1
|
Vávrová P, Janďourek O, Diepoltová A, Nachtigal P, Konečná K. The appropriate nutrient conditions for methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilm formation in vitro. Sci Rep 2025; 15:183. [PMID: 39747199 PMCID: PMC11696109 DOI: 10.1038/s41598-024-83745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Polymicrobial biofilms, the reason for most chronic wound infections, play a significant role in increasing antibiotic resistance. The in vivo effectiveness of the new anti-biofilm therapy is conditioned by the profound evaluation using appropriate in vitro biofilm models. Since nutrient availability is crucial for in vitro biofilm formation, this study is focused on the impact of four selected cultivation media on the properties of methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilms. To reflect the wound environment, Tryptic soy broth, RPMI 1640 with and without glucose, and Lubbock medium were supplemented with different amounts of host effector molecules present in human plasma or sheep red blood cells. The study demonstrates that the Lubbock medium provided the most appropriate amount of nutrients regarding the biomass structure and the highest degree of tolerance to selected antimicrobials with the evident contribution of the biofilm matrix. Our results allow the rational employment of nutrition conditions within methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilm formation in vitro for preclinical research. Additionally, one of the potential targets of a complex antibiofilm strategy, carbohydrates, was revealed since they are prevailing molecules in the matrices regardless of the cultivation media.
Collapse
Affiliation(s)
- Pavlína Vávrová
- Department of Biological and Medical Sciences, Charles University, Faculty of Pharmacy in Hradec Králové, 2089, Zborovská, Hradec Králové, 500 03, Czech Republic
| | - Ondřej Janďourek
- Department of Biological and Medical Sciences, Charles University, Faculty of Pharmacy in Hradec Králové, 2089, Zborovská, Hradec Králové, 500 03, Czech Republic
| | - Adéla Diepoltová
- Department of Biological and Medical Sciences, Charles University, Faculty of Pharmacy in Hradec Králové, 2089, Zborovská, Hradec Králové, 500 03, Czech Republic
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Charles University, Faculty of Pharmacy in Hradec Králové, 2089, Zborovská, Hradec Králové, 500 03, Czech Republic
| | - Klára Konečná
- Department of Biological and Medical Sciences, Charles University, Faculty of Pharmacy in Hradec Králové, 2089, Zborovská, Hradec Králové, 500 03, Czech Republic.
| |
Collapse
|
2
|
Bisso BN, Jahan H, Dzoyem JP, Choudhary MI. Quinic acid enhances kanamycin efficacy against methicillin-resistant Staphylococcus aureus biofilms. Microb Pathog 2025; 198:107145. [PMID: 39579946 DOI: 10.1016/j.micpath.2024.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/01/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) form biofilms that contribute to increased antimicrobial resistance, leading to treatment failure and/or relapse. It is, therefore, necessary to develop new antibiofilm strategies to eradicate MRSA biofilms related infections. This study was aimed to evaluate the effect of the combination of quinic acid and kanamycin against the preformed biofilms of methicillin-resistant Staphylococcus aureus. METHODS Broth microdilution method was deployed to evaluate the antibacterial activity. Whereas antibiofilm activity was evaluated by crystal violet staining, 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium-bromide (MTT) assay, and scanning electron microscopy (SEM). The checkerboard method was adopted to assess the combination effects. Quantification of exopolysaccharides was determined by the phenol-sulfuric acid method. The eDNA was quantified by fluorescence spectrophotometry. Cytotoxicity activity was evaluated by the MTT assay on the human embryonic kidney (HEK 293) cell line. RESULTS Quinic acid, combined with kanamycin, effectively eradicated the methicillin-resistant S. aureus biofilms by effecting biofilm biomass and cell viability. Scanning electron microscopy demonstrated a less adherence of S. aureus cells, - after treatment with quinic acid combined with kanamycin, as compared to each drug alone. The combination of quinic acid and kanamycin thus demonstrated the ability to destroy the exopolysaccharides and eDNA of biofilm matrix without any toxic effect on HEK 293 cells. CONCLUSION Our results demonstrated the potential of using quinic acid in combination therapy, with an antibiotic, against infections caused by MRSA strains.
Collapse
Affiliation(s)
- Borel Ndezo Bisso
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang 1499, Cameroon
| | - Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
| | - Jean Paul Dzoyem
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang 1499, Cameroon.
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
| |
Collapse
|
3
|
Golban M, Charostad J, Kazemian H, Heidari H. Phage-Derived Endolysins Against Resistant Staphylococcus spp.: A Review of Features, Antibacterial Activities, and Recent Applications. Infect Dis Ther 2024:10.1007/s40121-024-01069-z. [PMID: 39549153 DOI: 10.1007/s40121-024-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024] Open
Abstract
Antimicrobial resistance is a significant global public health issue, and the dissemination of antibiotic resistance in Gram-positive bacterial pathogens has significantly increased morbidity, mortality rates, and healthcare costs. Among them, Staphylococcus, especially methicillin-resistant Staphylococcus aureus (MRSA), causes a wide range of diseases due to its diverse pathogenic factors and infection strategies. These bacteria also present significant issues in veterinary medicine and food safety. Effectively managing staphylococci-related problems necessitates a concerted effort to implement preventive measures, rapidly detect the pathogen, and develop new and safe antimicrobial therapies. In recent years, there has been growing interest in using endolysins to combat bacterial infections. These enzymes, which are also referred to as lysins, are a unique class of hydrolytic enzymes synthesized by double-stranded DNA bacteriophages. They possess glycosidase, lytic transglycosylase, amidase, and endopeptidase activities, effectively destroying the peptidoglycan layer and resulting in bacterial lysis. This unique property makes endolysins powerful antimicrobial agents, particularly against Gram-positive organisms with more accessible peptidoglycan layers. Therefore, considering the potential benefits of endolysins compared to conventional antibiotics, we have endeavored to gather and review the characteristics and uses of endolysins derived from staphylococcal bacteriophages, as well as their antibacterial effectiveness against Staphylococcus spp. based on conducted experiments and trials.
Collapse
Affiliation(s)
- Mina Golban
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
4
|
Jardak M, Lami R, Saadaoui O, Jlidi H, Stien D, Aifa S, Mnif S. Control of Staphylococcus epidermidis biofilm by surfactins of an endophytic bacterium Bacillus sp. 15 F. Enzyme Microb Technol 2024; 180:110477. [PMID: 39003969 DOI: 10.1016/j.enzmictec.2024.110477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
The present paper deals with the preparation and annotation of a surfactin(s) derived from a culture of the endophytic bacterium Bacillus 15 F. The LC-MS analysis of the acetonitrile fraction confirmed the presence of surfactins Leu/Ile7 C15, Leu/Ile7 C14 and Leu/Ile7 C13 with [M+H]+ at m/z 1036.6895, 1022.6741 and 1008.6581, respectively. Various concentrations of the surfactin(s) (hereafter referred to as surfactin-15 F) were used to reduce the adhesion of Staphylococcus epidermidis S61, which served as a model for studying antibiofilm activity on polystyrene surfaces. Incubation of Staphylococcus epidermidis S61 with 62.5 µg/ml of surfactin-15 F resulted in almost complete inhibition of biofilm formation (90.3 ± 3.33 %), and a significant reduction of cell viability (resazurin-based fluorescence was more than 200 times lower). The antiadhesive effect of surfactin-15 F was confirmed by scanning electron microscopy. Surfactin-15 F demonstrated an eradication effect against preformed biofilm, causing severe disruption of Staphylococcus epidermidis S61 biofilm structure and reducing viability. The results suggest that surfactins produced by endophytic bacteria could be an alternative to synthetic products. Surfactin-15 F, used in wound dressings, demonstrated an efficient treatment of the preformed Staphylococcus epidermidis S61 biofilm, and thus having a great potential in medical applications.
Collapse
Affiliation(s)
- Marwa Jardak
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P O Box 1177, Sidi Mansour Road, Sfax 3018, Tunisia.
| | - Raphaël Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Banyuls-sur-Mer 66650, France
| | - Oumaima Saadaoui
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P O Box 1177, Sidi Mansour Road, Sfax 3018, Tunisia
| | - Hajer Jlidi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P O Box 1177, Sidi Mansour Road, Sfax 3018, Tunisia
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Banyuls-sur-Mer 66650, France
| | - Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P O Box 1177, Sidi Mansour Road, Sfax 3018, Tunisia
| | - Sami Mnif
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P O Box 1177, Sidi Mansour Road, Sfax 3018, Tunisia
| |
Collapse
|
5
|
Abouhagger A, Celiešiūtė-Germanienė R, Bakute N, Stirke A, Melo WCMA. Electrochemical biosensors on microfluidic chips as promising tools to study microbial biofilms: a review. Front Cell Infect Microbiol 2024; 14:1419570. [PMID: 39386171 PMCID: PMC11462992 DOI: 10.3389/fcimb.2024.1419570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Microbial biofilms play a pivotal role in microbial infections and antibiotic resistance due to their unique properties, driving the urgent need for advanced methodologies to study their behavior comprehensively across varied environmental contexts. While electrochemical biosensors have demonstrated success in understanding the dynamics of biofilms, scientists are now synergistically merging these biosensors with microfluidic technology. This combined approach offers heightened precision, sensitivity, and real-time monitoring capabilities, promising a more comprehensive understanding of biofilm behavior and its implications. Our review delves into recent advancements in electrochemical biosensors on microfluidic chips, specifically tailored for investigating biofilm dynamics, virulence, and properties. Through a critical examination of these advantages, properties and applications of these devices, the review highlights the transformative potential of this technology in advancing our understanding of microbial biofilms in different settings.
Collapse
Affiliation(s)
| | | | | | | | - Wanessa C. M. A. Melo
- Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology (FTMC), Vilnius, Lithuania
| |
Collapse
|
6
|
De Padua JC, Tanaka T, Ueno K, Dela Cruz TEE, Ishihara A. Isolation of 2,2'-azoxybisbenzyl alcohol from Agaricus subrutilescens and its inhibitory activity against bacterial biofilm formation. Biosci Biotechnol Biochem 2024; 88:983-991. [PMID: 38925646 DOI: 10.1093/bbb/zbae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Virulence pathways in pathogenic bacteria are regulated by quorum sensing mechanisms, particularly biofilm formation through autoinducer (AI) production and sensing. In this study, the culture filtrate extracted from an edible mushroom, Agaricus subrutilescens, was fractionated to isolate a compound that inhibits biofilm formation. Four gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, Proteus mirabilis, and Enterobacter cloacae) and two gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus) were used for the bioassay. The bioassay-guided chromatographic separations of the culture filtrate extract resulted in the isolation of the compound. Further, spectroscopic analyses revealed the identity of the compound as 2,2'-azoxybisbenzyl alcohol (ABA). The minimum inhibitory and sub-inhibitory concentrations of the compound were also determined. Azoxybisbenzyl alcohol was significantly effective in inhibiting biofilm formation in all tested bacteria, with half-maximal inhibitory concentrations of 3-11 µg/mL. Additionally, the bioactivity of ABA was confirmed through the bioassays for the inhibition of exopolysaccharide matrixes and AI activities.
