. The newly isolated protease showed good hydrolytic activity and biochemical characteristics, which expanded the knowledge of biologically active proteins and provided further insight on this poisonous fungus.
Collapse
Affiliation(s)
- Xianghe Yuan
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, People's Republic of China
| | - Mengjuan Zhu
- Department of Fungal Resource, Shandong Agricultural University, Shandong, People's Republic of China
| | - Guoting Tian
- Institute of Biotechnology and Germplasmic Resource, Yunnan Academy of Agricultural Science, Kunming, People's Republic of China
| | - Yongchang Zhao
- Institute of Biotechnology and Germplasmic Resource, Yunnan Academy of Agricultural Science, Kunming, People's Republic of China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
18
|
Vantamuri AB, Kaliwal BB. Purification and characterization of laccase from Marasmius species BBKAV79 and effective decolorization of selected textile dyes. 3 Biotech 2016; 6:189. [PMID: 28330261 PMCID: PMC5010537 DOI: 10.1007/s13205-016-0504-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/22/2016] [Indexed: 10/25/2022] Open
Abstract
A novel laccase-producing white-rot fungus, Marasmius sp. BBKAV79 (Genbank Accession Number-KP455496, KP455497), was isolated and subjected to purification, characterization and dye decolorization study. The purified enzyme was obtained with a specific activity of 0.226 U mg-1 protein and a final yield of 13.5 %. The enzyme was found to be a monomeric protein with a molecular mass of ~75 kDa as estimated by non-denaturing polyacrylamide gel electrophoresis (PAGE) and further confirmed with zymogram analysis. The optimal pH and temperature of the laccase was recorded to be 5.5 and 40 °C, respectively. The metal ions Hg2+ and Ag+ were found to drastically inhibit the activity of laccase at the rate of 96.6 and 96.5 %, respectively. Nevertheless, Fe3+ was found to inhibit laccase activity at 40 %. Phenylmethanesulfonyl fluoride (PMSF) strongly inhibited the laccase activity, and additives viz, sodium dodecyl sulfate (SDS), hydrogen peroxide (H2O2) and sodium chloride (NaCl) were known to follow the earlier pattern of enzyme inhibition. The values of kinetic parameters K m and V max for purified laccase were noted at 3.03 mM and 5 μmol min-1, respectively, for guaiacol as substrate. The textile dyes were decolorized at a range of 72-76 % and 88-93 % when treated with Marasmius sp. BBKAV79 and purified laccase, respectively. Based on the outcome of the present investigation, it could be, therefore, inferred that laccase isolated from Marasmius sp. BBKAV79 effectively decolorizes the textile dyes; however, the metal ions Hg2+, Ag+ and Fe3+ and agents like PMSF, SDS, H2O2 and NaCl pose an effective inhibitory potential under specified physicochemical conditions.
Collapse
Affiliation(s)
- A B Vantamuri
- Department of Studies and Research in Biotechnology and Microbiology, Karnatak University, Dharwad, 580003, India
| | - B B Kaliwal
- Department of Studies and Research in Biotechnology and Microbiology, Davangere University, Davangere, 577 002, India.
| |
Collapse
|
19
|
Itoh N, Takagi S, Miki A, Kurokawa J. Characterization and cloning of laccase gene from Hericium coralloides NBRC 7716 suitable for production of epitheaflagallin 3-O-gallate. Enzyme Microb Technol 2015; 82:125-132. [PMID: 26672458 DOI: 10.1016/j.enzmictec.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 10/23/2022]
Abstract
Epitheaflagallin 3-O-gallate (ETFGg) is a minor polyphenol found in black tea extract, which has good physiological functions. It is synthesized from epigallocatechin gallate (EGCg) with gallic acid via laccase oxidation. Various basidiomycetes and fungi were screened to find a suitable laccase for the production of ETFGg. A basidiomycete, Hericium coralloides NBRC 7716, produced an appropriate extracellular laccase. The purified laccase produced twice the level of ETFGg compared with commercially available laccase from Trametes sp. The enzyme, termed Lcc2, is a monomeric protein with an apparent molecular mass of 67.2 kDa. The N-terminal amino acid sequence of Lcc2 is quite different from laccase isolated from the fruiting bodies of Hericium. Lcc2 showed similar substrate specificity to known laccases and could oxidize various phenolic substrates, including pyrogallol, gallic acid, and 2,6-dimethoxyphenol. The full-length lcc2 gene was obtained by PCR using degenerate primers, which were designed based on the N-terminal amino acid sequence of Lcc2 and conserved copper-binding sites of laccases, and 5'-, and 3'-RACE PCR with mRNA. The Lcc2 gene showed homology with Lentinula edodes laccase (sharing 77% amino acid identity with Lcc6). We successfully produced extracellular Lcc2 using a heterologous expression system with Saccharomyces cerevisiae. Moreover, it was confirmed that the recombinant laccase generates similar levels of ETFGg as the native enzyme.
