1
|
Asmawi AA, Adam F, Mohd Azman NA, Abdul Rahman MB. Advancements in the nanodelivery of azole-based fungicides to control oil palm pathogenic fungi. Heliyon 2024; 10:e37132. [PMID: 39309766 PMCID: PMC11416272 DOI: 10.1016/j.heliyon.2024.e37132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
The cultivation of oil palms is of great importance in the global agricultural industry due to its role as a primary source of vegetable oil with a wide range of applications. However, the sustainability of this industry is threatened by the presence of pathogenic fungi, particularly Ganoderma spp., which cause detrimental oil palm disease known as basal stem rot (BSR). This unfavorable condition eventually leads to significant productivity losses in the harvest, with reported yield reductions of 50-80 % in severely affected plantations. Azole-based fungicides offer potential solutions to control BSR, but their efficacy is hampered by limited solubility, penetration, distribution, and bioavailability. Recent advances in nanotechnology have paved the way for the development of nanosized delivery systems. These systems enable effective fungicide delivery to target pathogens and enhance the bioavailability of azole fungicides while minimising environmental and human health risks. In field trials, the application of azole-based nanofungicides resulted in up to 75 % reduction in disease incidence compared to conventional fungicide treatments. These innovations offer opportunities for the development of sustainable agricultural practices. This review highlights the importance of oil palm cultivation concerning the ongoing challenges posed by pathogenic fungi and examines the potential of azole-based fungicides for disease control. It also reviews recent advances in nanotechnology for fungicide delivery, explores the mechanisms behind these nanodelivery systems, and emphasises the opportunities and challenges associated with azole-based nanofungicides. Hence, this review provides valuable insights for future nanofungicide development in effective oil palm disease control.
Collapse
Affiliation(s)
- Azren Aida Asmawi
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300, Pahang, Malaysia
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Bandar Saujana Putra, Jenjarom, 42610, Selangor, Malaysia
| | - Fatmawati Adam
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300, Pahang, Malaysia
| | - Nurul Aini Mohd Azman
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300, Pahang, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| |
Collapse
|
2
|
Rafiq M, Javaid A, Kanwal A, Anwar A, Khan IH, Kanwal Q, Cheng C. GC-MS analysis and antifungal potential of flower extract of Acacia nilotica subsp. Indica against Macrophomina phaseolina. Microb Pathog 2024; 194:106819. [PMID: 39067493 DOI: 10.1016/j.micpath.2024.106819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Macrophomina phaseolina is a wide host ranged soil-borne fungal plant pathogen. It infects more than 500 host plant species belonging to 100 families. Many important oil-seed and leguminous crops are known to be attacked by this devastating plant pathogen. In the present study, antifungal potential of flowers of a leguminous tree Acacia nilotica subsp. indica, was assessed against this pathogen through bioassays guided fractionation. Initially, methanolic extracts of 1 %-5 % of leaf, flower, root-bark and stem-bark of the plant species under consideration were evaluated for their antifungal potential against the target pathogen. Among these, the best antifungal activity was shown by flower extract. The reduction in growth of the test fungal strain was 27-49 %, 4-40 % and 2-27 % due to flower, root-bark and leaf extracts, respectivey, over control. Flower extract was partitioned using n-hexane, chloroform, ethyl acetate and n-butanol as the solvents. Bioassays guided study of these fractions of methanolic extract of flower revealed that high antifungal potential was shown by n-hexane and chloroform fractions against M. phaseolina causing 26-53 % and 28-50 % decline in fungal biomass, respectively, as compared to that of control. GC-MS analysis of chloroform fraction revealed the presence of 27 compounds in this fraction. Among these cyclopentanol,-1-methyl (10.93 %) was the predominant compound followed by methyl, 4,4-dimethyl butanoate (7.04 %), 1-pentanol (6.80 %), 2-propanol, 1-cyclopropyl (6.11 %), 1H,imidazole-4-5-dihydro-2-methyl (5.93 %), trichloroethane (5.91 %), carbonic acid-ethyl hexyl ester (4.59 %), 1,4-butandiol,2,3-bis(methylene)- (4.54 %) and [S]-3,4-dimethyl pentanol (4.48 %).
Collapse
Affiliation(s)
- Muhammad Rafiq
- Jiangxi Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, China.
| | - Arshad Javaid
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab Lahore, Pakistan.
| | - Ammara Kanwal
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab Lahore, Pakistan.
| | - Aneela Anwar
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan.
| | - Iqra Haider Khan
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab Lahore, Pakistan.
| | - Qudsia Kanwal
- Department of Chemistry, University of Lahore, Raiwind Road Campus, Lahore, Pakistan.
| | - Chunsong Cheng
- Jiangxi Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, China.
| |
Collapse
|
3
|
Karunarathna SC, Patabendige NM, Lu W, Asad S, Hapuarachchi KK. An In-Depth Study of Phytopathogenic Ganoderma: Pathogenicity, Advanced Detection Techniques, Control Strategies, and Sustainable Management. J Fungi (Basel) 2024; 10:414. [PMID: 38921400 PMCID: PMC11204718 DOI: 10.3390/jof10060414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Phytopathogenic Ganoderma species pose a significant threat to global plant health, resulting in estimated annual economic losses exceeding USD (US Dollars) 68 billion in the agriculture and forestry sectors worldwide. To combat this pervasive menace effectively, a comprehensive understanding of the biology, ecology, and plant infection mechanisms of these pathogens is imperative. This comprehensive review critically examines various aspects of Ganoderma spp., including their intricate life cycle, their disease mechanisms, and the multifaceted environmental factors influencing their spread. Recent studies have quantified the economic impact of Ganoderma infections, revealing staggering yield losses ranging from 20% to 80% across various crops. In particular, oil palm plantations suffer devastating losses, with an estimated annual reduction in yield exceeding 50 million metric tons. Moreover, this review elucidates the dynamic interactions between Ganoderma and host plants, delineating the pathogen's colonization strategies and its elicitation of intricate plant defense responses. This comprehensive analysis underscores the imperative for adopting an integrated approach to Ganoderma disease management. By synergistically harnessing cultural practices, biological control, and chemical treatments and by deploying resistant plant varieties, substantial strides can be made in mitigating Ganoderma infestations. Furthermore, a collaborative effort involving scientists, breeders, and growers is paramount in the development and implementation of sustainable strategies against this pernicious plant pathogen. Through rigorous scientific inquiry and evidence-based practices, we can strive towards safeguarding global plant health and mitigating the dire economic consequences inflicted by Ganoderma infections.