Collapse
Affiliation(s)
- Jewel C De Padua
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Tomoya Tanaka
- Graduate School of Sustainability Sciences, Tottori University, Tottori, Japan
| | - Kotomi Ueno
- Department of Agricultural, Life, Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Thomas Edison E Dela Cruz
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Atsushi Ishihara
- Department of Agricultural, Life, Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori, Japan
| |
Collapse
|
7
|
Javid Moghadam M, Maktabi S, Zarei M, Mahmoodi P. Controlling Staphylococcus aureus biofilm on food contact surfaces: the efficacy of Oliveria decumbens essential oil and its implications on biofilm-related genes. J Appl Microbiol 2024; 135:lxae187. [PMID: 39054303 DOI: 10.1093/jambio/lxae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
AIMS This study aimed to investigate the effect of Oliveria decumbens essential oil (Od-EO) on the phenotypic properties and gene expression of Staphylococcus aureus biofilm on commonly used food contact surfaces. METHODS AND RESULTS The minimum inhibitory concentration and minimum bactericidal concentration of Od-EO on S. aureus ATCC25923 were determined to be 0.5 and 1 µl/ml, respectively. Crystal violet staining, scanning electron microscopy (SEM), biofilm metabolic activity evaluation, and real-time PCR analysis were used to assess the anti-biofilm properties of Od-EO. The results demonstrated that Od-EO exhibited significant anti-biofilm properties against S. aureus and effectively reduced the metabolic activity of biofilm cells. Furthermore, the inhibitory effects of Od-EO on biofilm formation were more pronounced on stainless steel (SS) compared to high-density polyethylene (HDPE) surfaces. Real-time PCR analysis revealed that Od-EO downregulated the expression of biofilm-related genes (icaA, icaD, clfA, clfB, FnbA, FnbB, and hld) in S. aureus grown on SS, while the expression levels of all studied genes except hld in the biofilm formed on HDPE remained unchanged or increased. CONCLUSIONS One of the main anti-biofilm mechanisms of the Od-EO on the HDPE is related to the disturbance in the QS of the cells. These findings highlight the potential of Od-EO as an effective agent for controlling and inhibiting S. aureus biofilm in the food industry and its potential use in disinfectant compounds.
Collapse
Affiliation(s)
- Mahshad Javid Moghadam
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61355-145, Iran
| | - Siavash Maktabi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61355-145, Iran
| | - Mehdi Zarei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61355-145, Iran
| | - Pezhman Mahmoodi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamadan 6517658978, Iran
| |
Collapse
|
8
|
Liu YH, Wang FL, Ren XL, Li CK, Jin LH, Zhou X. Synthesis, Structural Characterization, and Biological Activities of 1,3,4- Thiadiazole Derivatives Containing Sulfonylpiperazine Structures. Chem Biodivers 2024; 21:e202400408. [PMID: 38441384 DOI: 10.1002/cbdv.202400408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 06/19/2024]
Abstract
To develop novel bacterial biofilm inhibiting agents, a series of 1,3,4-thiadiazole derivatives containing sulfonylpiperazine structures were designed, synthesized, and characterized using 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), and high-resolution mass spectrometry. Meanwhile, their biological activities were evaluated, and the ensuing structure-activity relationships were discussed. The bioassay results showed the substantial antimicrobial efficacy exhibited by most of the compounds. Among them, compound A24 demonstrated a strong efficacy with an EC50 value of 7.8 μg/mL in vitro against the Xanthomonas oryzae pv. oryzicola (Xoc) pathogen, surpassing commercial agents thiodiazole copper (31.8 μg/mL) and bismerthiazol (43.3 μg/mL). Mechanistic investigations into its anti-Xoc properties revealed that compound A24 operates by increasing the permeability of bacterial cell membranes, inhibiting biofilm formation and cell motility, and inducing morphological changes in bacterial cells. Importantly, in vivo tests showed its excellent protective and curative effects on rice bacterial leaf streak. Besides, molecular docking showed that the hydrophobic effect and hydrogen-bond interactions are key factors between the binding of A24 and AvrRxo1-ORF1. Therefore, these results suggest the utilization of 1,3,4-thiadiazole derivatives containing sulfonylpiperazine structures as a bacterial biofilm inhibiting agent, warranting further exploration in the realm of agrochemical development.
Collapse
Affiliation(s)
- You-Hua Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Fa-Li Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xiao-Li Ren
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Chang-Kun Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Lin-Hong Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xia Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
9
|
Kosmeri C, Giapros V, Serbis A, Balomenou F, Baltogianni M. Antibiofilm Strategies in Neonatal and Pediatric Infections. Antibiotics (Basel) 2024; 13:509. [PMID: 38927176 PMCID: PMC11200539 DOI: 10.3390/antibiotics13060509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Biofilm-related infections pose significant challenges in neonatal and pediatric care, contributing to increased morbidity and mortality rates. These complex microbial communities, comprising bacteria and fungi, exhibit resilience against antibiotics and host immune responses. Bacterial species such as Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis commonly form biofilms on medical devices, exacerbating infection risks. Neonates and children, particularly those in intensive care units, are highly susceptible to biofilm-associated infections due to the prolonged use of invasive devices, such as central lines and endotracheal tubes. Enteral feeding tubes, crucial for neonatal nutritional support, also serve as potential sites for biofilm formation, contributing to recurrent microbial contamination. Moreover, Candida species, including Candida pelliculosa, present emerging challenges in neonatal care, with multi-drug resistant strains posing treatment complexities. Current antimicrobial therapies, while important in managing infections, often fall short in eradicating biofilms, necessitating alternative strategies. The aim of this review is to summarize current knowledge regarding antibiofilm strategies in neonates and in children. Novel approaches focusing on biofilm inhibition and dispersal show promise, including surface modifications, matrix-degrading enzymes, and quorum-sensing inhibitors. Prudent use of medical devices and exploration of innovative antibiofilm therapies are imperative in mitigating neonatal and pediatric biofilm infections.
Collapse
Affiliation(s)
- Chrysoula Kosmeri
- Department of Pediatrics, University Hospital of Ioannina, 45500 Ioannina, Greece; (C.K.); (A.S.)
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.B.); (M.B.)
| | - Anastasios Serbis
- Department of Pediatrics, University Hospital of Ioannina, 45500 Ioannina, Greece; (C.K.); (A.S.)
| | - Foteini Balomenou
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.B.); (M.B.)
| | - Maria Baltogianni
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.B.); (M.B.)
| |
Collapse
|
10
|
Li Z, Lu S, Liu W, Chen Z, Huang Y, Li X, Gong J, Chen X. Customized Lanthanide Nanobiohybrids for Noninvasive Precise Phototheranostics of Pulmonary Biofilm Infection. ACS NANO 2024; 18:11837-11848. [PMID: 38654614 DOI: 10.1021/acsnano.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A noninvasive strategy for in situ diagnosis and precise treatment of bacterial biofilm infections is highly anticipated but still a great challenge. Currently, no in vivo biofilm-targeted theranostic agent is available. Herein, we fabricated intelligent theranostic alginate lyase (Aly)-NaNdF4 nanohybrids with a 220 nm sunflower-like structure (NaNdF4@DMS-Aly) through an enrichment-encapsulating strategy, which exhibited excellent photothermal conversion efficiency and the second near-infrared (NIR-II) luminescence. Benefiting from the site-specific targeting and biofilm-responsive Aly release from NaNdF4@DMS-Aly, we not only enabled noninvasive diagnosis but also realized Aly-photothermal synergistic therapy and real-time evaluation of therapeutic effect in mice models with Pseudomonas aeruginosa biofilm-induced pulmonary infection. Furthermore, such nanobiohybrids with a sheddable siliceous shell are capable of delaying the NaNdF4 dissolution and biodegradation upon accomplishing the therapy, which is highly beneficial for the biosafety of theranostic agents.
Collapse
Affiliation(s)
- Zhuo Li
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Lu
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Wenzhen Liu
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunmei Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Xingjun Li
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Gong
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Xueyuan Chen
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| |
Collapse
|
11
|
Fu YJ, Zhao X, Wang LY, Li K, Jiang N, Zhang ST, Wang RK, Zhao YF, Yang W. A Gas Therapy Strategy for Intestinal Flora Regulation and Colitis Treatment by Nanogel-Based Multistage NO Delivery Microcapsules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309972. [PMID: 38324725 DOI: 10.1002/adma.202309972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Current approaches to treating inflammatory bowel disease focus on the suppression of overactive immune responses, the removal of reactive intestinal oxygen species, and regulation of the intestinal flora. However, owing to the complex structure of the gastrointestinal tract and the influence of mucus, current small-molecule and biologic-based drugs for treating colitis cannot effectively act at the site of colon inflammation, and as a result, they tend to exhibit low efficacies and toxic side effects. In this study, nanogel-based multistage NO delivery microcapsules are developed to achieve NO release at the inflammation site by targeting the inflammatory tissues using the nanogel. Surprisingly, oral administration of the microcapsules suppresses the growth of pathogenic bacteria and increases the abundance of probiotic bacteria. Metabolomics further show that an increased abundance of intestinal probiotics promotes the production of metabolites, including short-chain fatty acids and indole derivatives, which modulate the intestinal immunity and restore the intestinal barrier via the interleukin-17 and PI3K-Akt signaling pathways. This work reveals that the developed gas therapy strategy based on multistage NO delivery microcapsules modulates the intestinal microbial balance, thereby reducing inflammation and promoting intestinal barrier repair, ultimately providing a new therapeutic approach for the clinical management of colitis.
Collapse
Affiliation(s)
- Ya-Jun Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xing Zhao
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Li-Ya Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Kai Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Niu Jiang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Shu-Ting Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rao-Kaijuan Wang
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610032, China
| | - Yi-Fan Zhao
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610032, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
12
|
Hibbert T, Krpetic Z, Latimer J, Leighton H, McHugh R, Pottenger S, Wragg C, James CE. Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Adv Microb Physiol 2024; 84:135-241. [PMID: 38821632 DOI: 10.1016/bs.ampbs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ninety-five years after Fleming's discovery of penicillin, a bounty of antibiotic compounds have been discovered, modified, or synthesised. Diversification of target sites, improved stability and altered activity spectra have enabled continued antibiotic efficacy, but overwhelming reliance and misuse has fuelled the global spread of antimicrobial resistance (AMR). An estimated 1.27 million deaths were attributable to antibiotic resistant bacteria in 2019, representing a major threat to modern medicine. Although antibiotics remain at the heart of strategies for treatment and control of bacterial diseases, the threat of AMR has reached catastrophic proportions urgently calling for fresh innovation. The last decade has been peppered with ground-breaking developments in genome sequencing, high throughput screening technologies and machine learning. These advances have opened new doors for bioprospecting for novel antimicrobials. They have also enabled more thorough exploration of complex and polymicrobial infections and interactions with the healthy microbiome. Using models of infection that more closely resemble the infection state in vivo, we are now beginning to measure the impacts of antimicrobial therapy on host/microbiota/pathogen interactions. However new approaches are needed for developing and standardising appropriate methods to measure efficacy of novel antimicrobial combinations in these contexts. A battery of promising new antimicrobials is now in various stages of development including co-administered inhibitors, phages, nanoparticles, immunotherapy, anti-biofilm and anti-virulence agents. These novel therapeutics need multidisciplinary collaboration and new ways of thinking to bring them into large scale clinical use.