Collapse
Affiliation(s)
- Nobuya Itoh
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Shinya Takagi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Asami Miki
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Junji Kurokawa
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
20
|
Cloning and characterization of CotA laccase from Bacillus subtilis WD23 decoloring dyes. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1128-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
Mizerska-Dudka M, Jaszek M, Błachowicz A, Rejczak TP, Matuszewska A, Osińska-Jaroszuk M, Stefaniuk D, Janusz G, Sulej J, Kandefer-Szerszeń M. Fungus Cerrena unicolor as an effective source of new antiviral, immunomodulatory, and anticancer compounds. Int J Biol Macromol 2015; 79:459-68. [PMID: 26003302 DOI: 10.1016/j.ijbiomac.2015.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 01/07/2023]
Abstract
In the report, three bioactive fractions from Cerrena unicolor: laccase (LAC), endopolysaccharides (c-EPL), and low molecular weight (ex-LMS) were tested for the first time towards their antiviral, immunostimulatory, cytotoxic and antiproliferative effect. The immunomodulatory activity was studied by means of THP-1-derived macrophages able to synthesize and secrete IL-6 and TNF-α. We used cervical carcinoma cell lines SiHa (ATCC, HTB-35) and CaSki (ATCC, CRL 1550) to determine antitumor activity and human skin fibroblasts (HSF) as a control. SiHa and L929 cell lines were used in the antiviral activity assay to propagate HHV-1 and EMCV, respectively. LAC was the most active against HSV at an early stage of viral replication, whereas the activity of laccase against EMCV was evident after incubation of the virus with LAC before and after the adsorption step. Moreover, the investigations showed that the fungal c-EPL fraction stimulated the production and secretion of TNF-α and IL-6 by THP-1-derived macrophages up to a level of 2000 pg/ml and 400 pg/ml, respectively. It was indicated for the first time that the LAC and ex-LMS fractions exhibited anticancer activity. This resulted from their cytotoxic or antiproliferative action against the investigated tumor cells at concentrations above 250 μg/ml and 10 μg/ml, respectively.
Collapse
Affiliation(s)
| | - Magdalena Jaszek
- Department of Biochemistry, Maria Curie-Sklodowska University, Lublin, Poland.
| | - Adriana Błachowicz
- Department of Virology and Immunology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Tomasz Piotr Rejczak
- Department of Virology and Immunology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Anna Matuszewska
- Department of Biochemistry, Maria Curie-Sklodowska University, Lublin, Poland
| | | | - Dawid Stefaniuk
- Department of Biochemistry, Maria Curie-Sklodowska University, Lublin, Poland
| | - Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Sklodowska University, Lublin, Poland
| | - Justyna Sulej
- Department of Biochemistry, Maria Curie-Sklodowska University, Lublin, Poland
| | | |
Collapse
|
22
|
Pezzella C, Guarino L, Piscitelli A. How to enjoy laccases. Cell Mol Life Sci 2015; 72:923-40. [PMID: 25577278 PMCID: PMC11113763 DOI: 10.1007/s00018-014-1823-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 01/08/2023]
Abstract
An analysis of the scientific literature published in the last 10 years reveals a constant growth of laccase applicative research in several industrial fields followed by the publication of a great number of patents. The Green Chemistry journal devoted the cover of its September 2014 issue to a laccase as greener alternative for chemical oxidation. This indicates that laccase "never-ending story" has found a new promising trend within the constant search for efficient (bio)catalysts able to meet the 12 green chemistry principles. A survey of ancient and cutting-edge uses of laccase in different industrial sectors is offered in this review with the aim both to underline their potential and to provide inspiration for new ones. Applications in textile and food fields have been deeply described, as well as examples concerning polymer synthesis and laccase-catalysed grafting. Recent applications in pharmaceutical and cosmetic industry have also been reviewed.