Collapse
Affiliation(s)
- Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- National Institute of Fundamental Studies, Hantane Road, Kandy 20000, Sri Lanka
| | | | - Wenhua Lu
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Suhail Asad
- School of Biology and Chemistry, Pu’er University, Pu’er 665000, China;
| | - Kalani K. Hapuarachchi
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
4
|
Chua RW, Song KP, Ting ASY. Comparative analysis of antimicrobial compounds from endophytic Buergenerula spartinae from orchid. Antonie Van Leeuwenhoek 2023; 116:1057-1072. [PMID: 37597137 DOI: 10.1007/s10482-023-01870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
A rare fungal endophyte, identified as Buergenerula spartinae (C28), was isolated from the roots of Cymbidium orchids and was characterised and evaluated for its antimicrobial activities. Bio-guided fractionation revealed 4 fractions from B. spartinae (C28) having antibacterial activities against at least one bacterial pathogen tested (Bacillus cereus and Staphylococcus aureus). However, inhibitory activities were absent against pathogenic fungi (Ganoderma boninense, Pythium ultimum and Fusarium solani). Fraction 2 and fraction 4 of B. spartinae (C28) exhibited potent antibacterial activities against S. aureus (MIC: 0.078 mg/mL) and B. cereus (MIC: 0.313 mg/mL), respectively. LCMS analysis revealed the presence of antibacterial agents and antibiotics in fraction 2 (benoxinate, pyropheophorbide A, (-)-ormosanine and N-undecylbenzenesulfonic acid) and fraction 4 (kaempferol 3-p-coumarate, 6-methoxy naphthalene acetic acid, levofuraltadone, hinokitiol glucoside, 3-α(S)-strictosidine, pyropheophorbide A, 5'-hydroxystreptomycin, kanzonol N and 3-butylidene-7-hydroxyphthalide), which may be responsible for the antibacterial activities observed. Most of the bioactive compounds profiled from the antibacterial fractions were discovered for the first time from endophytic isolates (i.e. from B. spartinae (C28)). Buergenerula spartinae (C28) from Cymbidium sp. is therefore, an untapped resource of bioactive compounds for potential applications in healthcare and commercial industries.
Collapse
Affiliation(s)
- Ru Wei Chua
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Keang Peng Song
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
5
|
Kim SH, Lee Y, Balaraju K, Jeon Y. Evaluation of Trichoderma atroviride and Trichoderma longibrachiatum as biocontrol agents in controlling red pepper anthracnose in Korea. FRONTIERS IN PLANT SCIENCE 2023; 14:1201875. [PMID: 37521932 PMCID: PMC10381955 DOI: 10.3389/fpls.2023.1201875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023]
Abstract
Anthracnose disease is a serious threat to red pepper crops in Korea and many other countries, resulting in considerable yield losses. There are now no effective control techniques available except for fungicide sprays, which may directly impact consumers. This study aims to investigate the biological activity of Trichoderma isolates in controlling red pepper anthracnose caused by Colletotrichum acutatum in vitro and in the field. Out of 11 Trichoderma isolates screened for biocontrol agents against three fungal pathogens, including C. acutatum; two effective Trichoderma isolates, T. atroviride ATR697 (ATR697) and T. longibrachiatum LON701 (LON701) were selected for further investigation. Using the overlapping plates experiment, it was discovered that the volatile organic compounds (VOCs) produced by ATR697 strongly inhibited C. acutatum mycelial growth to a larger extent than the isolate LON701. A cellophane membrane experiment has shown that mycelial growth of C. acutatum was inhibited by 36% and 27% when treated with ATR697 and LON701, respectively. Culture filtrates (CFs) of two Trichoderma isolates inhibited the mycelial growth of C. acutatum in vitro. When red peppers were treated with spore suspensions of LON701 and ATR697, the disease severity (%) was 44.1% and 55.8%, respectively, in a curative method; while the disease severity (%) was 5% and 11.6%, in LON701- and ATR697-treated red peppers, respectively, in a preventive method. These results showed the suppression of disease severity (%) was relatively higher in the preventive method than in the curative method. Furthermore, Trichoderma isolates ATR697 and LON701 were resistant to commercial chemical fungicides in vitro, indicating these strains may also be used synergistically with a chemical fungicide (pyraclostrobin) against the growth of C. acutatum. There was no difference in the inhibition rate (%) of the pathogen between the treatment with LON701 alone and LON701+pyraclostrobin. Based on in vitro findings, ATR697 and LON701 played a role in effectively controlling red pepper anthracnose in field conditions, with LON701 treatment resulting in a disease rate of 14% when compared to ATR697, chemical, and non-treated controls. Overall, our study showed the ability of Trichoderma isolates to control red pepper anthracnose and their potential to develop as novel biocontrol agents to replace chemical fungicides for eco-friendly, sustainable agriculture.
Collapse
Affiliation(s)
- Seung Hwan Kim
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Younmi Lee
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Kotnala Balaraju
- Agricultural Science & Technology Research Institute, Andong National University, Andong, Republic of Korea
| | - Yongho Jeon
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| |
Collapse
|
6
|
Khoo YW, Chong KP. Ganoderma boninense: general characteristics of pathogenicity and methods of control. FRONTIERS IN PLANT SCIENCE 2023; 14:1156869. [PMID: 37492765 PMCID: PMC10363743 DOI: 10.3389/fpls.2023.1156869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
Ganoderma boninense (G. boninense) is a soil-borne fungus threatening oil palm at the present. It causes basal stem rot disease on oil palm. Within six months, this fungus can cause an oil palm plantation to suffer a significant 43% economic loss. The high persistence and nature of spread of G. boninense in soil make control of the disease challenging. Therefore, controlling the pathogen requires a thorough understanding of the mechanisms that underlie pathogenicity as well as its interactions with host plants. In this paper, we present the general characteristics, the pathogenic mechanisms, and the host's defensive system of G. boninense. We also review upcoming and most promising techniques for disease management that will have the least negative effects on the environment and natural resources.