Collapse
Affiliation(s)
- Tegan Hibbert
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Zeljka Krpetic
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Joe Latimer
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Rebecca McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Charlotte Wragg
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Chloë E James
- School of Science, Engineering, and Environment, University of Salford, Salford, UK.
| |
Collapse
|
13
|
Gattu R, Ramesh SS, Ramesh S. Role of small molecules and nanoparticles in effective inhibition of microbial biofilms: A ray of hope in combating microbial resistance. Microb Pathog 2024; 188:106543. [PMID: 38219923 DOI: 10.1016/j.micpath.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Microbial biofilms pose a severe threat to global health, as they are associated with deadly chronic infections and antibiotic resistance. To date, very few drugs are in clinical practice that specifically target microbial biofilms. Therefore, there is an urgent need for the development of novel therapeutic options targeting biofilm-related infections. In this review, we discuss nearly seventy-five different molecular scaffolds published over the last decade (2010-2023) which have exhibited their biofilm inhibition potential. For convenience, we have classified these into five different sub-groups based on their origin and design (excluding peptides as they are placed in between small molecules and biologics), namely, heterocycles; inorganic small molecules & metal complexes; small molecules decorated nanoparticles; small molecules derived from natural products (both plant and marine sources); and small molecules designed by in-silico approach. These antibiofilm agents are capable of disrupting microbial biofilms and can offer a promising avenue for future developments in human medicine. A hitherto review of this kind will lay a platform for the researchers to find new molecular entities to curb the serious menace of antimicrobial resistance especially caused by biofilms.
Collapse
Affiliation(s)
- Rohith Gattu
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India
| | - Sanjay S Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India
| | - Suhas Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India.
| |
Collapse
|
14
|
Bakhti A, Shokouhi Z, Mohammadipanah F. Modulation of proteins by rare earth elements as a biotechnological tool. Int J Biol Macromol 2024; 258:129072. [PMID: 38163500 DOI: 10.1016/j.ijbiomac.2023.129072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Although rare earth element (REE) complexes are often utilized in bioimaging due to their photo- and redox stability, magnetic and optical characteristics, they are also applied for pharmaceutical applications due to their interaction with macromolecules namely proteins. The possible implications induced by REEs through modification in the function or regulatory activity of the proteins trigger a variety of applications for these elements in biomedicine and biotechnology. Lanthanide complexes have particularly been applied as anti-biofilm agents, cancer inhibitors, potential inflammation inhibitors, metabolic elicitors, and helper agents in the cultivation of unculturable strains, drug delivery, tissue engineering, photodynamic, and radiation therapy. This paper overviews emerging applications of REEs in biotechnology, especially in biomedical imaging, tumor diagnosis, and treatment along with their potential toxic effects. Although significant advances in applying REEs have been made, there is a lack of comprehensive studies to identify the potential of all REEs in biotechnology since only four elements, Eu, Ce, Gd, and La, among 17 REEs have been mostly investigated. However, in depth research on ecotoxicology, environmental behavior, and biological functions of REEs in the health and disease status of living organisms is required to fill the vital gaps in our understanding of REEs applications.
Collapse
Affiliation(s)
- Azam Bakhti
- Department of Microbial Biotechnology, Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Zahra Shokouhi
- Department of Microbial Biotechnology, Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| |
Collapse
|
15
|
Chen P, Chen M, Peng C, Yan J, Shen X, Zhang W, Yuan Y, Gan G, Luo X, Zhu W, Yao M. In vitro anti-bactrical activity and its preliminary mechanism of action of the non-medicinal parts of Sanguisorba officinalis L. against Helicobacter pylori infection. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116981. [PMID: 37574016 DOI: 10.1016/j.jep.2023.116981] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanguisorba officinalis L. (S. officinalis L.), known as Di Yu (DY) in Traditional Chinese Medicine (TCM), are used to treat burns, vomiting of blood, asthma, intestinal infections, and dermatitis. It has been reported that the root of DY has a significant inhibitory effect on Helicobacter pylori (H. pylori). However, there is currently little research on the composition analysis and anti-H. pylori infection properties of the non-medicinal parts of DY, such as its stems, leaves, and flowers. AIM OF STUDY The commonly used eradication therapies for H. pylori infection are antibiotic-based therapies. With the increasing antibiotic resistance of H. pylori, it is urgent to find effective alternative therapies. To find alternative therapies and increase the utilization of DY, this study aims to investigate the phytochemistry profile, in vitro anti-H. pylori activity, and preliminary antibacterial mechanism of the non-medicinal parts of DY. MATERIALS AND METHODS The non-medicinal parts of DY extracts were obtained by using hot water reflux method. The chemical composition of these extracts was analyzed using colorimetric method, high-performance liquid chromatography (HPLC), and ultra-high-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS). The in vitro anti-H. pylori activity was investigated using broth microdilution method, checkerboard dilution method, time-kill curve, time-inhibition curve, scanning electron microscopy, and transmission electron microscopy. Transcriptional sequencing technology was used to study the effect of DY stems and flowers on the gene expression of H. pylori and explore possible antibacterial mechanisms. RESULTS The non-medicinal parts of DY contain abundant phytochemicals, such as total phenols and total flavonoids, and possess strong inhibitory and bactericidal activity against both standard and clinical strains of H. pylori in vitro. The MIC was 80-1280 μg/mL and the MBC was 80-2560 μg/mL, and the strength of the antibacterial effects was dependent on the concentration of phytochemicals (total polyphenols, gallic acid and ellagic acid). In addition, the combination of non-medicinal parts of DY with antibiotics, such as amoxicillin, metronidazole, levofloxacin, and clarithromycin, did not result in any antagonistic effects. All of them could disrupt the morphology, internal microscopic and cell wall structures of H. pylori thereby acting as an inhibitor. The mechanism of action was found to be the disruption of H. pylori morphology, internal microstructure, and cell wall. Transcriptomic analysis showed that the non-medicinal parts of DY significantly regulated the gene expression of H. pylori, especially the metabolic pathway. CONCLUSIONS This study analyzed the chemical composition of the non-medicinal parts of DY and confirmed its inhibitory and bactericidal activities against H. pylori, both standard and clinical strains. Additional, the mechanism of inhibition involves disrupting the structure of H. pylori cells, altering gene expression, and interfering with bacterial metabolic pathways. This study provides a reference for further resource utilization and the development of H. pylori drugs using the non-medicinal parts of DY.
Collapse
Affiliation(s)
- Pengting Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Meiyun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Jiahui Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xue Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Weijia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yuemei Yuan
- School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai 519080, China.
| | - Guoxing Gan
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan 511500, China.
| | - Xiaojun Luo
- Lianzhou Hospital of Traditional Chinese Medicine, Qingyuan 513400, China.
| | - Weixing Zhu
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan 511500, China.
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
16
|
Wang H, Liu Y, Bai C, Leung SSY. Translating bacteriophage-derived depolymerases into antibacterial therapeutics: Challenges and prospects. Acta Pharm Sin B 2024; 14:155-169. [PMID: 38239242 PMCID: PMC10792971 DOI: 10.1016/j.apsb.2023.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 07/22/2023] [Indexed: 01/22/2024] Open
Abstract
Predatory bacteriophages have evolved a vast array of depolymerases for bacteria capture and deprotection. These depolymerases are enzymes responsible for degrading diverse bacterial surface carbohydrates. They are exploited as antibiofilm agents and antimicrobial adjuvants while rarely inducing bacterial resistance, making them an invaluable asset in the era of antibiotic resistance. Numerous depolymerases have been investigated preclinically, with evidence indicating that depolymerases with appropriate dose regimens can safely and effectively combat different multidrug-resistant pathogens in animal infection models. Additionally, some formulation approaches have been developed for improved stability and activity of depolymerases. However, depolymerase formulation is limited to liquid dosage form and remains in its infancy, posing a significant hurdle to their clinical translation, compounded by challenges in their applicability and manufacturing. Future development must address these obstacles for clinical utility. Here, after unravelling the history, diversity, and therapeutic use of depolymerases, we summarized the preclinical efficacy and existing formulation findings of recombinant depolymerases. Finally, the challenges and perspectives of depolymerases as therapeutics for humans were assessed to provide insights for their further development.
Collapse
Affiliation(s)
- Honglan Wang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yannan Liu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Changqing Bai
- Department of Respiratory, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Guangdong 518055, China
| | | |
Collapse
|
17
|
Hassan RM, Abd El-Maksoud MS, Ghannam IAY, El-Azzouny AAS, Aboul-Enein MN. Synthetic non-toxic anti-biofilm agents as a strategy in combating bacterial resistance. Eur J Med Chem 2023; 262:115867. [PMID: 37866335 DOI: 10.1016/j.ejmech.2023.115867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
The tremendous increase in the bacterial resistance to the available antibiotics is a serious problem for the treatment of various infections. Biofilm formation in bacteria significantly contributes to the bacterial survival in host cells, and is considered as an crucial factor, responsible for bacterial resistance. The response of the bacterial cells in the biofilm to antibiotics is completely different from that of the free floating planktonic cells of the same strain. The anti-biofilm agents that could inhibit the biofilm production without affecting the bacterial growth, apply less selective pressure over the bacterial strains than the traditional antibiotics; thus the development of bacterial resistance would be of low incidence. Many attempts have been performed to discover novel agents capable of interfering with the bacterial biofilm life cycle, and several compounds have shown promising activities in suppressing the biofilm production or in dispersing mature existing biofilms. This review describes the different chemical classes that have anti-biofilm effects against different Gram-positive and Gram-negative bacteria without affecting the bacterial growth.
Collapse
Affiliation(s)
- Rasha Mohamed Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt.
| | - Mohamed Samir Abd El-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Iman Ahmed Youssef Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Aida Abdel-Sattar El-Azzouny
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohamed Nabil Aboul-Enein
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt.
| |
Collapse
|
18
|
Sun X, Pu B, Qin J, Xiang J. Effect of a Depolymerase Encoded by Phage168 on a Carbapenem-Resistant Klebsiella pneumoniae and Its Biofilm. Pathogens 2023; 12:1396. [PMID: 38133282 PMCID: PMC10745733 DOI: 10.3390/pathogens12121396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) are becoming increasingly common within clinical settings, requiring the development of alternative therapies. In this study, we isolated, characterized, and sequenced the genome of a CRKP phage, Phage168. The total genomic DNA of Phage168 was 40,222 bp in length, encoding 49 predicted proteins. Among these proteins, Dep40, the gene product of ORF40, is a putative tail fiber protein that exhibits depolymerase activity based on the result of bioinformatics analyses. In vitro, we confirmed that the molecular weight of the Phage168 depolymerase protein was about 110 kDa, the concentration of the produced phage 168 depolymerase protein was quantified as being 1.2 mg/mL, and the depolymerase activity was still detectable after the dilution of 1.2 µg/mL. This recombinant depolymerase exhibited enzyme activity during the depolymerization of the formed CRKP biofilms. We also found that depolymerase, when combined with polymyxin B, was able to enhance the bactericidal effect of polymyxin B on CRKP strains by disrupting their biofilm. When recombinant depolymerase was used in combination with human serum, it enhanced the sensitivity of the CRKP strain UA168 to human serum, and the synergistic bactericidal effect reached the strongest level when the ratio of depolymerase to human serum was 3:1. Our results indicated that depolymerase encoded by Phage168 may be a promising strategy for combating infections caused by drug-resistant CRKP formed within the biofilm.
