1
|
Sadowski M, Ząbczyk M, Undas A. Impaired fibrinolysis in patients with atrial fibrillation and elevated circulating lipopolysaccharide. J Thromb Thrombolysis 2024; 57:842-851. [PMID: 38643439 PMCID: PMC11233339 DOI: 10.1007/s11239-024-02980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
It is unknown whether elevated gut-derived serum lipopolysaccharide (LPS) can affect thrombin generation, fibrinolysis, and fibrin clot properties in atrial fibrillation (AF). We aimed to evaluate associations of circulating LPS with prothrombotic markers in AF patients. A total of 157 (women, 57.3%) ambulatory anticoagulant-naïve AF patients aged from 42 to 86 years were recruited. Clinical data together with serum LPS, inflammation, endothelial injury, coagulation and fibrinolysis markers, including fibrin clot permeability (Ks) and clot lysis time (CLT), were analyzed. A median LPS concentration was 73.0 (58.0-100.0) pg/mL and it showed association with CLT (r = 0.31, p < 0.001) and plasminogen activator inhibitor-1 (PAI-1, r = 0.57, p < 0.001), but not other fibrinolysis proteins, thrombin generation, inflammatory markers, or Ks. There were weak associations of LPS with von Willebrand factor (vWF, r = 0.2, p = 0.013), cardiac troponin I (r = 0.16, p = 0.045), and growth differentiation factor-15 (r = 0.27, p < 0.001). No associations of LPS and CHA2DS2-VASc or other clinical variables were observed. Multivariable regression adjusted for potential confounders showed that serum LPS ≥ 100 pg/mL was an independent predictor of prolonged CLT. This study is the first to demonstrate antifibrinolytic effects of elevated LPS in AF patients largely driven by enhanced PAI-1 release.
Collapse
Affiliation(s)
- Marcin Sadowski
- Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Michał Ząbczyk
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, Krakow, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland.
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, Krakow, Poland.
| |
Collapse
|
2
|
Guru SR, Aghanashini S. Impact of scaling and root planing on salivary and serum plasminogen activator inhibitor-1 expression in patients with periodontitis with and without type 2 diabetes mellitus. J Periodontol 2023; 94:20-30. [PMID: 35708712 DOI: 10.1002/jper.22-0129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1) is significantly enhanced in insulin resistance and inflammation and ascribed as a proinflammatory marker. This study aimed to compare and correlate salivary and serum PAI-1 and alpha 2-macroglobulin (α2MG) in patients with periodontitis with and without type 2 diabetes mellitus (T2DM) and also appraise the consequence of periodontal treatment on these biomarkers. METHODS Sixty subjects enlisted were split into two groups; Group 1 consisted of 30 systemically healthy subjects with Stage II and III, generalized, Grade B, C periodontitis while Group 2 consisted of 30 patients with periodontitis and well-controlled T2DM (PDM). Salivary and serum PAI-1 and α2MG levels were estimated by enzyme-linked immunosorbent assay and allied with clinical parameters before and 3 months post non-surgical periodontal therapy (NSPT). Data were statistically analyzed using student t-test and Spearman correlation. RESULTS Analogous improvements in clinical periodontal markers were experienced in both groups after initial periodontal treatment. Estimates of salivary and serum PAI-1 and α2MG were higher among the PDM group compared with periodontitis alone at baseline. Significant diminution in estimates of biomarkers was noted 3 months after NSPT. In the PDM group, there was also an improvement in glycemic control. CONCLUSIONS NSPT positively impacted both groups. Noteworthy expression of salivary and serum PAI-1 in patients with periodontitis and diabetes insinuates a possible role of the adipokine in periodontal inflammation and glucose level regulation. Salivary PAI-1 could thus be used as a diagnostic biomarker to detect disease activity and to track periodontal therapy response.