Collapse
Affiliation(s)
- Ying Wei Khoo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Khim Phin Chong
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
7
|
Chan ME, Tan JY, Lee YY, Lee D, Fong YK, Mutwil M, Wong JY, Hong Y. Locally Isolated Trichoderma harzianum Species Have Broad Spectrum Biocontrol Activities against the Wood Rot Fungal Species through Both Volatile Inhibition and Mycoparasitism. J Fungi (Basel) 2023; 9:675. [PMID: 37367611 DOI: 10.3390/jof9060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Pathogenic root/wood rot fungal species infect multiple urban tree species in Singapore. There is a need for sustainable and environmentally friendly mitigation. We report the local Trichoderma strains as potential biocontrol agents (BCAs) for pathogenic wood rot fungal species such as Phellinus noxius, Rigidoporus microporus, and Fulvifomes siamensis. Isolated Trichoderma strains were DNA-barcoded for their molecular identities and assessed for their potential as a BCA by their rate of growth in culture and effectiveness in inhibiting the pathogenic fungi in in vitro dual culture assays. Trichoderma harzianum strain CE92 was the most effective in inhibiting the growth of the pathogenic fungi tested. Preliminary results suggested both volatile organic compound (VOC) production and direct hyphal contact contributed to inhibition. SPME GC-MS identified known fungal inhibitory volatiles. Trichoderma harzianum strain CE92 hyphae were found to coil around Phellinus noxius and Lasiodiplodia theobromae upon contact in vitro and were possibly a part of the mycoparasitism. In summary, the work provides insight into Trichoderma inhibition of pathogenic fungi and identifies local strains with good potential for broad-spectrum BCAs against root/wood rot fungi in Singapore.
Collapse
Affiliation(s)
- Mu En Chan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jhing Yein Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yan Yi Lee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Daryl Lee
- National Parks Board, 1 Cluny Road, Singapore Botanic Gardens, Singapore 259569, Singapore
| | - Yok King Fong
- National Parks Board, 1 Cluny Road, Singapore Botanic Gardens, Singapore 259569, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jia Yih Wong
- National Parks Board, 1 Cluny Road, Singapore Botanic Gardens, Singapore 259569, Singapore
| | - Yan Hong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
8
|
Rahman MM, Al Noman MA, Khatun S, Alam R, Shetu MMH, Talukder EK, Imon RR, Biswas MY, Anis-Ul-Haque K, Uddin MJ, Akhter S. Evaluation of Senna tora (L.) Roxb. leaves as source of bioactive molecules with antioxidant, anti-inflammatory and antibacterial potential. Heliyon 2023; 9:e12855. [PMID: 36747926 PMCID: PMC9898628 DOI: 10.1016/j.heliyon.2023.e12855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Senna tora (L.) Roxb. is an ethno-medicinal herb used by rural and tribal people of the Satpura region of Madhya Pradesh in India and the Phatthalung Province of Thailand for treating rheumatism, bronchitis, ringworm, itches, leprosy, dyspepsia, liver disorders and heart disorders. It is also used in Chinese and Ayurvedic medicine. This study was conducted to investigate the potential of Senna tora (L.) Roxb. as a source of drug candidates against oxidants, inflammation, and bacterial infection. Preliminary phytochemical screening (PPS) and GC-MS were performed to identify the phytochemicals in the ethyl acetate extract of Senna tora (L.) Roxb. leaves (EAESTL). The in vitro antioxidant activity was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH)- and H2O2-scavenging tests; the in vitro anti-inflammatory activity was determined by bovine serum albumin (BSA) denaturation and red blood cell (RBC) hemolysis inhibition; and the antibacterial activity was evaluated by agar-well diffusion methods. Cytotoxicity was estimated by Artemia salina larvae lethality, while acute toxicity was evaluated by oral delivery of the extract to mice. In silico antioxidant, anti-inflammatory, and antibacterial activities were predicted by the Prediction of Activity Spectra for Substances (PASS) program. The pharmacokinetics related to ADME and toxicity tests were determined by the admetSAR2 and ADMETlab2 web servers, and drug-able properties were assessed by the SwissADME server. GC-MS detected fifty-nine phytochemicals that support the types of compounds (phenols, flavonoids, tannins, terpenoids, saponins, steroids, alkaloids, glycosides and reducing sugar) identified by phytochemical screening. EAESTL exhibited dose-dependent antioxidant, anti-inflammatory, and antibacterial activities without any adverse effects or fluctuations in body weight. The PASS program predicted that the identified phytochemicals have antioxidant, anti-inflammatory and antibacterial activities. Among 51 phytochemicals, 16 showed good ADME, and 8 fulfilled drug-able properties without toxicity. Altogether, four phytochemicals, viz., benzyl alcohol, 3-(hydroxy-phenyl-methyl)-2,3-dimethyl-octan-4-one, phenylethyl alcohol and 2,6,6-trimethylbicyclo [3.1.1] heptane-3-ol, showed good pharmacokinetics and drug-able properties without toxicity, along with antioxidant, anti-inflammatory, and antibacterial activities. The obtained results suggest that Senna tora (L.) Roxb. leaves contain bioactive phytochemicals that have the potential to fight against oxidants, inflammation, and bacterial infection as potential drug candidates.