Collapse
Affiliation(s)
- Cinzia Pezzella
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte S. Angelo, via Cintia 4, 80126, Naples, Italy,
| | | | | |
Collapse
|
23
|
Mayolo-Deloisa K, González-González M, Simental-Martínez J, Rito-Palomares M. Aldehyde PEGylation of laccase fromTrametes versicolorin route to increase its stability: effect on enzymatic activity. J Mol Recognit 2015; 28:173-9. [DOI: 10.1002/jmr.2405] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 05/06/2014] [Accepted: 06/07/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Karla Mayolo-Deloisa
- Centro de Biotecnología-FEMSA; Tecnológico de Monterrey; Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur Monterrey NL 64849 México
| | - Mirna González-González
- Centro de Biotecnología-FEMSA; Tecnológico de Monterrey; Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur Monterrey NL 64849 México
| | - Jesús Simental-Martínez
- Centro de Biotecnología-FEMSA; Tecnológico de Monterrey; Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur Monterrey NL 64849 México
| | - Marco Rito-Palomares
- Centro de Biotecnología-FEMSA; Tecnológico de Monterrey; Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur Monterrey NL 64849 México
| |
Collapse
|
24
|
Purification and characterization of a novel laccase from Fomitopsis pinicola mycelia. Int J Biol Macromol 2014; 70:583-9. [PMID: 25083593 DOI: 10.1016/j.ijbiomac.2014.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/09/2014] [Accepted: 06/07/2014] [Indexed: 11/21/2022]
Abstract
A novel laccase was isolated from the culture filtrate of the brown-rot fungus, Fomitopsis pinicola. Enzyme production reached its highest level after cultivation for 8 days at 25°C. The enzyme was purified by ultrafiltration, ion exchange chromatography, gelfiltration chromatography, and hydrophobic interaction chromatography. Zymography analysis of the purified enzyme showed a laccase band with a molecular mass of 92 kDa. The molecular weight of the enzyme was 92 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography. The enzyme also had an isoelectric point of 3.8. The optimum temperature and pH for enzyme activity were 80°C and 3.0, respectively. Enzyme activity was relatively stable in the pH range from 1.5 to 11.0 and at temperatures below 40°C. The N-terminal amino acid sequence of the enzyme was DTHKAEIACRFKDLG. Enzyme activity was potently inhibited by NaN3 and SDS. The enzyme showed the highest specific activity for 2,2-azino-bis(3-ethylthiazoline-6-sulfonate) (ABTS) as a substrate. The Km value of the enzyme for ABTS substrate was 0.28 mM with a Vmax value of 4.5 U/min. The enzyme degraded several recalcitrant dyes at different time intervals during decolorization. Therefore, the novel laccase from F. pinicola may be potentially useful in industry.
Collapse
|
25
|
Medicinal properties of Hericium erinaceus and its potential to formulate novel mushroom-based pharmaceuticals. Appl Microbiol Biotechnol 2014; 98:7661-70. [PMID: 25070597 DOI: 10.1007/s00253-014-5955-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 01/15/2023]
Abstract
Hericium erinaceus is an important mushroom with edible values and medicinal properties. Both the mycelium and the fruiting bodies contain many bioactive compounds with drug efficacy. Recent evidence demonstrates that it is helpful to various diseases, such as Alzheimer's disease, immunoregulatory, and many types of cancer. Furthermore, emerging pieces of evidence have shown that different active molecules in H. erinaceus have different functions on different organs in different diseases via the different mechanisms. Drawing on current research results, this review mainly focuses on the therapeutic effects of H. erinaceus on various diseases of multiple physiological systems, including the nervous system, digestive system, circulatory system, and immune system. This paper also discusses systematically the efficient protection of H. erinaceus against the diseases from the intricate experimental proofs by using the systematic viewpoints, which provides a framework for future research directions.
