1
|
Juan C, Torrens G, Barceló IM, Oliver A. Interplay between Peptidoglycan Biology and Virulence in Gram-Negative Pathogens. Microbiol Mol Biol Rev 2018; 82:e00033-18. [PMID: 30209071 PMCID: PMC6298613 DOI: 10.1128/mmbr.00033-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The clinical and epidemiological threat of the growing antimicrobial resistance in Gram-negative pathogens, particularly for β-lactams, the most frequently used and relevant antibiotics, urges research to find new therapeutic weapons to combat the infections caused by these microorganisms. An essential previous step in the development of these therapeutic solutions is to identify their potential targets in the biology of the pathogen. This is precisely what we sought to do in this review specifically regarding the barely exploited field analyzing the interplay among the biology of the peptidoglycan and related processes, such as β-lactamase regulation and virulence. Hence, here we gather, analyze, and integrate the knowledge derived from published works that provide information on the topic, starting with those dealing with the historically neglected essential role of the Gram-negative peptidoglycan in virulence, including structural, biogenesis, remodeling, and recycling aspects, in addition to proinflammatory and other interactions with the host. We also review the complex link between intrinsic β-lactamase production and peptidoglycan metabolism, as well as the biological costs potentially associated with the expression of horizontally acquired β-lactamases. Finally, we analyze the existing evidence from multiple perspectives to provide useful clues for identifying targets enabling the future development of therapeutic options attacking the peptidoglycan-virulence interconnection as a key weak point of the Gram-negative pathogens to be used, if not to kill the bacteria, to mitigate their capacity to produce severe infections.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Isabel Maria Barceló
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| |
Collapse
|
2
|
Abstract
Nucleotide-binding oligomerization domain 2 (NOD2) is an intracellular pattern recognition receptor that senses bacterial peptidoglycan (PGN)-conserved motifs in cytosol and stimulates host immune response. The association of NOD2 mutations with a number of inflammatory pathologies, including Crohn disease (CD), Graft-versus-host disease (GVHD), and Blau syndrome, highlights its pivotal role in host–pathogen interactions and inflammatory response. Stimulation of NOD2 by its ligand (muramyl dipeptide) activates pro-inflammatory pathways such as nuclear factor-κB (NF-κB), mitogen-activated protein kinases (MAPKs), and Caspase-1. A loss of NOD2 function may result in a failure in the control of microbial infection, thereby initiating systemic responses and aberrant inflammation. Because the ligand of Nod2 is conserved in both gram-positive and gram-negative bacteria, NOD2 detects a wide variety of microorganisms. Furthermore, current literature evidences that NOD2 is also able to control viruses’ and parasites’ infections. In this review, we present and discuss recent developments about the role of NOD2 in shaping the gut commensal microbiota and pathogens, including bacteria, viruses, and parasites, and the mechanisms by which Nod2 mutations participate in disease occurrence.
Collapse
Affiliation(s)
- Ziad Al Nabhani
- Laboratoire Inflamex, Université Paris-Diderot Sorbonne Paris-Cité, Paris, France
- INSERM, UMR 1149, Paris, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Jean-Pierre Hugot
- Laboratoire Inflamex, Université Paris-Diderot Sorbonne Paris-Cité, Paris, France
- INSERM, UMR 1149, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
- * E-mail: (JPH); (FB)
| | - Frederick Barreau
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
- * E-mail: (JPH); (FB)
| |
Collapse
|
3
|
NOD2/RICK-dependent β-defensin 2 regulation is protective for nontypeable Haemophilus influenzae-induced middle ear infection. PLoS One 2014; 9:e90933. [PMID: 24625812 PMCID: PMC3953203 DOI: 10.1371/journal.pone.0090933] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/06/2014] [Indexed: 12/30/2022] Open
Abstract
Middle ear infection, otitis media (OM), is clinically important due to the high incidence in children and its impact on the development of language and motor coordination. Previously, we have demonstrated that the human middle ear epithelial cells up-regulate β-defensin 2, a model innate immune molecule, in response to nontypeable Haemophilus influenzae (NTHi), the most common OM pathogen, via TLR2 signaling. NTHi does internalize into the epithelial cells, but its intracellular trafficking and host responses to the internalized NTHi are poorly understood. Here we aimed to determine a role of cytoplasmic pathogen recognition receptors in NTHi-induced β-defensin 2 regulation and NTHi clearance from the middle ear. Notably, we observed that the internalized NTHi is able to exist freely in the cytoplasm of the human epithelial cells after rupturing the surrounding membrane. The human middle ear epithelial cells inhibited NTHi-induced β-defensin 2 production by NOD2 silencing but augmented it by NOD2 over-expression. NTHi-induced β-defensin 2 up-regulation was attenuated by cytochalasin D, an inhibitor of actin polymerization and was enhanced by α-hemolysin, a pore-forming toxin. NOD2 silencing was found to block α-hemolysin-mediated enhancement of NTHi-induced β-defensin 2 up-regulation. NOD2 deficiency appeared to reduce inflammatory reactions in response to intratympanic inoculation of NTHi and inhibit NTHi clearance from the middle ear. Taken together, our findings suggest that a cytoplasmic release of internalized NTHi is involved in the pathogenesis of NTHi infections, and NOD2-mediated β-defensin 2 regulation contributes to the protection against NTHi-induced otitis media.