Collapse
Affiliation(s)
- Md. Mashiar Rahman
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Abdullah Al Noman
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Shapla Khatun
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Rahat Alam
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Mahade Hasan Shetu
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Enamul Kabir Talukder
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Raihan Rahman Imon
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Yaman Biswas
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - K.M. Anis-Ul-Haque
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mohammad Jashim Uddin
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- Corresponding author.
| | - Shahina Akhter
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong, Foy's Lake, Chittagong 4202, Bangladesh
- Corresponding author.
| |
Collapse
|
9
|
Gangireddygari VSR, Cho IS, Choi S, Yoon JY. Inhibitory Effects of Pepper Mild Mottle Virus Infection by Supernatants of Five Bacterial Cultures in Capsicum annuum L. THE PLANT PATHOLOGY JOURNAL 2022; 38:646-655. [PMID: 36503193 PMCID: PMC9742801 DOI: 10.5423/ppj.oa.08.2022.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Pepper mild mottle virus (PMMoV), one of the most prevalent viruses in chili pepper (Capsicum annuum L.) is a non-enveloped, rod-shaped, single-stranded positive-sense RNA virus classified in the genus Tobamovirus. The supernatants of five bacterial cultures (Pseudomonas putida [PP], Bacillus licheniformis [BLI], P. fluorescens [PF], Serratia marcescens [SER], and B. amyloliquifaciens [BA]) were analyzed to find novel antiviral agents to PMMoV in chili pepper. Foliar spraying with supernatants (1:1, v/v) obtained from Luria-Bertani broth cultures of PP, BLI, PF, SER, and BA inhibited PMMoV infection of chili pepper if applied before the PMMoV inoculation. Double-antibody sandwich enzyme-linked immunosorbent assay showed that treatments of five supernatants resulted in 51-66% reductions in PMMoV accumulation in the treated chili pepper. To identify key compounds in supernatants of PP, BLI, PF, SER, and BA, the supernatants were subjected to gas chromatography-mass spectrometry. The 24 different types of compounds were identified from the supernatants of PP, BLI, PF, SER, and BA. The compounds vary from supernatants of one bacterial culture to another which includes simple compounds-alkanes, ketones, alcohols, and an aromatic ring containing compounds. The compounds triggered the inhibitory effect on PMMoV propagation in chili pepper plants. In conclusion, the cultures could be used to further conduct tissue culture and field trial experiments as potential bio-control agents.
Collapse
Affiliation(s)
- Venkata Subba Reddy Gangireddygari
- Virology Unit, Horticulture, and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - In-Sook Cho
- Virology Unit, Horticulture, and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Sena Choi
- Virology Unit, Horticulture, and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Ju-Yeon Yoon
- Graduate School on Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896,
Korea
- Department of Agricultural Convergence Technology, Joenbuk National University, Jeonju 54896,
Korea
| |
Collapse
|
10
|
Panchalingam H, Powell D, Adra C, Foster K, Tomlin R, Quigley BL, Nyari S, Hayes RA, Shapcott A, Kurtböke Dİ. Assessing the Various Antagonistic Mechanisms of Trichoderma Strains against the Brown Root Rot Pathogen Pyrrhoderma noxium Infecting Heritage Fig Trees. J Fungi (Basel) 2022; 8:jof8101105. [PMID: 36294670 PMCID: PMC9605450 DOI: 10.3390/jof8101105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
A wide range of phytopathogenic fungi exist causing various plant diseases, which can lead to devastating economic, environmental, and social impacts on a global scale. One such fungus is Pyrrhoderma noxium, causing brown root rot disease in over 200 plant species of a variety of life forms mostly in the tropical and subtropical regions of the globe. The aim of this study was to discover the antagonistic abilities of two Trichoderma strains (#5001 and #5029) found to be closely related to Trichoderma reesei against P. noxium. The mycoparasitic mechanism of these Trichoderma strains against P. noxium involved coiling around the hyphae of the pathogen and producing appressorium like structures. Furthermore, a gene expression study identified an induced expression of the biological control activity associated genes in Trichoderma strains during the interaction with the pathogen. In addition, volatile and diffusible antifungal compounds produced by the Trichoderma strains were also effective in inhibiting the growth of the pathogen. The ability to produce Indole-3-acetic acid (IAA), siderophores and the volatile compounds related to plant growth promotion were also identified as added benefits to the performance of these Trichoderma strains as biological control agents. Overall, these results show promise for the possibility of using the Trichoderma strains as potential biological control agents to protect P. noxium infected trees as well as preventing new infections.