Collapse
Affiliation(s)
- Xu Sun
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Bingchun Pu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (B.P.); (J.Q.)
| | - Jinhong Qin
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (B.P.); (J.Q.)
| | - Jun Xiang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
19
|
Yavari S, Olaifa K, Shafiee D, Rasuli R, Shafiee M. Molybdenum oxide nanotube caps decorated with ultrafine Ag nanoparticles: Synthesis and antimicrobial activity. Int J Pharm 2023; 647:123528. [PMID: 37863449 DOI: 10.1016/j.ijpharm.2023.123528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
In the contemporary era, microorganisms, spanning bacteria and viruses, are increasingly acknowledged as emerging contaminants in the environment, presenting significant risks to public health. Nevertheless, conventional methods for disinfecting these microorganisms are often ineffective. Additionally, they come with disadvantages such as high energy usage, negative environmental consequences, increased expenses, and the generation of harmful byproducts. The development of next-generation antifungal and antibacterial agents is dependent on newly synthesized nanomaterials with inherent antimicrobial behavior. In this study, we report an arc-discharge method to synthesize MoOx nanosheets and microbelts, followed by decorating them with ultrafine Ag nanoparticles (NPs). Scanning and transmission electron microscopies show that Ag NPs formation on the Molybdenum oxide nanostructures rolls them into nanotube caps (NTCs), revealing inner and outer diameters of approximately 19.8 nm and 105.5 nm, respectively. Additionally, the Ag NPs are ultrafine, with sizes in the range of 5-8 nm. Results show that the prepared NTCs exhibit dose-dependent sensitivity to both planktonic and biofilm cells of Escherichia coli and Candida albicans. The anti-biofilm activity in terms of biofilm inhibition ranged from 19.7 to 77.2% and 11.3-82.3%, while removal of more than 70% and 90% of preformed biofilms was achieved for E. coli and C. albicans, respectively, showing good potential for antimicrobial coating. Initial MoOx exhibits positive potential, while Ag-decorated Molybdenum oxide NTCs show dual potential effects (positive for Molybdenum oxide NTCs and negative for Ag NPs. Molybdenum oxide NTCs, with their strong positive potential, efficiently attract microbes due to their negatively charged cell surfaces, facilitating the antimicrobial effect of Ag NPs, leading to cell damage and death. These findings suggest that the synthesized NPs could serve as a suitable coating for biomedical applications.
Collapse
Affiliation(s)
- Shabnam Yavari
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran; Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Kayode Olaifa
- Department of Biology, Nazarbayev Intellectual School of Biology and Chemistry, Aktau, Kazakhstan; Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Darya Shafiee
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Reza Rasuli
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran.
| | - Mehdi Shafiee
- Energetic Cosmos Laboratory, Nazarbayev University, Astana 010000, Kazakhstan.
| |
Collapse
|
20
|
Wijaya M, Delicia D, Waturangi DE. Control of pathogenic bacteria using marine actinobacterial extract with antiquorum sensing and antibiofilm activity. BMC Res Notes 2023; 16:305. [PMID: 37919800 PMCID: PMC10623884 DOI: 10.1186/s13104-023-06580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVE The objectives of this research were to screen the anti-quorum sensing and antibiofilm activity of marine actinobacteria, isolated from several aquatic environments in Indonesia against several pathogenic bacteria, such as Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Vibrio cholerae, Salmonella Typhimurium, and Pseudomonas aeruginosa. RESULTS Ten out of 40 actinobacteria were found to have anti-quorum sensing activity against wild-type Chromobacterium violaceum (ATCC 12472); however, the validation assay showed that only eight of 10 significantly inhibited the quorum sensing system of Chromobacterium violaceum CV026. The crude actinobacteria extracts inhibited and disrupted biofilm formation produced by pathogens. The highest antibiofilm inhibition was discovered in isolates 11AC (90%), 1AC (90%), CW17 (84%), TB12 (94%), 20PM (85%), CW01 (93%) against Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Vibrio cholerae, Salmonella Typhimurium, and Pseudomonas aeruginosa, respectively. The highest biofilm destruction activity was observed for isolate 1AC (77%), 20PM (85%), 16PM (72%), CW01 (73%), 18PM (82%), 16PM (63%) against Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Vibrio cholerae, Salmonella Typhimurium, and Pseudomonas aeruginosa, respectively. Actinobacteria isolates demonstrated promising anti-quorum and/or antibiofilm activity, interfering with the biofilm formation of tested pathogens. Appropriate formulations of these extracts could be developed as effective disinfectants, eradicating biofilms in many industries.
Collapse
Affiliation(s)
- Marco Wijaya
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta, 12930, Indonesia
| | - Dea Delicia
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta, 12930, Indonesia
| | - Diana Elizabeth Waturangi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta, 12930, Indonesia.
| |
Collapse
|
21
|
Castro VDP, Thomaz DY, Vieira KDL, Lopes LG, Rossi F, Del Negro GMB, Benard G, Pires RH. In vitro activity of sanitizers against mono- and polymicrobial biofilms of C. parapsilosis and S. aureus. Antimicrob Agents Chemother 2023; 67:e0053423. [PMID: 37681981 PMCID: PMC10583669 DOI: 10.1128/aac.00534-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/07/2023] [Indexed: 09/09/2023] Open
Abstract
The emergence of disinfectant-resistant microorganisms poses a significant threat to public health. These resilient pathogens can survive and thrive in hospital settings despite routine disinfection practices, leading to persistent infections and the potential for outbreaks. In this study, we investigated the impact of 11 different commercial sanitizers at various concentrations and exposure times on biofilms consisting of clinical and nosocomial environmental isolates of Candida parapsilosis and Staphylococcus aureus. Among the sanitizers tested, 0.5% and 2.0% chlorhexidine (CLX), 10% polyvinyl pyrrolidone (PVP-I), a disinfectant based on quaternary ammonium compound (QAC), 2% glutaraldehyde, and 0.55% orthophthalaldehyde (OPA) demonstrated efficacy against both C. parapsilosis and S. aureus in monospecies and mixed biofilms. Analysis showed that 0.5% CLX and 10% PVP-I had fungicidal and bactericidal activity against all biofilms. However, the sanitizer based on QAC and 0.55% OPA proved to be bacteriostatic and fungicidal against both monospecies and mixed biofilms. In mixed biofilms, despite the last four sanitizers exerting fungicidal action, the reduction of fungal cells was approximately 4 log10 CFU/mL compared to monospecies biofilms, showing that the interaction provided more resistance of the yeast to the sanitizer. Formation of mixed biofilms in hospital settings can create an ecological niche that enhances the survival of pathogens against routine sanitization procedures. Therefore, effective sanitization practices, including regular cleaning with effective sanitizers, should be implemented to prevent C. parapsilosis/S. aureus biofilm formation in healthcare settings.
Collapse
Affiliation(s)
- Vitor de Paula Castro
- Laboratory of Mycology and Environmental Diagnosis, Universidade de Franca, Franca, São Paulo, Brazil
| | - Danilo Yamamoto Thomaz
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Kayro de Lima Vieira
- Laboratory of Mycology and Environmental Diagnosis, Universidade de Franca, Franca, São Paulo, Brazil
| | - Leonardo Guedes Lopes
- Laboratory of Mycology and Environmental Diagnosis, Universidade de Franca, Franca, São Paulo, Brazil
| | - Flavia Rossi
- Central Laboratory Division (LIM 03) – Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Gilda M. B. Del Negro
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Gil Benard
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Regina Helena Pires
- Laboratory of Mycology and Environmental Diagnosis, Universidade de Franca, Franca, São Paulo, Brazil
| |
Collapse
|
22
|
Debroy R, Ramaiah S. Consolidated knowledge-guided computational pipeline for therapeutic intervention against bacterial biofilms - a review. BIOFOULING 2023; 39:928-947. [PMID: 38108207 DOI: 10.1080/08927014.2023.2294763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Biofilm-associated bacterial infections attributed to multifactorial antimicrobial resistance have caused worldwide challenges in formulating successful treatment strategies. In search of accelerated yet cost-effective therapeutics, several researchers have opted for bioinformatics-based protocols to systemize targeted therapies against biofilm-producing strains. The present review investigated the up-to-date computational databases and servers dedicated to anti-biofilm research to design/screen novel biofilm inhibitors (antimicrobial peptides/phytocompounds/synthetic compounds) and predict their biofilm-inhibition efficacy. Scrutinizing the contemporary in silico methods, a consolidated approach has been highlighted, referred to as a knowledge-guided computational pipeline for biofilm-targeted therapy. The proposed pipeline has amalgamated prominently employed methodologies in genomics, transcriptomics, interactomics and proteomics to identify potential target proteins and their complementary anti-biofilm compounds for effective functional inhibition of biofilm-linked pathways. This review can pave the way for new portals to formulate successful therapeutic interventions against biofilm-producing pathogens.
Collapse
Affiliation(s)
- Reetika Debroy
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Bio-Medical Sciences, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Bio-Sciences, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
23
|
Kalia VC, Patel SKS, Lee JK. Bacterial biofilm inhibitors: An overview. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115389. [PMID: 37634478 DOI: 10.1016/j.ecoenv.2023.115389] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Bacteria that cause infectious diseases adopt biofilms as one of their most prevalent lifestyles. Biofilms enable bacteria to tolerate environmental stress and evade antibacterial agents. This bacterial defense mechanism has rendered the use of antibiotics ineffective for the treatment of infectious diseases. However, many highly drug-resistant microbes have rapidly emerged owing to such treatments. Different signaling mechanisms regulate bacterial biofilm formation, including cyclic dinucleotide (c-di-GMP), small non-coding RNAs, and quorum sensing (QS). A cell density-dependent phenomenon, QS is associated with c-di-GMP (a global messenger), which regulates gene expression related to adhesion, extracellular matrix production, the transition from the planktonic to biofilm stage, stability, pathogenicity, virulence, and acquisition of nutrients. The article aims to provide information on inhibiting biofilm formation and disintegrating mature/preformed biofilms. This treatment enables antimicrobials to target the free-living/exposed bacterial cells at lower concentrations than those needed to treat bacteria within the biofilm. Therefore, a complementary action of antibiofilm and antimicrobial agents can be a robust strategic approach to dealing with infectious diseases. Taken together, these molecules have broad implications for human health.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
24
|
Konaklieva MI, Plotkin BJ. Utilization of Existing Human Kinase Inhibitors as Scaffolds in the Development of New Antimicrobials. Antibiotics (Basel) 2023; 12:1418. [PMID: 37760715 PMCID: PMC10525673 DOI: 10.3390/antibiotics12091418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The prevalence and continuing expansion of drug resistance, both in clinical and community settings represents a major challenge for current antimicrobial therapy. The different approaches for addressing this challenge include (1) identification of novel antibacterials by repurposing of existing drugs originally that historically target host proteins; and (2) effect target switching through modification of existing antimicrobials. The focus of this manuscript is on these drug discovery strategies, with utility for development of new antimicrobials with different modes of action.