Collapse
|
4
|
Jeong YJ, Kim CH, Kim JC, Oh SM, Lee KB, Park JH, Kim DJ. RIP2/RICK-dependent cytokine production upon Yersinia enterocolitica infection in macrophages with TLR4 deficiency. Scand J Immunol 2014; 78:401-7. [PMID: 23952047 DOI: 10.1111/sji.12100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/12/2013] [Indexed: 12/17/2022]
Abstract
Receptor-interacting protein 2 (RIP2) is a caspase recruitment domain (CARD)-containing serine/threonine kinase that is activated by NOD1 or NOD2 recognition of their ligands and essential for the activation of NF-κB and mitogen-activated protein kinase (MAPK). RIP2 has been known to play an important role in innate immune responses against certain bacterial infection. However, the role and interplay of RIP2 with TLR signalling on cytokine production in macrophages against Yersinia enterocolitica infection remains poorly understood. In the present study, we examined whether RIP2 is essential for Yersinia-induced production of cytokines in macrophages. Our results showed that naïve RIP2-deficient macrophages produced similar level of IL-6, TNF-α and IL-10 upon Y. enterocolitica infection compared with wild-type macrophages. However, the production of IL-6, TNF-α and IL-10 by Y. enterocolitica was impaired in RIP2-deficient macrophages after lipopolysaccharide (LPS) pretreatment, a TLR4-tolerant condition. In addition, RIP2 inhibitors, SB203580, PP2, and gefitinib, reduced IL-6 production in TLR4-deficient macrophages in response to Y. enterocolitica, whereas they did not affect the cytokines production in WT cells. These results demonstrate that RIP2 may play an important role in proinflammatory cytokine production in macrophages at the absence of TLR signalling.
Collapse
Affiliation(s)
- Y-J Jeong
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
5
|
Wang C, Yuan X, Ma E, Mendonsa GR, Plantinga TS, Kiemeney LA, Vermeulen SH, Mysorekar IU. NOD2 is dispensable for ATG16L1 deficiency-mediated resistance to urinary tract infection. Autophagy 2013; 10:331-8. [PMID: 24384785 DOI: 10.4161/auto.27196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
NOD2 (nucleotide-binding oligomerization domain containing 2) functions as a pathogen sensor and is involved in development of Crohn disease, a form of inflammatory bowel disease. NOD2 functions in concert with the autophagy protein ATG16L1, which is also implicated in Crohn disease. Recently, we identified a novel protective role of ATG16L1 deficiency in uropathogenic Escherichia coli-induced urinary tract infections (UTIs), which are common infectious diseases in humans. Given the known roles of NOD2 in recruiting ATG16L1 to the bacterial entry site, autophagy induction, and Crohn disease, we hypothesized that NOD2 may also play an important role in UTI pathogenesis. Instead, we found evidence that NOD2 is dispensable in the pathogenesis of UTIs in mice and humans. First, loss of Nod2 did not affect the clearance of bacteriuria and the recruitment of innate immune cells to the bladder. Second, we showed that, although nod2(-/-) mice display increased kidney abscesses in the upper urinary tract, there were no increased bacterial loads or persistence in this niche. Third, although a previous study indicates that loss of Nod2 reverses the protection from intestinal infection afforded by loss of ATG16L1 in mice, we found NOD2 deficiency did not reverse the ATG16L1-deficiency-induced protection from UTI. Finally, a population-based study of a cohort of 1819 patients did not reveal any association of NOD2 polymorphisms with UTI incidence. Together, our data indicated that NOD2 is dispensable for UTI pathogenesis in both mice and humans and does not contribute to ATG16L1-deficiency-induced resistance to UTI in mice.