Collapse
Affiliation(s)
- Harrchun Panchalingam
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Daniel Powell
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Cherrihan Adra
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Keith Foster
- Brisbane City Council, Program, Planning and Integration, Brisbane Square, Level 10, 266 George Street, Brisbane, QLD 4000, Australia
| | - Russell Tomlin
- Brisbane City Council, Program, Planning and Integration, Brisbane Square, Level 10, 266 George Street, Brisbane, QLD 4000, Australia
| | - Bonnie L. Quigley
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Sharon Nyari
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - R. Andrew Hayes
- Forest Industries Research Centre, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Alison Shapcott
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - D. İpek Kurtböke
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
- Correspondence:
| |
Collapse
|
11
|
Hafiz FB, Moradtalab N, Goertz S, Rietz S, Dietel K, Rozhon W, Humbeck K, Geistlinger J, Neumann G, Schellenberg I. Synergistic Effects of a Root-Endophytic Trichoderma Fungus and Bacillus on Early Root Colonization and Defense Activation Against Verticillium longisporum in Rapeseed. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:380-392. [PMID: 35147443 DOI: 10.1094/mpmi-11-21-0274-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rhizosphere-competent microbes often interact with plant roots and exhibit beneficial effects on plant performance. Numerous bacterial and fungal isolates are able to prime host plants for fast adaptive responses against pathogen attacks. Combined action of fungi and bacteria may lead to synergisms exceeding effects of single strains. Individual beneficial fungi and bacteria have been extensively studied in Arabidopsis thaliana, but little is known about their concerted actions in the Brassicaceae. Here, an in-vitro system with oilseed rape (Brassica napus) was established. Roots of two different cultivars were inoculated with well-characterized fungal (Trichoderma harzianum OMG16) and bacterial (Bacillus velezensis FZB42) isolates alone or in combination. Microscopic analysis confirmed that OMG16 hyphae entered root hairs through root hair tips and formed distinct intracellular structures. Quantitative PCR revealed that root colonization of OMG16 increased up to 10-fold in the presence of FZB42. Relative transcript levels of the ethylene- and jasmonic acid-responsive genes PDF1.2, ERF2, and AOC3 were recorded in leaves by quantitative reverse transcription PCR to measure induced systemic resistance in tissues distant from the roots. Combined action of OMG16 and FZB42 induced transcript abundances more efficiently than single inoculation. Importantly, microbial priming reduced Verticillium longisporum root infection in rapeseed by approximately 100-fold compared with nonprimed plants. Priming also led to faster and stronger systemic responses of the defense genes PDF1.2, ERF2, AOC3, and VSP2.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Fatema Binte Hafiz
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Saxony-Anhalt, Germany
| | - Narges Moradtalab
- Institute of Crop Sciences, University of Hohenheim, 70593 Stuttgart, Baden-Württemberg, Germany
| | - Simon Goertz
- NPZ Innovation GmbH, Hohenlieth-Hof, 24363, Holtsee, Schleswig-Holstein, Germany
| | - Steffen Rietz
- NPZ Innovation GmbH, Hohenlieth-Hof, 24363, Holtsee, Schleswig-Holstein, Germany
| | | | - Wilfried Rozhon
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Saxony-Anhalt, Germany
| | - Klaus Humbeck
- Institute of Biology, Plant Physiology Department, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Saxony-Anhalt, Germany
| | - Joerg Geistlinger
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Saxony-Anhalt, Germany
| | - Günter Neumann
- Institute of Crop Sciences, University of Hohenheim, 70593 Stuttgart, Baden-Württemberg, Germany
| | - Ingo Schellenberg
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Saxony-Anhalt, Germany
| |
Collapse
|
12
|
Bharudin I, Ab Wahab AFF, Abd Samad MA, Xin Yie N, Zairun MA, Abu Bakar FD, Abdul Murad AM. Review Update on the Life Cycle, Plant–Microbe Interaction, Genomics, Detection and Control Strategies of the Oil Palm Pathogen Ganoderma boninense. BIOLOGY 2022; 11:biology11020251. [PMID: 35205119 PMCID: PMC8869222 DOI: 10.3390/biology11020251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
Plant pathogens are key threats to agriculture and global food security, causing various crop diseases that lead to massive economic losses. Palm oil is a commodity export of economic importance in Southeast Asia, especially in Malaysia and Indonesia. However, the sustainability of oil palm plantations and production is threatened by basal stem rot (BSR), a devastating disease predominantly caused by the fungus Ganoderma boninense Pat. In Malaysia, infected trees have been reported in nearly 60% of plantation areas, and economic losses are estimated to reach up to ~USD500 million a year. This review covers the current knowledge of the mechanisms utilized by G. boninense during infection and the methods used in the disease management to reduce BSR, including cultural practices, chemical treatments and antagonistic microorganism manipulations. Newer developments arising from multi-omics technologies such as whole-genome sequencing (WGS) and RNA sequencing (RNA-Seq) are also reviewed. Future directions are proposed to increase the understanding of G. boninense invasion mechanisms against oil palm. It is hoped that this review can contribute towards an improved disease management and a sustainable oil palm production in this region.
Collapse
Affiliation(s)
- Izwan Bharudin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
- Fraser’s Hill Research Centre (PPBF), Faculty of Science & Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia
- Correspondence:
| | - Anis Farhan Fatimi Ab Wahab
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
- FGV Innovation Centre (Biotechnology), Pt. 23417 Lengkuk Teknologi, Bandar Enstek 71760, Malaysia
| | - Muhammad Asyraff Abd Samad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
| | - Ng Xin Yie
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
| | - Madihah Ahmad Zairun
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
- Plant Pathology & Biosecurity Unit, Biology & Sustainability Research Division, 6, Malaysian Palm Oil Board, Bandar Baru Bangi, Kajang 43000, Malaysia
| | - Farah Diba Abu Bakar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
| |
Collapse
|
13
|
Widada J, Damayanti E, Alhakim MR, Yuwono T, Mustofa M. Two strains of airborne Nocardiopsis alba producing different volatile organic compounds (VOCs) as biofungicide for Ganoderma boninense. FEMS Microbiol Lett 2021; 368:6425125. [PMID: 34758070 DOI: 10.1093/femsle/fnab138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Nocardiopsis are actinobacteria which produce active compounds, such as antifungals and volatile compounds. Ganoderma boninense is a pathogenic and aggressive fungus that decreases palm oil yield during production. In this study, we isolated two strains of Nocardia (GME01 and GME22) from airborne contaminants on the actinobacteria culture collection in the laboratory. The aim of this study is to identify two strains of Nocardiopsis and to obtain the antifungal potency of volatile organic compounds (VOCs) against G. boninese. We characterized the morphology using Scanning Electrone Microscope (SEM), molecular properties and whole-cell protein spectra using Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS), antifungal assay on G. boninense and VOCs analysis of Nocardia using solid phase micro extraction/gas chromatography (SPME/GC). The two Nocardiopsis strains had the similar characteristic such as white aerial mycelium and spores, aerobic, grow well on ISP-2, TSA and NA medium without diffusible pigment and had the highest similarity with Nocardiopsis alba DSM 43377 (99.63% and 99.55% similarity for GME01 and GME22, respectively), Different morphological feature was found in aerial mycelium and spores. GME22 has a clearly fragmented mycelium whereas GME01 has none. Other features also showed different on the whole-cell protein spectra, antifungal activity and VOCs profiles. Antifungal activity assay on G. boninense showed that N. alba GME22 has higher antifungal activity than GME01 related with the VOCs abundance in two strains. Almost 38.3% (18 VOCs) of N. alba GME22 and 25.5% (12 VOCs) of N. alba GME01 were found specifically in each strain, and 36.2% (the 17 same VOCs) produced by both. The known volatile antifungal compounds S-methyl ethanethioate, 1,2-dimethyldisulfane, acetic acid, 2-methyl propanoic acid, 3-methyl-butanoic acid, nonan-2-one, undecan-2-one and 2-isopropyl-5-methylcyclohexan-1-ol only produced by N. alba GME22 and 1,3-dimethyltrisulfane only produced by N. alba GME01. A total of two known antifungal compounds 1,2-dimethyldisulfane and 6-methylheptan-2-one were produced by both N. alba. The abundance of antifungal VOCs produced by these bacteria is potentially to be used as biocontrol agent for pathogenic fungi in plants.