Collapse
Affiliation(s)
- Sanjeela R Guru
- Department of Periodontics, Vydehi Institute of Dental Sciences and Research Centre, Whitefield, Bangalore, Karnataka, India
| | - Suchetha Aghanashini
- Department of Periodontics, DA Pandu Memorial R V Dental College and Hospital, J.P. Nagar, Bangalore, India
| |
Collapse
|
3
|
Wadhawan A, Reynolds MA, Makkar H, Scott AJ, Potocki E, Hoisington AJ, Brenner LA, Dagdag A, Lowry CA, Dwivedi Y, Postolache TT. Periodontal Pathogens and Neuropsychiatric Health. Curr Top Med Chem 2021; 20:1353-1397. [PMID: 31924157 DOI: 10.2174/1568026620666200110161105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence incriminates low-grade inflammation in cardiovascular, metabolic diseases, and neuropsychiatric clinical conditions, all important causes of morbidity and mortality. One of the upstream and modifiable precipitants and perpetrators of inflammation is chronic periodontitis, a polymicrobial infection with Porphyromonas gingivalis (P. gingivalis) playing a central role in the disease pathogenesis. We review the association between P. gingivalis and cardiovascular, metabolic, and neuropsychiatric illness, and the molecular mechanisms potentially implicated in immune upregulation as well as downregulation induced by the pathogen. In addition to inflammation, translocation of the pathogens to the coronary and peripheral arteries, including brain vasculature, and gut and liver vasculature has important pathophysiological consequences. Distant effects via translocation rely on virulence factors of P. gingivalis such as gingipains, on its synergistic interactions with other pathogens, and on its capability to manipulate the immune system via several mechanisms, including its capacity to induce production of immune-downregulating micro-RNAs. Possible targets for intervention and drug development to manage distal consequences of infection with P. gingivalis are also reviewed.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Department of Psychiatry, Saint Elizabeths Hospital, Washington, D.C. 20032, United States
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, United States
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, United States
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, United States
| | - Andrew J Hoisington
- Air Force Institute of Technology, Wright-Patterson Air Force Base, United States
| | - Lisa A Brenner
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Christopher A Lowry
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, United States
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, United States
| |
Collapse
|
4
|
Hua B, Xiang J, Guo L, Lu D. MicroRNA-212-5p regulates the inflammatory response of periodontal ligament cells by targeting myeloid differentiation factor 88. Arch Oral Biol 2020; 118:104831. [DOI: 10.1016/j.archoralbio.2020.104831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
|
5
|
Chopra A, Bhat SG, Sivaraman K. Porphyromonas gingivalis adopts intricate and unique molecular mechanisms to survive and persist within the host: a critical update. J Oral Microbiol 2020; 12:1801090. [PMID: 32944155 PMCID: PMC7482874 DOI: 10.1080/20002297.2020.1801090] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
is an obligate, asaccharolytic, gram-negative bacteria commonly associated with increased periodontal and systemic inflammation. P. gingivalis is known to survive and persist within the host tissues as it modulates the entire ecosystem by either engineering its environment or modifying the host's immune response. It interacts with various host receptors and alters signaling pathways of inflammation, complement system, cell cycle, and apoptosis. P. gingivalis is even known to induce suicidal cell death of the host and other microbes in its vicinity with the emergence of pathobiont species. Recently, new molecular and immunological mechanisms and virulence factors of P. gingivalis that increase its chance of survival and immune evasion within the host have been discovered. Thus, the present paper aims to provide a consolidated update on the new intricate and unique molecular mechanisms and virulence factors of P. gingivalis associated with its survival, persistence, and immune evasion within the host.
Collapse
Affiliation(s)
- Aditi Chopra
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subraya G. Bhat
- College of Dentistry, Imam Abdul Rahman Faisal University, Dammam, KSA
| | - Karthik Sivaraman
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Chopra A, Sivaraman K. An update on possible pathogenic mechanisms of periodontal pathogens on renal dysfunction. Crit Rev Microbiol 2019; 45:514-538. [PMID: 30729832 DOI: 10.1080/1040841x.2018.1553847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Periodontitis is a potential source of permanent systemic inflammation that initiates renal dysfunction and contributes to the development of chronic kidney diseases (CKDs). Although numerous studies have confirmed the bidirectional role of periodontal infection and renal inflammation, no literature has yet highlighted the sophisticated pathogenic mechanisms by which periodontal pathogens, particularly Porphynomonas Gingivalis, induce renal dysfunction and contributed in the development of CKDs. The present review aims to critically analyze and highlight the novel pathogenesis of periodontitis induced CKDs.
Collapse
Affiliation(s)
- Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Karthik Sivaraman
- Department of Prosthodontics, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
7
|
Blasco-Baque V, Garidou L, Pomié C, Escoula Q, Loubieres P, Le Gall-David S, Lemaitre M, Nicolas S, Klopp P, Waget A, Azalbert V, Colom A, Bonnaure-Mallet M, Kemoun P, Serino M, Burcelin R. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut 2017; 66:872-885. [PMID: 26838600 PMCID: PMC5531227 DOI: 10.1136/gutjnl-2015-309897] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 12/18/2015] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. DESIGN We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis (Pg), Fusobacterium nucleatum and Prevotella intermedia. The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. RESULTS Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. CONCLUSIONS We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis.