Collapse
Affiliation(s)
- Caihong Wang
- Department of Obstetrics and Gynecology; Washington University School of Medicine; St Louis, MO USA
| | - Xuejun Yuan
- Department of Obstetrics and Gynecology; Washington University School of Medicine; St Louis, MO USA
| | - Emily Ma
- Department of Obstetrics and Gynecology; Washington University School of Medicine; St Louis, MO USA
| | - Graziella R Mendonsa
- Department of Obstetrics and Gynecology; Washington University School of Medicine; St Louis, MO USA
| | - Theo S Plantinga
- Department of Medicine; Radboud University Nijmegen Medical Centre; Nijmegen, Netherlands
| | - Lambertus A Kiemeney
- Department for Health Evidence/Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen, Netherlands
| | - Sita H Vermeulen
- Department for Health Evidence/Department of Human Genetics; Radboud University Nijmegen Medical Centre; Nijmegen, Netherlands
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology; Washington University School of Medicine; St Louis, MO USA; Department of Pathology and Immunology; Washington University School of Medicine; St Louis, MO USA
| |
Collapse
|
6
|
Marcinek P, Jha AN, Shinde V, Sundaramoorthy A, Rajkumar R, Suryadevara NC, Neela SK, van Tong H, Balachander V, Valluri VL, Thangaraj K, Velavan TP. LRRK2 and RIPK2 variants in the NOD 2-mediated signaling pathway are associated with susceptibility to Mycobacterium leprae in Indian populations. PLoS One 2013; 8:e73103. [PMID: 24015287 PMCID: PMC3756038 DOI: 10.1371/journal.pone.0073103] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/24/2013] [Indexed: 01/14/2023] Open
Abstract
In recent years, genome wide association studies have discovered a large number of gene loci that play a functional role in innate and adaptive immune pathways associated with leprosy susceptibility. The immunological control of intracellular bacteria M. leprae is modulated by NOD2-mediated signaling of Th1 responses. In this study, we investigated 211 clinically classified leprosy patients and 230 ethnically matched controls in Indian population by genotyping four variants in NOD2 (rs9302752A/G), LRRK2 (rs1873613A/G), RIPK2 (rs40457A/G and rs42490G/A). The LRRK2 locus is associated with leprosy outcome. The LRRK2 rs1873613A minor allele and respective rs1873613AA genotypes were significantly associated with an increased risk whereas the LRRK2 rs1873613G major allele and rs1873613GG genotypes confer protection in paucibacillary and leprosy patients. The reconstructed GA haplotypes from RIPK2 rs40457A/G and rs42490G/A variants was observed to contribute towards increased risk whereas haplotypes AA was observed to confer protective role. Our results indicate that a possible shared mechanisms underlying the development of these two clinical forms of the disease as hypothesized. Our findings confirm and validates the role of gene variants involved in NOD2-mediated signalling pathways that play a role in immunological control of intracellular bacteria M. leprae.
Collapse
Affiliation(s)
- Patrick Marcinek
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abed M, Towhid ST, Pakladok T, Alesutan I, Götz F, Gulbins E, Lang F. Effect of bacterial peptidoglycan on erythrocyte death and adhesion to endothelial cells. Int J Med Microbiol 2013; 303:182-9. [PMID: 23537625 DOI: 10.1016/j.ijmm.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/16/2013] [Accepted: 01/27/2013] [Indexed: 11/20/2022] Open
Abstract
Peptidoglycans, bacterial wall components, have previously been shown to trigger eryptosis, the suicidal erythrocyte death, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Phosphatidylserine exposing erythrocytes adhere to the vascular wall at least partially by interaction of erythrocytic phosphatidylserine with endothelial CXC chemokine ligand 16 (CXCL16). The present study explored whether peptidoglycan exposure fosters the adhesion of erythrocytes to human umbilical vein endothelial cells (HUVEC). To this end, HUVEC were treated for 48 h with peptidoglycan (10 μg/ml) and CXCL16 abundance determined by confocal microscopy and FACS analysis. Moreover, human erythrocytes were exposed for 48 h to peptidoglycan (10 μg/ml) and phosphatidylserine exposure estimated from binding of fluorescent annexin-V, cell volume from forward scatter in FACS analysis and erythrocyte adhesion to human umbilical vein endothelial cells (HUVEC) from trapping of labeled erythrocytes in a flow chamber. As a result, bacterial peptidoglycan exposure was followed by increased CXCL16 expression in HUVEC as well as erythrocyte shrinkage, phosphatidylserine exposure and adhesion to HUVEC under flow conditions at arterial shear rates. The adhesion was significantly attenuated but not abrogated in the presence of either, erythrocyte phosphatidylserine-coating annexin-V (5 μl/ml) or CXCL16 neutralizing antibody directed against endothelial CXCL16 (4 μg/ml). In conclusion, exposure to peptidoglycan increases endothelial CXCL16 expression and leads to eryptosis followed by phosphatidylserine- and CXCL16-mediated adhesion of eryptotic erythrocytes to vascular endothelial cells.
Collapse
Affiliation(s)
- Majed Abed
- Department of Physiology, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|