Collapse
Affiliation(s)
- Jaka Widada
- Department of Agricultural Microbiology, Faculty of Agriculture, Jl. Flora No. 1, Bulaksumur, Yogyakarta, Indonesia
| | - Ema Damayanti
- Research Division for Natural Product Technology, Indonesian Institute of Sciences, Jl. Jogja Wonosari KM 31.5, Gunungkidul, Yogyakarta, Indonesia.,National Research and Innovation Agency, Yogyakarta, Indonesia
| | - Mohammad Ryan Alhakim
- Department of Agricultural Microbiology, Faculty of Agriculture, Jl. Flora No. 1, Bulaksumur, Yogyakarta, Indonesia
| | - Triwibowo Yuwono
- Department of Agricultural Microbiology, Faculty of Agriculture, Jl. Flora No. 1, Bulaksumur, Yogyakarta, Indonesia
| | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Jl. Farmako, Sekip Utara, Bulaksumur, Yogyakarta, Indonesia
| |
Collapse
|
14
|
Ruangwong OU, Pornsuriya C, Pitija K, Sunpapao A. Biocontrol Mechanisms of Trichoderma koningiopsis PSU3-2 against Postharvest Anthracnose of Chili Pepper. J Fungi (Basel) 2021; 7:jof7040276. [PMID: 33916921 PMCID: PMC8067587 DOI: 10.3390/jof7040276] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Several mechanisms are involved in the biological control of plant pathogens by the soil-borne Trichoderma spp. fungi. The aim of this study was to characterize a new strain of Trichoderma as a potential biological control agent to control the postharvest anthracnose of chili pepper caused by Colletotrichumgloeosporioides. A total of nine strains of Trichoderma spp. were screened for their antifungal activity using a dual culture assay against C.gloeosporioides. Trichoderma koningiopsis PSU3-2 was shown to be the most effective strain, with a percentage inhibition of 79.57%, which was significantly higher than that of other strains (p < 0.05). In the sealed plate method, T. koningiopsis PSU3-2 suppressed the growth of C.gloeosporioides by 38.33%. Solid-phase microextraction (SPME) was applied to trap volatiles emitted by T. koningiopsis PSU3-2, and the GC/MS profiling revealed the presence of antifungal compounds including azetidine, 2-phenylethanol, and ethyl hexadecanoate. The production of cell-wall-degrading enzymes (CWDEs) was assayed through cell-free culture filtrate (CF) of PSU3-2, and the enzyme activity of chitinase and β-1,3-glucanase was 0.06 and 0.23 U/mL, respectively, significantly higher than that in the control (p < 0.05). Scanning electron microscopy of the mycelium incubated in cell-free CF of T. koningiopsis PSU3-2 showed the abnormal shape of C.gloeosporioides hyphae. Application of T. koningiopsis PSU3-2 by the dipping method significantly reduced the lesion size (p < 0.05) after inoculation with C.gloeosporioides compared to the control, and there was no disease symptom development in T. koningiopsis PSU3-2-treated chili pepper. This study demonstrates that T. koningiopsis PSU3-2 is an effective antagonistic microorganism and a promising biocontrol agent against postharvest anthracnose of chili pepper, acting with multiple mechanisms.
Collapse
Affiliation(s)
- On-Uma Ruangwong
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand;
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaninun Pornsuriya
- Agricultural Innovation and Management Division (Pest Management), Faculty of Natural Resources, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand;
| | - Kitsada Pitija
- Perkin Elmer Co. Ltd., 290 Soi 17, Rama 9 Rd., Bangkapi, Huay Kwang, Bangkok 10310, Thailand;
| | - Anurag Sunpapao
- Agricultural Innovation and Management Division (Pest Management), Faculty of Natural Resources, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand;
- Correspondence: ; Tel.: +66-74-28-6103
| |
Collapse
|
15
|
Trichoderma asperellum T76-14 Released Volatile Organic Compounds against Postharvest Fruit Rot in Muskmelons ( Cucumis melo) Caused by Fusarium incarnatum. J Fungi (Basel) 2021; 7:jof7010046. [PMID: 33445575 PMCID: PMC7827528 DOI: 10.3390/jof7010046] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
Postharvest fruit rot caused by Fusarium incarnatum is a destructive postharvest disease of muskmelon (Cucumis melo). Biocontrol by antagonistic microorganisms is considered an alternative to synthetic fungicide application. The aim of this study was to investigate the mechanisms of action involved in the biocontrol of postharvest fruit rot in muskmelons by Trichoderma species. Seven Trichoderma spp. isolates were selected for in vitro testing against F. incarnatum in potato dextrose agar (PDA) by dual culture assay. In other relevant works, Trichoderma asperellum T76-14 showed a significantly higher percentage of inhibition (81%) than other isolates. Through the sealed plate method, volatile organic compounds (VOCs) emitted from T. asperellum T76-14 proved effective at inhibiting the fungal growth of F. incarnatum by 62.5%. Solid-phase microextraction GC/MS analysis revealed several VOCs emitted from T. asperellum T76-14, whereas the dominant compound was tentatively identified as phenylethyl alcohol (PEA). We have tested commercial volatile (PEA) against in vitro growth of F. incarnatum; the result showed PEA at a concentration of 1.5 mg mL−1 suppressed fungal growth with 56% inhibition. Both VOCs and PEA caused abnormal changes in the fungal mycelia. In vivo testing showed that the lesion size of muskmelons exposed to VOCs from T. asperellum T76-14 was significantly smaller than that of the control. Muskmelons exposed to VOCs from T. asperellum T76-14 showed no fruit rot after incubation at seven days compared to fruit rot in the control. This study demonstrated the ability of T. asperellum T76-14 to produce volatile antifungal compounds, showing that it can be a major mechanism involved in and responsible for the successful inhibition of F. incarnatum and control of postharvest fruit rot in muskmelons.