Collapse
Affiliation(s)
| | - Balbina J. Plotkin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA;
| |
Collapse
|
25
|
Khan NA, Amorim FG, Dunbar JP, Leonard D, Redureau D, Quinton L, Dugon MM, Boyd A. Inhibition of bacterial biofilms by the snake venom proteome. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 39:e00810. [PMID: 37559690 PMCID: PMC10407894 DOI: 10.1016/j.btre.2023.e00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Snake venoms possess a range of pharmacological and toxicological activities. Here we evaluated the antibacterial and anti-biofilm activity against methicillin-susceptible and methicillin-resistant Staphylococcus aureus (MSSA and MRSA) of venoms from the Samar spitting cobra Naja samarensis and the Puff adder Bitis arietans. Both venoms prevented biofilm production by pathogenic S. aureus in a growth-independent manner, with the B. arietans venom being most potent. Fractionation showed the active molecule to be heat-labile and >10 kDa in size. Proteomic profiles of N. samarensis venom revealed neurotoxins and cytotoxins, as well as an abundance of serine proteases and three-finger toxins, while serine proteases, metalloproteinases and C-lectin types were abundant in B. arietans venom. These enzymes may have evolved to prevent bacteria colonising the snake venom gland. From a biomedical biotechnology perspective, they have valuable potential for anti-virulence therapy to fight antibiotic resistant microbes.
Collapse
Affiliation(s)
- Neyaz A. Khan
- Pathogenic Mechanisms Research Group, School of Natural Sciences, University of Galway, Ireland
| | | | - John P. Dunbar
- Venom Systems & Proteomics Lab, School of Natural Sciences, Ryan Institute, University of Galway, Ireland
| | - Dayle Leonard
- Pathogenic Mechanisms Research Group, School of Natural Sciences, University of Galway, Ireland
- Venom Systems & Proteomics Lab, School of Natural Sciences, Ryan Institute, University of Galway, Ireland
| | - Damien Redureau
- Mass Spectrometry Laboratory, MolSys RU, University of Liège, Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys RU, University of Liège, Belgium
| | - Michel M. Dugon
- Venom Systems & Proteomics Lab, School of Natural Sciences, Ryan Institute, University of Galway, Ireland
| | - Aoife Boyd
- Pathogenic Mechanisms Research Group, School of Natural Sciences, University of Galway, Ireland
| |
Collapse
|
26
|
Kim J, Wang J, Ahn J. Combined antimicrobial effect of phage-derived endolysin and depolymerase against biofilm-forming Salmonella Typhimurium. BIOFOULING 2023; 39:763-774. [PMID: 37795651 DOI: 10.1080/08927014.2023.2265817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
This study was designed to evaluate the antimicrobial activity of phage-derived endolysin (LysPB32) and depolymerase (DpolP22) against planktonic and biofilm cells of Salmonella Typhimurium (STKCCM). Compared to the control, the numbers of STKCCM were reduced by 4.3 and 5.9 log, respectively, at LysPB32 and LysPB32 + DpolP22 in the presence of polymyxin B (PMB) after 48-h incubation at 37 °C. LysPB32 + DpolP22 decreased the relative fitness (0.8) and the cross-resistance of STKCCM to chloramphenicol (CHL), cephalothin (CEP), ciprofloxacin (CIP), and tetracycline (TET) in the presence of PMB. The MICtrt/MICcon ratios of CHL, CEP, CIP, PMB, and TET were between 0.25 and 0.50 for LysPB32 + DpolP22 in the presence of PMB. These results suggest that the application of phage-encoded enzymes with antibiotics can be a promising approach for controlling biofilm formation on medical and food-processing equipment. This is noteworthy in that the application of LysPB32 + DpolP22 could increase antibiotic susceptibility and decrease cross-resistance to other antibiotics.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
27
|
Canellas ALB, de Oliveira BFR, Nunes SDO, Malafaia CA, Amaral ACF, Simas DLR, Leal ICR, Laport MS. Delving into the Mechanisms of Sponge-Associated Enterobacter against Staphylococcal Biofilms. Molecules 2023; 28:4843. [PMID: 37375398 DOI: 10.3390/molecules28124843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Staphylococci are one of the most common causes of biofilm-related infections. Such infections are hard to treat with conventional antimicrobials, which often lead to bacterial resistance, thus being associated with higher mortality rates while imposing a heavy economic burden on the healthcare system. Investigating antibiofilm strategies is an area of interest in the fight against biofilm-associated infections. Previously, a cell-free supernatant from marine-sponge-associated Enterobacter sp. inhibited staphylococcal biofilm formation and dissociated the mature biofilm. This study aimed to identify the chemical components responsible for the antibiofilm activity of Enterobacter sp. Scanning electron microscopy confirmed that the aqueous extract at the concentration of 32 μg/mL could dissociate the mature biofilm. Liquid chromatography coupled with high-resolution mass spectrometry revealed seven potential compounds in the aqueous extract, including alkaloids, macrolides, steroids, and triterpenes. This study also suggests a possible mode of action on staphylococcal biofilms and supports the potential of sponge-derived Enterobacter as a source of antibiofilm compounds.
Collapse
Affiliation(s)
- Anna Luiza Bauer Canellas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24210-130, Brazil
| | - Suzanne de Oliveira Nunes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Camila Adão Malafaia
- Laboratório de Produtos Naturais e Ensaios Biológicos, DPNA, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ana Claudia F Amaral
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fiocruz, Rio de Janeiro 21041-250, Brazil
| | - Daniel Luiz Reis Simas
- Laboratório de Produtos Naturais e Ensaios Biológicos, DPNA, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Bio Assets Biotecnologia, São Paulo 05511-010, Brazil
| | - Ivana Correa Ramos Leal
- Laboratório de Produtos Naturais e Ensaios Biológicos, DPNA, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| |
Collapse
|
28
|
Vargová M, Zigo F, Výrostková J, Farkašová Z, Rehan IF. Biofilm-Producing Ability of Staphylococcus aureus Obtained from Surfaces and Milk of Mastitic Cows. Vet Sci 2023; 10:386. [PMID: 37368772 DOI: 10.3390/vetsci10060386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
This study was conducted to evaluate the incidence of mastitis in 153 dairy cows and to evaluate the kinetics of adhesion of isolates obtained from surfaces and milk in comparison with the reference strain (RS), CCM 4223. The surfaces of the floor, teat cup, and cow restraints were aseptically swabbed in three replicates (n = 27). Of the total number of infected cows (n = 43), 11 samples were found to be positive for Staphylococcus aureus, 12 samples tested positive for non-aureus staphylococci, 6 samples tested positive for Streptococcus spp., and 11 samples tested positive for other bacteria (Escherichia coli, Pseudomonas spp.) or a mixed infection. The most represented pathogen in milk (11/43) and on surfaces (14/27) was S. aureus. The kinetics of adhesion of the reference strain and isolates of S. aureus on stainless steel surfaces were determined after 3, 6, 9, 12, 24, and 48 h, and 3, 6, 9, 12, and 15 days of incubation. All strains reached counts higher than 5 Log10 CFU/cm2 needed for biofilm formation, except RS (4.40 Log10 CFU/cm2). The isolates of S. aureus revealed a higher capability to form biofilm in comparison with RS during the first 3 h (p < 0.001). Thus, there is a significant difference between the occurrence of S. aureus on monitored surfaces-floor, teat cup, and cow restraints-and the frequency with which mastitis is caused by S. aureus (p < 0.05). This finding raises the possibility that if various surfaces are contaminated by S. aureus, it can result in the formation of biofilm, which is a significant virulence factor.
Collapse
Affiliation(s)
- Mária Vargová
- Department of the Environment, Veterinary Legislation and Economy, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - František Zigo
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - Jana Výrostková
- Department of Food Hygiene, Technology, and Safety, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - Zuzana Farkašová
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - Ibrahim F Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom 32511, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku-Ku, Nagoya-Shi 468-8503, Japan
| |
Collapse
|
29
|
Lu H, Li Z, Elbaz A, Ni SQ. Synergistic action of phages and lytic proteins with antibiotics: a combination strategy to target bacteria and biofilms. BMC Microbiol 2023; 23:149. [PMID: 37221517 DOI: 10.1186/s12866-023-02881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Multidrug-resistant bacteria continue to emerge owing to the abuse of antibiotics and have a considerable negative impact on people and the environment. Bacteria can easily form biofilms to improve their survival, which reduces the efficacy of antibacterial drugs. Proteins such as endolysins and holins have been shown to have good antibacterial activity and effectively removal bacterial biofilms and reduce the production of drug-resistant bacteria. Recently, phages and their encoded lytic proteins have attracted attention as potential alternative antimicrobial agents. The aim of the present study was to investigate the sterilising efficacy of phages (SSE1, SGF2, and SGF3) and their encoded lytic proteins (lysozyme and holin), and to further explore their potential in combination with antibiotics. To the ultimate aim is to reduce or replace the use of antibiotics and provide more materials and options for sterilisation. RESULTS Phages and their encoded lytic proteins were confirmed to have great advantages in sterilisation, and all exhibited significant potential for reducing bacterial resistance. Previous studies on the host spectrum demonstrated the bactericidal efficacy of three Shigella phages (SSE1, SGF2, and SGF3) and two lytic proteins (LysSSE1 and HolSSE1). In this study, we investigated the bactericidal effects on planktonic bacteria and bacterial biofilms. A combined sterilisation application of antibiotics, phages, and lytic proteins was performed. The results showed that phages and lytic proteins had better sterilisation effects than antibiotics with 1/2 minimum inhibitory concentrations (MIC) and their effect was further improved when used together with antibiotics. The best synergy was shown when combined with β- lactam antibiotics, which might be related to their mechanism of sterilising action. This approach ensures a bactericidal effect at low antibiotic concentrations. CONCLUSIONS This study strengthens the idea that phages and lytic proteins can significantly sterilise bacteria in vitro and achieve synergistic sterilisation effects with specific antibiotics. Therefore, a suitable combination strategy may decrease the risk of drug resistance.