Collapse
Affiliation(s)
- Vincent Blasco-Baque
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France,Faculté de Chirurgie-Dentaire de Toulouse, Technical platform of Research in Odontology, Toulouse Cedex 09, France
| | - Lucile Garidou
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Céline Pomié
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Quentin Escoula
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Pascale Loubieres
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France,Faculté de Chirurgie-Dentaire de Toulouse, Technical platform of Research in Odontology, Toulouse Cedex 09, France
| | | | - Mathieu Lemaitre
- Faculté de Chirurgie-Dentaire de Toulouse, Technical platform of Research in Odontology, Toulouse Cedex 09, France
| | - Simon Nicolas
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Pascale Klopp
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Aurélie Waget
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Vincent Azalbert
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - André Colom
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | | | - Philippe Kemoun
- Faculté de Chirurgie-Dentaire de Toulouse, Technical platform of Research in Odontology, Toulouse Cedex 09, France
| | - Matteo Serino
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Rémy Burcelin
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
8
|
How KY, Song KP, Chan KG. Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line. Front Microbiol 2016; 7:53. [PMID: 26903954 PMCID: PMC4746253 DOI: 10.3389/fmicb.2016.00053] [Citation(s) in RCA: 454] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/12/2016] [Indexed: 01/12/2023] Open
Abstract
Periodontal disease represents a group of oral inflammatory infections initiated by oral pathogens which exist as a complex biofilms on the tooth surface and cause destruction to tooth supporting tissues. The severity of this disease ranges from mild and reversible inflammation of the gingiva (gingivitis) to chronic destruction of connective tissues, the formation of periodontal pocket and ultimately result in loss of teeth. While human subgingival plaque harbors more than 500 bacterial species, considerable research has shown that Porphyromonas gingivalis, a Gram-negative anaerobic bacterium, is the major etiologic agent which contributes to chronic periodontitis. This black-pigmented bacterium produces a myriad of virulence factors that cause destruction to periodontal tissues either directly or indirectly by modulating the host inflammatory response. Here, this review provides an overview of P. gingivalis and how its virulence factors contribute to the pathogenesis with other microbiome consortium in oral cavity.
Collapse
Affiliation(s)
- Kah Yan How
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Keang Peng Song
- School of Science, Monash University Sunway Campus Subang Jaya, Malaysia
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Bhat UG, Watanabe K. Serpine1 Mediates Porphyromonas gingivalis Induced Insulin Secretion in the Pancreatic Beta Cell Line MIN6. ACTA ACUST UNITED AC 2015. [PMID: 26213716 DOI: 10.13188/2377-987x.1000008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Periodontitis is an inflammatory disease resulting in destruction of gingiva and alveolar bone caused by an exuberant host immunological response to periodontal pathogens. Results from a number of epidemiological studies indicate a close association between diabetes and periodontitis. Results from cross-sectional studies indicate that subjects with periodontitis have a higher odds ratio of developing insulin resistance (IR). However, the mechanisms by which periodontitis influences the development of diabetes are not known. Results from our previous studies using an animal model of periodontitis suggest that periodontitis accelerates the onset of hyperinsulinemia and IR. In addition, LPS from a periodontal pathogen, Porphyromonas gingivalis (Pg), stimulates Serpine1 expression in the pancreatic beta cell line MIN6. Based on these observations, we hypothesized that a periodontal pathogen induces hyperinsulinemia and Serpine1 may be involved in this process. To test this hypothesis, we co-incubated Pg with the pancreatic beta cell line MIN6 and measured the effect on insulin secretion by MIN6 cells. We further determined the involvement of Serpine1 in insulin secretion by downregulating Serpine1 expression. Our results indicated that Pg stimulated insulin secretion by approximately 3.0 fold under normoglycemic conditions. In a hyperglycemic state, Pg increased insulin secretion by 1.5 fold. Pg significantly upregulated expression of the Serpine1 gene and this was associated with increased secretion of insulin by MIN6 cells. However, cells with downregulated Serpine1 expression were resistant to Pg stimulated insulin secretion under normoglycemic conditions. We conclude that the periodontal pathogen, Pg, induced insulin secretion by MIN6 cells and this induction was, in part, Serpine1 dependent. Thus, Serpine1 may play a pivotal role in insulin secretion during the accelerated development of hyperinsulinemia and the resulting IR in the setting of periodontitis.
Collapse
|
10
|
Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res 2014; 2014:476068. [PMID: 24741603 PMCID: PMC3984870 DOI: 10.1155/2014/476068] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 12/24/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative oral anaerobe that is involved in the pathogenesis of periodontitis and is a member of more than 500 bacterial species that live in the oral cavity. This anaerobic bacterium is a natural member of the oral microbiome, yet it can become highly destructive (termed pathobiont) and proliferate to high cell numbers in periodontal lesions: this is attributed to its arsenal of specialized virulence factors. The purpose of this review is to provide an overview of one of the main periodontal pathogens—Porphyromonas gingivalis. This bacterium, along with Treponema denticola and Tannerella forsythia, constitute the “red complex,” a prototype polybacterial pathogenic consortium in periodontitis. This review outlines Porphyromonas gingivalis structure, its metabolism, its ability to colonize the epithelial cells, and its influence upon the host immunity.
Collapse
|