Collapse
|
16
|
Hasan ZAE, Mohd Zainudin NAI, Aris A, Ibrahim MH, Yusof MT. Biocontrol efficacy of Trichoderma asperellum-enriched coconut fibre against Fusarium wilts of cherry tomato. J Appl Microbiol 2020; 129:991-1003. [PMID: 32324939 DOI: 10.1111/jam.14674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 11/26/2022]
Abstract
AIMS Agro-based wastes were evaluated as a medium for mass micropropagule production and optimal efficacy of Trichoderma asperellum B1092 in controlling Fusarium oxysporum f. sp. lycopersici and promoting tomato growth. This study focused on biological control because pathogen persistence in the soil makes the disease difficult to control. METHODS AND RESULTS Rice bran, biochar, empty fruit bunches, coconut fibres, compost, top soil and mixed soil were evaluated as media for mass multiplication of T. asperellum, which is effective in controlling plant pathogens. Yielding the most colony forming units (CFU) among the media, coconut fibre was deemed most suitable for promoting sporulation. After 120 days on the medium, T. asperellum B1902 produced 9·053 × 105 CFU per gram coconut fibre; oil palm empty fruit bunches was second highest (7·406 × 105 CFU per gram). In field tests of T. asperellum B1092 against F. oxysporum f. sp lycopersici (causing Fusarium wilt of cherry tomato), B1092 significantly promoted plant growth compared to the control. The efficacy of this formulation resulted in increased growth of roots and shoots tomato plants and total lycopene, sugar, K, N, Ca, P and Mg content after 120 days. CONCLUSIONS Trichoderma asperellum B1092 showed great field potential for improving productivity and quality of tomatoes and in controlling Fusarium wilt of cherry tomato. SIGNIFICANCE AND IMPACT OF THE STUDY This innovative approach using a cheap agro-waste to control the persistent soil-borne Fusarium pathogen of cherry tomato should increase soil survival rate of Trichoderma and has potential for upscaling in the field for other crops.
Collapse
Affiliation(s)
- Z A E Hasan
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Botany, Faculty of Science, Omar Al Mukhtar University, Al Bayda, Libya
| | - N A I Mohd Zainudin
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - A Aris
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - M H Ibrahim
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - M T Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
17
|
Sujarit K, Mori M, Dobashi K, Shiomi K, Pathom-aree W, Lumyong S. New Antimicrobial Phenyl Alkenoic Acids Isolated from an Oil Palm Rhizosphere-Associated Actinomycete, Streptomyces palmae CMU-AB204 T. Microorganisms 2020; 8:microorganisms8030350. [PMID: 32121612 PMCID: PMC7142508 DOI: 10.3390/microorganisms8030350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 11/16/2022] Open
Abstract
Basal stem rot (BSR), or Ganoderma rot disease, is the most serious disease associated with the oil palm plant of Southeast Asian countries. A basidiomycetous fungus, Ganoderma boninense, is the causative microbe of this disease. To control BSR in oil palm plantations, biological control agents are gaining attention as a major alternative to chemical fungicides. In the course of searching for effective actinomycetes as potential biological control agents for BSR, Streptomyces palmae CMU-AB204T was isolated from oil palm rhizosphere soil collected on the campus of Chiang Mai University. The culture broth of this strain showed significant antimicrobial activities against several bacteria and phytopathogenic fungi including G. boninense. Antifungal and antibacterial compounds were isolated by antimicrobial activity-guided purification using chromatographic methods. Their structures were elucidated by spectroscopic techniques, including Nuclear Magnetic Resonance (NMR), Mass Spectrometry (MS), Ultraviolet (UV), and Infrared (IR) analyses. The current study isolated new phenyl alkenoic acids 1-6 and three known compounds, anguinomycin A (7), leptomycin A (8), and actinopyrone A (9) as antimicrobial agents. Compounds 1 and 2 displayed broad antifungal activity, though they did not show antibacterial activity. Compounds 3 and 4 revealed a strong antibacterial activity against both Gram-positive and Gram-negative bacteria including the phytopathogenic strain Xanthomonas campestris pv. oryzae. Compounds 7-9 displayed antifungal activity against Ganoderma. Thus, the antifungal compounds obtained in this study may play a role in protecting oil palm plants from Ganoderma infection with the strain S. palmae CMU-AB204T.
Collapse
Affiliation(s)
- Kanaporn Sujarit
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (W.P.-a.)
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (K.D.); (K.S.)
| | - Mihoko Mori
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (K.D.); (K.S.)
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Correspondence: (M.M.); (S.L.); Tel.: +81-35-791-6131 (M.M.); +66-53-941-947 (ext. 144) (S.L.)
| | - Kazuyuki Dobashi
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (K.D.); (K.S.)
| | - Kazuro Shiomi
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (K.D.); (K.S.)