Collapse
Affiliation(s)
- Han Lu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China
| | - Zong Li
- College of Recourses and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Amro Elbaz
- Environmental Engineering Department, Zagazig University, Zagazig City, 44519, Egypt
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China.
| |
Collapse
|
30
|
Hwang HJ, Li DD, Lee J, Kang MK, Moon HR, Lee JH. Compounds That Have an Anti-Biofilm Effect against Common Bacteria at Very Low Concentrations and Their Antibiotic Combination Effect. Antibiotics (Basel) 2023; 12:antibiotics12050853. [PMID: 37237757 DOI: 10.3390/antibiotics12050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Two synthetic compounds, MHY1383, azo-resveratrol and MHY1387, 5-[4-hydroxy-3,5-methoxybenzy]-2-thioxodihydropyrimidine-4,6[1H,5H]-dione have been reported to have an anti-biofilm effect on Pseudomonas aeruginosa at very low concentrations (1-10 pM). Here, we investigated the anti-biofilm effects of these compounds in various bacteria. We found that MHY1383 significantly inhibited Escherichia coli, Bacillus subtilis, and Staphylococcus aureus biofilm formation at 1 pM, 1 nM, and 10 nM, respectively. MHY1387 also inhibited the biofilm formation of E. coli, B. subtilis, and S. aureus at 1 pM, 10 nM, and 100 pM, respectively. Both MHY1383 and MHY1387 showed medium-dependent anti-biofilm effects on Salmonella enterica at high concentrations (10 μM). We also tested the susceptibility to antibiotics by measuring the minimum inhibitory concentration (MIC) in various bacteria. When P. aeruginosa, E. coli, B. subtilis, S. enterica, and S. aureus were treated with MHY1383 or MHY1387 in combination with four different antibiotics, the MICs of carbenicillin against B. subtilis and S. aureus were lowered more than two-fold by the combination with MHY1387. However, in all other combinations, the MIC changed within two-fold. The results of this study suggest that MHY1383 and MHY1387 are effective anti-biofilm agents and can be used at very low concentrations against biofilms formed by various types of bacteria. We also suggest that even if a substance that inhibits biofilm is used together with antibiotics, it does not necessarily have the effect of lowering the MIC of the antibiotics.
Collapse
Affiliation(s)
- Hyeon-Ji Hwang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Dan-Dan Li
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Jieun Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Min Kyung Kang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Joon-Hee Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
31
|
Cen X, Liu B, Zhang G, Liu H, Yao G, He M, Liu W. Molecular identification of a novel antimicrobial peptide in giant Triton snail Charonia tritonis: mRNA profiles for tissues and its potential antibacterial activity. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108734. [PMID: 37028689 DOI: 10.1016/j.fsi.2023.108734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Antimicrobial peptides (AMPs) play an important role in innate immunity against microorganisms. AMPs is an effective antibacterial agent, and the chances of causing pathogens to develop is very low. However, there is little information about AMPs in the giant Triton snail Charonia tritonis. In this research, an antimicrobial peptide gene (termed Ct-20534) was identified in C. tritonis. The open reading frame of Ct-20534 is 381 bp in size and it encodes a basic peptide precursor containing 126 amino acids. Ct-20534 gene was found to be expressed in all five tissues examined by real-time fluorescence quantitative PCR (qPCR), but the highest expression was found in the proboscis. This is the first report that antibacterial peptides have been found in C. tritonis, and it has been proved that Ct-20534 has antibacterial activity against Gram-positive bacteria and Gram-negative bacteria, among which the activity of Staphylococcus aureus is most significantly inhibited, this suggests that the newly discovered antimicrobial peptides in C. tritonis may play an important role in the immune system and bacterial resistance of C. tritonis. This study presents the discovery of a newly identified antibacterial peptide from C. tritonis, with its structural properties fully characterized and potent antibacterial activity confirmed. The results provide essential fundamental data for the development of preventive and therapeutic measures against aquatic animal diseases, which in turn can promote the sustainable and stable growth of the aquaculture industry and create economic benefits. Additionally, this research lays the foundation for future development of novel anti-infective drugs.
Collapse
Affiliation(s)
- Xitong Cen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gege Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiru Liu
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Department of Fishery Sciences, Tianjin Agricultural University, Tianjin, 300384, China
| | - Gaoyou Yao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, China
| | - Wenguang Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, China.
| |
Collapse
|
32
|
Wang H, Ge Q, Shao X, Wei Y, Zhang X, Wang H, Xu F. Influences of flavonoids from Sedum aizoon L. on biofilm formation of Pseudomonas fragi. Appl Microbiol Biotechnol 2023; 107:3687-3697. [PMID: 37079063 DOI: 10.1007/s00253-023-12526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
Pseudomonas fragi (P. fragi) is one of the main categories of bacteria responsible for the spoilage of chilled meat. In the processing and preservation of chilled meat, it is easy to form biofilms on the meat, leading to the development of slime on the meat, which becomes a major quality defect. Flavonoids, as one of the critical components of secondary plant metabolites, are receiving increasing attention for their antibacterial activity. Flavonoids in Sedum aizoon L. (FSAL), relying on its prominent antibacterial activity, are of research importance in food preservation and other applications. This article aims to investigate the effect of FSAL on the biofilm formation of P. fragi, to better apply FSAL to the processing and preservation of meat products. The disruption of cellular structure and aggregation properties by FSAL was demonstrated by the observation of the cellular state within the biofilm. The amount of biofilm formation was determined by crystal violet staining, and the content of polysaccharides and proteins in the extracellular wrapped material was determined. It was shown that the experimental concentrations of FSAL (1.0 MIC) was able to inhibit biofilm formation and reduce the main components in the extracellular secretion. The swimming motility assay and the downregulation of flagellin-related genes confirmed that FSAL reduced cell motility and adhesion. The downregulation of cell division genes and the lowering of bacterial metabolic activity suggested that FSAL could hinder bacterial growth and reproduction within P. fragi biofilms. KEY POINTS: • FSAL inhibited the activity of Pseudomonas fragi in the dominant meat strain • The absence of EPS components affected the formation of P. fragi biofilms • P. fragi has reduced adhesion capacity due to impaired flagellin function.
Collapse
Affiliation(s)
- Haoxia Wang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Qingqing Ge
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Xingfeng Shao
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Yingying Wei
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Xin Zhang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Hongfei Wang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| | - Feng Xu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| |
Collapse
|
33
|
Qin T, Chen K, Xi B, Pan L, Xie J, Lu L, Liu K. In Vitro Antibiofilm Activity of Resveratrol against Aeromonas hydrophila. Antibiotics (Basel) 2023; 12:antibiotics12040686. [PMID: 37107048 PMCID: PMC10135085 DOI: 10.3390/antibiotics12040686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Aeromonas hydrophila is a Gram-negative bacterium that widely exists in various aquatic environments and causes septicemia in fish and humans. Resveratrol, a natural polyterpenoid product, has potential chemo-preventive and antibacterial properties. In this study, we investigated the effect of resveratrol on A. hydrophila biofilm formation and motility. The results demonstrated that resveratrol, at sub-MIC levels, can significantly inhibit the biofilm formation of A. hydrophila, and the biofilm was decreased with increasing concentrations. The motility assay showed that resveratrol could diminish the swimming and swarming motility of A. hydrophila. Transcriptome analyses (RNA-seq) showed that A. hydrophila treated with 50 and 100 μg/mL resveratrol, respectively, presented 230 and 308 differentially expressed genes (DEGs), including 90 or 130 upregulated genes and 130 or 178 downregulated genes. Among them, genes related to flagellar, type IV pilus and chemotaxis were significantly repressed. In addition, mRNA of virulence factors OmpA, extracellular proteases, lipases and T6SS were dramatically suppressed. Further analysis revealed that the major DEGs involved in flagellar assembly and bacterial chemotaxis pathways could be regulated by cyclic-di-guanosine monophosphate (c-di-GMP)- and LysR-Type transcriptional regulator (LTTR)-dependent quorum sensing (QS) systems. Overall, our results indicate that resveratrol can inhibit A. hydrophila biofilm formation by disturbing motility and QS systems, and can be used as a promising candidate drug against motile Aeromonad septicemia.
Collapse
|
34
|
Saverina EA, Frolov NA, Kamanina OA, Arlyapov VA, Vereshchagin AN, Ananikov VP. From Antibacterial to Antibiofilm Targeting: An Emerging Paradigm Shift in the Development of Quaternary Ammonium Compounds (QACs). ACS Infect Dis 2023; 9:394-422. [PMID: 36790073 DOI: 10.1021/acsinfecdis.2c00469] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In a previous development stage, mostly individual antibacterial activity was a target in the optimization of biologically active compounds and antiseptic agents. Although this targeting is still valuable, a new trend has appeared since the discovery of superhigh resistance of bacterial cells upon their aggregation into groups. Indeed, it is now well established that the great majority of pathogenic germs are found in the environment as surface-associated microbial communities called biofilms. The protective properties of biofilms and microbial resistance, even to high concentrations of biocides, cause many chronic infections in medical settings and lead to serious economic losses in various areas. A paradigm shift from individual bacterial targeting to also affecting more complex cellular frameworks is taking place and involves multiple strategies for combating biofilms with compounds that are effective at different stages of microbiome formation. Quaternary ammonium compounds (QACs) play a key role in many of these treatments and prophylactic techniques on the basis of both the use of individual antibacterial agents and combination technologies. In this review, we summarize the literature data on the effectiveness of using commercially available and newly synthesized QACs, as well as synergistic treatment techniques based on them. As an important focus, techniques for developing and applying antimicrobial coatings that prevent the formation of biofilms on various surfaces over time are discussed. The information analyzed in this review will be useful to researchers and engineers working in many fields, including the development of a new generation of applied materials; understanding biofilm surface growth; and conducting research in medical, pharmaceutical, and materials sciences. Although regular studies of antibacterial activity are still widely conducted, a promising new trend is also to evaluate antibiofilm activity in a comprehensive study in order to meet the current requirements for the development of highly needed practical applications.
Collapse
Affiliation(s)
- Evgeniya A Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia.,N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | | | | | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
35
|
Baltogianni M, Giapros V, Kosmeri C. Antibiotic Resistance and Biofilm Infections in the NICUs and Methods to Combat It. Antibiotics (Basel) 2023; 12:antibiotics12020352. [PMID: 36830264 PMCID: PMC9951928 DOI: 10.3390/antibiotics12020352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Neonatal sepsis is an important cause of neonatal morbidity and mortality. A significant proportion of bacteria causing neonatal sepsis is resistant to multiple antibiotics, not only to the usual empirical first-line regimens, but also to second- and third-line antibiotics in many neonatal intensive care units (NICUs). NICUs have unique antimicrobial stewardship goals. Apart from antimicrobial resistance, NICUs have to deal with another problem, namely biofilm infections, since neonates often have central and peripheral lines, tracheal tubes and other foreign bodies for a prolonged duration. The aim of this review is to describe traditional and novel ways to fight antibiotic-resistant bacteria and biofilm infections in NICUs. The topics discussed will include prevention and control of the spread of infection in NICUs, as well as the wise use of antimicrobial therapy and ways to fight biofilm infections.