Collapse
|
26
|
Wu X, Huang C, Chen Q, Wang H, Zhang J. A novel laccase with inhibitory activity towards HIV-I reverse transcriptase and antiproliferative effects on tumor cells from the fermentation broth of mushroomPleurotus cornucopiae. Biomed Chromatogr 2013; 28:548-53. [DOI: 10.1002/bmc.3068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 09/10/2013] [Accepted: 09/18/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Xiangli Wu
- Institute of Agricultural Resources and Regional Planning; Chinese Academy of Agricultural Sciences; 12 Zhongguancun South Street Beijing 100081 China
- State Key Laboratory for Agrobiotechnology and Department of Microbiology; China Agricultural University; 2 Yuanmingyuan Westroad Beijing 100193 China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning; Chinese Academy of Agricultural Sciences; 12 Zhongguancun South Street Beijing 100081 China
| | - Qiang Chen
- Institute of Agricultural Resources and Regional Planning; Chinese Academy of Agricultural Sciences; 12 Zhongguancun South Street Beijing 100081 China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology; China Agricultural University; 2 Yuanmingyuan Westroad Beijing 100193 China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning; Chinese Academy of Agricultural Sciences; 12 Zhongguancun South Street Beijing 100081 China
| |
Collapse
|
27
|
Si J, Peng F, Cui B. Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens. BIORESOURCE TECHNOLOGY 2013. [PMID: 23196221 DOI: 10.1016/j.biortech.2012.10.085] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Extracellular laccase (Tplac) from Trametes pubescens was purified to homogeneity by a three-step method, which resulted in a high specific activity of 18.543 Umg(-1), 16.016-fold greater than that of crude enzyme at the same level. Tplac is a monomeric protein that has a molecular mass of 68 kDa. The enzyme demonstrated high activity toward 1.0mM ABTS at an optimum pH of 5.0 and temperature of 50 °C, and under these conditions, the catalytic efficiency (k(cat)/K(m)) is 8.34 s(-1) μM(-1). Tplac is highly stable and resistant under alkaline conditions, with pH values ranging from 7.0 to 10.0. Interestingly, above 88% of initial enzyme activity was maintained in the presence of metal ions at 25.0mM, leading to an increase in substrate affinity, which indicated that the laccase is highly metal-tolerant. These unusual properties demonstrated that the new fungal laccase Tplac has potentials for the specific industrial or environmental applications.
Collapse
Affiliation(s)
- Jing Si
- Institute of Microbiology, Beijing Forestry University, Beijing 100083, China
| | | | | |
Collapse
|
28
|
A laccase with antiproliferative and HIV-I reverse transcriptase inhibitory activities from the mycorrhizal fungus Agaricus placomyces. J Biomed Biotechnol 2012; 2012:736472. [PMID: 23093860 PMCID: PMC3471028 DOI: 10.1155/2012/736472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 08/02/2012] [Accepted: 08/08/2012] [Indexed: 12/02/2022] Open
Abstract
A novel 68 kDa laccase was purified from the mycorrhizal fungus Agaricus placomyces by utilizing a procedure that comprised three successive steps of ion exchange chromatography and gel filtration as the final step. The monomeric enzyme exhibited the N-terminal amino acid sequence of DVIGPQAQVTLANQD, which showed only a low extent of homology to sequences of other fungal laccases. The optimal temperature for A. placomyces laccase was 30°C, and optimal pH values for laccase activity towards the substrates 2,7′-azinobis[3-ethylbenzothiazolone-6-sulfonic acid] diammonium salt (ABTS) and hydroquinone were 5.2 and 6.8, respectively. The laccase displayed, at 30°C and pH 5.2, Km values of 0.392 mM towards hydroquinone and 0.775 mM towards ABTS. It potently suppressed proliferation of MCF 7 human breast cancer cells and Hep G2 hepatoma cells and inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) activity with an IC50 of 1.8 μM, 1.7 μM, and 1.25 μM, respectively, signifying that it is an antipathogenic protein.
Collapse
|