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Wasu Pathom-aree
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (W.P.-a.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (W.P.-a.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Correspondence: (M.M.); (S.L.); Tel.: +81-35-791-6131 (M.M.); +66-53-941-947 (ext. 144) (S.L.)
| |
Collapse
|
18
|
Yazid SNE, Jinap S, Ismail SI, Magan N, Samsudin NIP. Phytopathogenic organisms and mycotoxigenic fungi: Why do we control one and neglect the other? A biological control perspective in Malaysia. Compr Rev Food Sci Food Saf 2020; 19:643-669. [DOI: 10.1111/1541-4337.12541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Siti Nur Ezzati Yazid
- Laboratory of Food Safety and Food IntegrityInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
| | - Selamat Jinap
- Laboratory of Food Safety and Food IntegrityInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
- Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra Malaysia Serdang Malaysia
| | - Siti Izera Ismail
- Laboratory of Climate‐Smart Food Crop ProductionInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
- Department of Plant ProtectionFaculty of AgricultureUniversiti Putra Malaysia Serdang Malaysia
| | - Naresh Magan
- Applied Mycology GroupCranfield Soil and AgriFood InstituteCranfield University Cranfield UK
| | - Nik Iskandar Putra Samsudin
- Laboratory of Food Safety and Food IntegrityInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
- Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra Malaysia Serdang Malaysia
| |
Collapse
|
19
|
Syed-Ab-Rahman SF, Carvalhais LC, Chua ET, Chung FY, Moyle PM, Eltanahy EG, Schenk PM. Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:267-280. [PMID: 31349168 DOI: 10.1016/j.scitotenv.2019.07.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Biotic interactions through diffusible and volatile organic compounds (VOCs) are frequent in nature. Soil bacteria are well-known producers of a wide range of volatile compounds (both organic and inorganic) with various biologically relevant activities. Since the last decade, they have been identified as natural biocontrol agents. Volatiles are airborne chemicals, which when released by bacteria, can trigger plant responses such as defence and growth promotion. In this study, we tested whether diffusible and volatile organic compounds (VOCs) produced by soil bacterial isolates exert anti-oomycete and plant growth-promoting effects. We also investigated the effects of inoculation with VOC-producing bacteria on the growth and development of Capsicum annuum and Arabidopsis thaliana seedlings. Our results demonstrate that organic VOCs emitted by bacterial antagonists negatively influence mycelial growth of the soil-borne phytopathogenic oomycete Phytophthora capsici by 35% in vitro. The bacteria showed plant growth promoting effects by stimulating biomass production, primary root growth and root hair development. Additionally, we provide evidence to suggest that these activities were deployed by the emission of either diffusible organic compounds or VOCs. Bacterial VOC profiles were obtained through solid phase microextraction (SPME) and analysis by gas chromatography coupled with mass spectrometry (GC-MS). This elucidated the main volatiles emitted by the isolates, which covered a wide range of aldehydes, alcohols, esters, carboxylic acids, and ketones. Collectively, twenty-five VOCs were identified to be produced by three bacteria; some being species-specific. Our data show that bacterial volatiles inhibits P. capsici in vitro and modulate both plant growth promotion and root system development. These results confirm the significance of soil bacteria and highlights that ways of harnessing them to improve plant growth, and as a biocontrol agent for soil-borne oomycetes through their volatile emissions deserve further investigation.
Collapse
Affiliation(s)
- Sharifah Farhana Syed-Ab-Rahman
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia; School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence (PACE), Woolloongabba, Queensland 4102, Australia.
| | - Lilia C Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, GPO Box 267, Queensland 4001, Australia
| | - Elvis T Chua
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fong Yi Chung
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence (PACE), Woolloongabba, Queensland 4102, Australia
| | - Eladl G Eltanahy
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Peer M Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
20
|
Sherma J, Rabel F. Review of thin layer chromatography in pesticide analysis: 2016-2018. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2018.1557055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Joseph Sherma
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | | |
Collapse
|
21
|
Palyzová A, Svobodová K, Sokolová L, Novák J, Novotný Č. Metabolic profiling of Fusarium oxysporum f. sp. conglutinans race 2 in dual cultures with biocontrol agents Bacillus amyloliquefaciens, Pseudomonas aeruginosa, and Trichoderma harzianum. Folia Microbiol (Praha) 2019; 64:779-787. [PMID: 30746611 DOI: 10.1007/s12223-019-00690-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/05/2019] [Indexed: 11/26/2022]
Abstract
There are increasing efforts to identify biocontrol-active microbial metabolites in order to improve strategies for biocontrol of phytopathogens. In this work, Fusarium oxysporum f. sp. conglutinans was confronted with three different biocontrol agents: Trichoderma harzianum, Bacillus amyloliquefaciens, and Pseudomonas aeruginosa in dual culture bioassays. Metabolites produced during the microbial interactions were screened by a matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). T. harzianum exhibited the strongest inhibition of growth of F. oxysporum resulting in overlay of the pathogen colony with its mycelium. Recorded metabolite profiles suggested a direct attack of F. oxysporum mycelium by T. harzianum and B. amyloliquefaciens by means of membrane-attacking peptaibols and a set of antimicrobial lipopeptides and siderophores, respectively. The direct mode of the biocontrol activity of T. harzianum and B. amyloliquefaciens corresponded to their ability to suppress F. oxysporum production of mycotoxin beauvericin suggesting that this ability is not specific only for Trichoderma species. In the case of P. aeruginosa, siderophores pyoverdine E/D and two rhamnolipids were produced as major bacterial metabolites; the rhamnolipid production was blocked by F. oxysporum. The results showed that this type of biocontrol activity was the least effective against F. oxysporum. The effective application of MALDI-MS profiling to the screening of nonvolatile microbial metabolites produced during the interaction of the phytopathogen and the biocontrol microorganisms was demonstrated.
Collapse
Affiliation(s)
- Andrea Palyzová
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Kateřina Svobodová
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Lucie Sokolová
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Jiří Novák
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Čeněk Novotný
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
22
|
Narh Mensah DL, Duponnois R, Bourillon J, Gressent F, Prin Y. Biochemical characterization and efficacy of Pleurotus, Lentinus and Ganoderma parent and hybrid mushroom strains as biofertilizers of attapulgite for wheat and tomato growth. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Rabel F, Sherma J. Review of the state of the art of preparative thin-layer chromatography. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1294081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Fred Rabel
- ChromHELP, LLC, Woodbury, New Jersey, USA
| | - Joseph Sherma
- Department of Chemistry, Lafayette College, Easton, Pennsylvania, USA
| |
Collapse
|