Collapse
Affiliation(s)
- Maria Baltogianni
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45500 Ioannina, Greece
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45500 Ioannina, Greece
- Correspondence: ; Tel.: +30-26-5100-7546
| | - Chrysoula Kosmeri
- Department of Pediatrics, University Hospital of Ioannina, 45500 Ioannina, Greece
| |
Collapse
|
36
|
Natural Medicine a Promising Candidate in Combating Microbial Biofilm. Antibiotics (Basel) 2023; 12:antibiotics12020299. [PMID: 36830210 PMCID: PMC9952808 DOI: 10.3390/antibiotics12020299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Studies on biofilm-related infections are gaining prominence owing to their involvement in most clinical infections and seriously threatening global public health. A biofilm is a natural form of bacterial growth ubiquitous in ecological niches, considered to be a generic survival mechanism adopted by both pathogenic and non-pathogenic microorganisms and entailing heterogeneous cell development within the matrix. In the ecological niche, quorum sensing is a communication channel that is crucial to developing biofilms. Biofilm formation leads to increased resistance to unfavourable ecological effects, comprising resistance to antibiotics and antimicrobial agents. Biofilms are frequently combated with modern conventional medicines such as antibiotics, but at present, they are considered inadequate for the treatment of multi-drug resistance; therefore, it is vital to discover some new antimicrobial agents that can prevent the production and growth of biofilm, in addition to minimizing the side effects of such therapies. In the search for some alternative and safe therapies, natural plant-derived phytomedicines are gaining popularity among the research community. Phytomedicines are natural agents derived from natural plants. These plant-derived agents may include flavonoids, terpenoids, lectins, alkaloids, polypeptides, polyacetylenes, phenolics, and essential oils. Since they are natural agents, they cause minimal side effects, so could be administered with dose flexibility. It is vital to discover some new antimicrobial agents that can control the production and growth of biofilms. This review summarizes and analyzes the efficacy characteristics and corresponding mechanisms of natural-product-based antibiofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and their sources, along with their mechanism, quorum sensing signalling pathways, disrupting extracellular matrix adhesion. The review also provides some other strategies to inhibit biofilm-related illness. The prepared list of newly discovered natural antibiofilm agents could help in devising novel strategies for biofilm-associated infections.
Collapse
|
37
|
Guan C, Zhang W, Su J, Li F, Chen D, Chen X, Huang Y, Gu R, Zhang C. Antibacterial and antibiofilm potential of Lacticaseibacillus rhamnosus YT and its cell-surface extract. BMC Microbiol 2023; 23:12. [PMID: 36635630 PMCID: PMC9835366 DOI: 10.1186/s12866-022-02751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Foodborne pathogens and spoilage bacteria survived in the biofilm pose a serious threat to food safety and human health. It is urgent to find safe and effective methods to control the planktonic bacteria as well as the biofilm formation. Substances with antibacterial and antibiofilm activity found in lactic acid bacteria were mainly metabolites secreted in the cell-free supernatant. Previously, Lacticaseibacillus rhamnosus YT was isolated because its cell pellets displayed distinguished antibacterial activity under neutral conditions. This study aimed to investigate the antibacterial and antibiofilm properties of the L. rhamnosus YT cells and its crude cell-surface extract. RESULTS The antibacterial activity of the L. rhamnosus YT cells constantly increased with cells growth and reached the peak value after the cells grew into stationary phase. After cocultivation with the L. rhamnosus YT cells, the biofilm formation of B. subtilis and S. enterica was reduced. The antibacterial activity of the L. rhamnosus YT cells was varied along with various culture conditions (carbon sources, nitrogen sources, medium pH and cultural temperatures) and the antibacterial intensity (antibacterial activity per cell) was disproportional to the biomass. Furthermore, the cell-surface extract was isolated and displayed broad antimicrobial spectrum with a bacteriostatic mode of action. The antibiofilm activity of the extract was concentration-dependent. In addition, the extract was stable to physicochemical treatments (heat, pH and protease). The extract performed favorable emulsifying property which could reduce the water surface tension from 72.708 mN/m to 51.011 mN/m and the critical micelle concentration (CMC) value was 6.88 mg/mL. Besides, the extract was also able to emulsify hydrocarbon substrates with the emulsification, index (E24) ranged from 38.55% (for n-hexane) to 53.78% (for xylene). The E24 for xylene/extract emulsion was merely decreased by 5.77% after standing for 120 h. The main components of the extract were polysaccharide (684.63 μg/mL) and protein (120.79 μg/mL). CONCLUSION The properties of the extract indicated that it might be a kind of biosurfactant. These data suggested that L. rhamnosus YT and the cell-surface extract could be used as an alternative antimicrobial and antibiofilm agent against foodborne pathogens and spoilage bacteria in food industry.
Collapse
Affiliation(s)
- Chengran Guan
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| | - Wenjuan Zhang
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| | - Jianbo Su
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| | - Feng Li
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| | - Dawei Chen
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| | - Xia Chen
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| | - Yujun Huang
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| | - Ruixia Gu
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| | - Chenchen Zhang
- grid.268415.cKey Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu China
| |
Collapse
|
38
|
Xue P, Sang R, Li N, Du S, Kong X, Tai M, Jiang Z, Chen Y. A new approach to overcoming antibiotic-resistant bacteria: Traditional Chinese medicine therapy based on the gut microbiota. Front Cell Infect Microbiol 2023; 13:1119037. [PMID: 37091671 PMCID: PMC10117969 DOI: 10.3389/fcimb.2023.1119037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 04/25/2023] Open
Abstract
With the irrational use of antibiotics and the increasing abuse of oral antibiotics, the drug resistance of gastrointestinal pathogens has become a prominent problem in clinical practice. Gut microbiota plays an important role in maintaining human health, and the change of microbiota also affects the activity of pathogenic bacteria. Interfering with antibiotic resistant bacteria by affecting gut microbiota has also become an important regulatory signal. In clinical application, due to the unique advantages of traditional Chinese medicine in sterilization and drug resistance, it is possible for traditional Chinese medicine to improve the gut microbial microenvironment. This review discusses the strategies of traditional Chinese medicine for the treatment of drug-resistant bacterial infections by changing the gut microenvironment, unlocking the interaction between microbiota and drug resistance of pathogenic bacteria.
Collapse
Affiliation(s)
- Peng Xue
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Rui Sang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Nan Li
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Siyuan Du
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xiuwen Kong
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Mingliang Tai
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Zhihao Jiang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Ying Chen
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China
- *Correspondence: Ying Chen,
| |
Collapse
|
39
|
Qiao Z, Zhang L, Wang X, Liu B, Shan Y, Yi Y, Zhou Y, Lü X. Antibiofilm Effects of Bacteriocin BMP32r on Listeria monocytogenes. Probiotics Antimicrob Proteins 2022; 14:1067-1076. [PMID: 34709598 DOI: 10.1007/s12602-021-09863-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 12/25/2022]
Abstract
Listeria monocytogenes is a well-known foodborne pathogen that usually lives as biofilm to cope with unfavorable surroundings. Bacteriocins have been reported as antimicrobial compounds, and their bactericidal actions have been extensively studied, but their antibiofilm actions have rarely been studied. Previous study indicated that bacteriocin BMP32r has a broad-spectrum antibacterial activity. In this study, the efficacy of BMP32r against the planktonic bacteria, inhibition of forming biofilm, destruction of mature biofilm, and kill persisters of L. monocytogenes ATCC 15,313 was determined. BMP32r exhibited the bactericidal effect on L. monocytogenes planktonic bacteria. Crystal violet staining showed that sub-minimum inhibitory concentrations (SICs) of BMP32r (1/32 × MIC and 1/16 × MIC) significantly (p < 0.001) inhibit the biofilm formation. In addition, the results of CCK-8, plate count, ruthenium red staining, scanning electron microscopy, and real-time quantitative PCR assay showed that SICs of BMP32r reduced cell adhesion, exopolysaccharide production, quorum sensing, and virulence genes expression in biofilm formation. Moreover, higher concentrations of BMP32r (2 × MIC and 4 × MIC) disrupt the mature biofilm by killing the bacteria in the biofilm and kill L. monocytogenes persisters bacteria effectively. Therefore, BMP32r has promising potential as an antibiofilm agent to combat L. monocytogenes.
Collapse
Affiliation(s)
- Zhu Qiao
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.,School of Biological and Food Processing Engineering, Huanghuai University, Henan Province 463000, Zhumadian, China
| | - Leshan Zhang
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yuan Zhou
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
40
|
Sharan M, Vijay D, Dhaka P, Bedi JS, Gill JPS. Biofilms as a microbial hazard in the food industry: A scoping review. J Appl Microbiol 2022; 133:2210-2234. [PMID: 35945912 DOI: 10.1111/jam.15766] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyze the literature published during 2001-2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance wasn't clearly defined. Further, viable but non-culturable (VBNC) form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India.,Present Address: Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
41
|
Long L, Sulaiman JE, Xiao Y, Cheng A, Wang R, Malit JJ, Wong WC, Liu W, Li YX, Chen F, Lam H, Qian PY. Mode of action of elasnin as biofilm formation eradicator of methicillin-resistant Staphylococcus aureus. Front Microbiol 2022; 13:967845. [PMID: 36003935 PMCID: PMC9393526 DOI: 10.3389/fmicb.2022.967845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilm is made up of microbes and their extracellular matrix, making microorganisms highly tolerant, resistant, and resilient to a wide range of antimicrobials. Biofilm treatment with conventional antimicrobial agents can accelerate the evolution and spread of resistance due to the reduced efficacy and increased gene transfer and differentiation within biofilms. Therefore, effective biofilm-targeting compounds are currently highly sought after. In the present study, we identified elasnin as a potent biofilm-targeting compound against methicillin-resistant Staphylococcus aureus (MRSA). Elasnin effectively inhibited biofilm formation and especially eradicated the pre-formed biofilms of MRSA with low cytotoxicity and low risk of resistance development and retains its activity in a chronic wound biofilms model. A comprehensive mechanistic study using multi-omics and confocal and scanning electron microscopy revealed that elasnin induced the biofilm matrix destruction in a time-dependent manner and interfered with the cell division during the exponential phase, primarily by repressing the expression of virulence factors. Cells released from the elasnin-treated biofilms exhibited a defective appearance and became more sensitive to beta-lactam antibiotic penicillin G. Through gene overexpression and deletion assay, we discovered the key role of sarZ during elasnin-induced biofilm eradication. Overall, the present study identified elasnin as a potent biofilm eradicator against MRSA that harbors potential to be developed for biofilm removal and chronic wound treatment, and provided new insights into the molecular targets for biofilm eradication in MRSA.
Collapse
Affiliation(s)
- Lexin Long
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jordy Evan Sulaiman
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yao Xiao
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Aifang Cheng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Ruojun Wang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jessie James Malit
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Wai Chuen Wong
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Wenchao Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yong-Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The Swire Institute of Marine Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Henry Lam,
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Pei-Yuan Qian,
| |
Collapse
|
42
|
Enhanced sunlight-absorption of Fe2O3 covered by PANI for the photodegradation of organic pollutants and antimicrobial inactivation. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Chen Z, Zhao Y, Liu Y. Advanced Strategies in Enzyme Activity Regulation for Biomedical Applications. Chembiochem 2022; 23:e202200358. [PMID: 35896516 DOI: 10.1002/cbic.202200358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Indexed: 11/06/2022]
Abstract
Enzymes are important macromolecular biocatalysts that accelerate chemical and biochemical reactions in living organisms. Most human diseases are related to alterations in enzyme activity. Moreover, enzymes are potential therapeutic tools for treating different diseases, such as cancer, infections, and cardiovascular and cerebrovascular diseases. Precise remote enzyme activity regulation provides new opportunities to combat diseases. This review summarizes recent advances in the field of enzyme activity regulation, including reversible and irreversible regulation. It also discusses the mechanisms and approaches for on-demand control of these activities. Furthermore, a range of stimulus-responsive inhibitors, polymers, and nanoparticles for regulating enzyme activity and their prospective biomedical applications are summarized. Finally, the current challenges and future perspectives on enzyme activity regulation are discussed.
Collapse
Affiliation(s)
- Zihan Chen
- Nankai University, College of Chemistry, Tianjin, CHINA
| | - Yu Zhao
- Nankai University, College of Chemistry, Tianjin, CHINA
| | - Yang Liu
- Nankai University, College of Chemistry, 94 Weijin Rd., Mengminwei Bldg 412, 300071, Tianjin, CHINA
| |
Collapse
|
44
|
Vahdati SN, Behboudi H, Navasatli SA, Tavakoli S, Safavi M. New insights into the inhibitory roles and mechanisms of D-amino acids in bacterial biofilms in medicine, industry, and agriculture. Microbiol Res 2022; 263:127107. [PMID: 35843196 DOI: 10.1016/j.micres.2022.127107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Biofilms are complex aggregates of microbes that are tightly protected by an extracellular matrix (ECM) and may attach to a surface or adhere together. A higher persistence of bacteria on biofilms makes them resistant not only to harsh conditions but also to various antibiotics which led to the emergence of problems in different applications. Recently, it has been discovered that many bacteria produce and release various D-amino acids (D-AAs) to inhibit biofilm formation, which made a great deal of interest in research into the control of bacterial biofilms in diverse fields, such as human health, industrial settings, and medical devices. D-AAs have various mechanisms to inhibit bacterial biofilms such as: (i) interfering with protein synthesis (ii) Inhibition of extracellular polymeric materials (EPS) productions (protein, eDNA, and polysaccharide) (iii) Inhibition of quorum sensing (autoinducers), and (iv) interfere with peptidoglycan synthesis, these various modes of action, enables these small molecules to inhibit both Gram-negative and Gram-positive bacterial biofilms. Since most biofilms are multi-species, D-AAs in combination with other antimicrobial agents are good choices to combat a variety of bacterial biofilms without displaying toxicity on human cells. This review article addressed the role of D-AAs in controlling several bacterial biofilms and described the possible or definite mechanisms involved in this process.
Collapse
Affiliation(s)
- Saeed Niazi Vahdati
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Hossein Behboudi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Sepideh Aliniaye Navasatli
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Sara Tavakoli
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
45
|
Deng Y, Liu Y, Li J, Wang X, He S, Yan X, Shi Y, Zhang W, Ding L. Marine natural products and their synthetic analogs as promising antibiofilm agents for antibiotics discovery and development. Eur J Med Chem 2022; 239:114513. [DOI: 10.1016/j.ejmech.2022.114513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022]
|
46
|
Lu H, Xiong W, Li Z, Yan P, Liu R, Liu X. Isolation and characterization of SGF3, a novel Microviridae phage infecting Shigella flexneri. Mol Genet Genomics 2022; 297:935-945. [PMID: 35522301 DOI: 10.1007/s00438-022-01883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/27/2022] [Indexed: 11/24/2022]
Abstract
In the context of widespread bacterial contamination and the endless emergence of antibiotic-resistant bacteria, more effective ways to control pathogen infection are urgently needed. Phages become potential bactericidal agents due to their bactericidal specificity and not easy resistance to bacteria. But an important factor limiting its development is the lack of phage species. Therefore, the isolation of more new phages and studying their biological and genomic characteristics is of great significance for subsequent applications. So, in this study, SGF3, a Microviridae phage, which has shown lytic activity against Shigella flexneri, was isolated, purified, and characterized. Morphological and phylogenetic analyses identified it as a phiX174 species belonging to the Microviridae family. The latent period of phage SGF3 was 20 min, with an average burst size of approximately 7.1. Host spectrum experiments indicated its strong host specificity. Furthermore, the biofilm removal efficiency was increased by 20%-25% when SGF3 was coupled with other phages. In conclusion, the phage SGF3 found in this study was a lytic phage belonging to the Microviral family, and could be added as an auxiliary material in the phage cocktail. Studies of its characteristics and bactericidal properties had enriched the germplasm resources of microphages, provided more potential material in fighting against emerging and existing multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Han Lu
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wenbin Xiong
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Peihan Yan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
47
|
Eno EA, Mbonu JI, Louis H, Patrick-Inezi FS, Gber TE, Unimke TO, Okon EE, Benjamin I, Offiong OE. Antimicrobial activities of 1-phenyl-3-methyl-4-trichloroacetyl-pyrazolone: Experimental, DFT studies, and molecular docking investigation. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100524] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
48
|
Portell-Buj E, González-Criollo C, López-Gavín A, Fernández-Pittol M, Busquets MA, Estelrich J, Garrigó M, Rubio M, Tudó G, Gonzalez-Martin J. Activity of Antibiotics and Potential Antibiofilm Agents against Biofilm-Producing Mycobacterium avium-intracellulare Complex Causing Chronic Pulmonary Infections. Antibiotics (Basel) 2022; 11:antibiotics11050589. [PMID: 35625233 PMCID: PMC9137467 DOI: 10.3390/antibiotics11050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) cause lung infections in patients with underlying pulmonary diseases (PD). The Mycobacteriumavium-intracellulare complex (MAC) is the most frequently involved NTM. The MAC-PD treatment is based on the administration of several antibiotics for long periods of time. Nonetheless, treatment outcomes remain very poor. Among the factors involved is the ability of MAC isolates to form biofilm. The aim of the study was to assess the in vitro activity of different antibiotics and potential antibiofilm agents (PAAs) against MAC biofilm. Four antibiotics and six PAAs, alone and/or in combination, were tested against planktonic forms of 11 MAC clinical isolates. Biofilm was produced after 4 weeks of incubation and analyzed with the crystal violet assay. The antibiotics and PAAs were tested by measuring the absorbance (minimum biofilm inhibition concentrations, MBICs) and by performing subcultures (minimum biofilm eradication concentrations, MBECs). The clarithromycin/amikacin and clarithromycin/ethambutol combinations were synergistic, decreasing the MBECs values compared to the individual antibiotics. The amikacin/moxifloxacin combination showed indifference. The MBIC values decreased significantly when PAAs were added to the antibiotic combinations. These results suggest that antibiotic combinations should be further studied to establish their antibiofilm activity. Moreover, PAAs could act against the biofilm matrix, facilitating the activity of antibiotics.
Collapse
Affiliation(s)
- Elena Portell-Buj
- Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (E.P.-B.); (C.G.-C.); (A.L.-G.); (M.F.-P.); (G.T.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain
| | - Cecibel González-Criollo
- Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (E.P.-B.); (C.G.-C.); (A.L.-G.); (M.F.-P.); (G.T.)
- Unidad de Investigación en Biomedicina, Zurita & Zurita Laboratorios, Quito 170104, Ecuador
| | - Alexandre López-Gavín
- Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (E.P.-B.); (C.G.-C.); (A.L.-G.); (M.F.-P.); (G.T.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain
| | - Mariana Fernández-Pittol
- Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (E.P.-B.); (C.G.-C.); (A.L.-G.); (M.F.-P.); (G.T.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain
| | - Maria Antònia Busquets
- Department de Farmàcia, Tecnologia Farmacèutica i Físicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (M.A.B.); (J.E.)
- Institut de Nanociència i Nanotecnologia, IN2UB, Facultat de Química, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Joan Estelrich
- Department de Farmàcia, Tecnologia Farmacèutica i Físicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (M.A.B.); (J.E.)
- Institut de Nanociència i Nanotecnologia, IN2UB, Facultat de Química, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Montserrat Garrigó
- Servei de Microbiologia, Fundació de Gestió de l’Hospital de la Santa Creu i Sant Pau, c/Sant Quintí 89, 08026 Barcelona, Spain;
- Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), c/Sant Quintí 77, 08041 Barcelona, Spain;
| | - Marc Rubio
- Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), c/Sant Quintí 77, 08041 Barcelona, Spain;
| | - Griselda Tudó
- Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (E.P.-B.); (C.G.-C.); (A.L.-G.); (M.F.-P.); (G.T.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain
| | - Julian Gonzalez-Martin
- Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (E.P.-B.); (C.G.-C.); (A.L.-G.); (M.F.-P.); (G.T.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain
- CIBER of Infectiuos Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
49
|
Li M, Qiu W, Wang Q, Li N, Liu L, Wang X, Yu J, Li X, Li F, Wu D. Nitric Oxide-Releasing Tryptophan-Based Poly(ester urea)s Electrospun Composite Nanofiber Mats with Antibacterial and Antibiofilm Activities for Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15911-15926. [PMID: 35373564 DOI: 10.1021/acsami.1c24131] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial biofilms on wounds can lead to ongoing inflammation and delayed reepithelialization, which brings a heavy burden to the medical systems. Nitric oxide based treatment has attracted attention because it is a promising strategy to eliminate biofilms and heal infected wounds. Herein, a series of tryptophan-based poly(ester urea)s with good biodegradation and biocompatibility were developed for the preparation of composite mats by electrospinning. Furthermore, the mats were grafted with a nitric oxide donor (nitrosoglutathione, GSNO) to provide one type of NO loading cargo. The mats were found to have a prolonged NO release profile for 408 h with a maximum release of 1.0 μmol/L, which had a significant effect on killing bacteria and destructing biofilms. The designed mats were demonstrated to promote the growth of cells, regulate inflammatory factors, and significantly improve collagen deposition in the wound, eventually accelerating wound-size reduction. Thus, the studies presented herein provide insights into the production of NO-releasing wound dressings and support the application of full-thickness wound healing.
Collapse
Affiliation(s)
- Mengna Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Weiwang Qiu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Qian Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Na Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Lu Liu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xueli Wang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Faxue Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Dequn Wu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
50
|
Recent Strategies to Combat Biofilms Using Antimicrobial Agents and Therapeutic Approaches. Pathogens 2022; 11:pathogens11030292. [PMID: 35335616 PMCID: PMC8955104 DOI: 10.3390/pathogens11030292] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Biofilms are intricate bacterial assemblages that attach to diverse surfaces using an extracellular polymeric substance that protects them from the host immune system and conventional antibiotics. Biofilms cause chronic infections that result in millions of deaths around the world every year. Since the antibiotic tolerance mechanism in biofilm is different than that of the planktonic cells due to its multicellular structure, the currently available antibiotics are inadequate to treat biofilm-associated infections which have led to an immense need to find newer treatment options. Over the years, various novel antibiofilm compounds able to fight biofilms have been discovered. In this review, we have focused on the recent and intensively researched therapeutic techniques and antibiofilm agents used for biofilm treatment and grouped them according to their type and mode of action. We also discuss some therapeutic approaches that have the potential for future advancement.
Collapse
|