1
|
Wang Y, Huang J, Zhang F, Shen K, Qiu B. Knock-down of IGFBP2 ameliorates lung fibrosis and inflammation in rats with severe pneumonia through STAT3 pathway. Growth Factors 2023; 41:210-220. [PMID: 37735894 DOI: 10.1080/08977194.2023.2259497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE To observe the mechanism of IGFBP2 knock-down in improving lung fibrosis and inflammation through STAT3 pathway in rats with severe pneumonia. MATERIALS AND METHODS First, SP rat model was established. Then rats were divided into the Control group, the SP group, the SP + Lv-vector shRNA group, the SP + Lv-IGFBP2 shRNA group, the SP + Lv-vector group, and the SP + Lv-IGFBP2 group. The mRNA and protein levels of IGFBP2, NOS, CD206 and Arg 1 were detected by RT-qPCR and Western blot. IHC was used to check the positive expression of IGFBP2 and MCP1. A fully automated blood gas analyzer was used to detected PaCO2, CO2 content, PaO2 and SaO2. HE and Masson staining were performed to observe the lung tissue injury and collagen deposition of rats in each group. ELISA assays were used to calculate the levels of inflammatory factors IL-1β, IL-6, TNF-α, IL-4, and IL-10. Flow cytometry was conducted to acquire the ratio of M1-type AMs and M2-type AMs. RESULTS Compared with the Control group, IGFBP2, iNOS, CD206, and Arg1 mRNA and protein expression levels, IGFBP2 and MCP1 positive expressions, PaCO2, p-STAT3/STAT3, p-JAK2/JAK2, IL-1β, IL-6, and TNF-α levels, the number of AMs and neutrophils, the proportion of M1 type AMs and the expressions of α-SMA, Collagen-I, Collagen III, and Fibronectin were significantly increased in SP rats (p < 0.05), while PaCO2, CO2, and SaO2, IL-4 and IL-10 levels, and the proportion of M2 type AMs decreased (p < 0.05). However, the knockdown of IGFBP2 reversed the above index trends. CONCLUSION Knock-down of IGFBP2 ameliorated lung injury in SP rats, inhibited inflammation and pulmonary fibrosis, and promoted M2-type transformation of AMs by activating the STAT3 pathway.
Collapse
Affiliation(s)
- Yuyu Wang
- Department of Critical Care Medicine, Shengzhou People's Hospital, the First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengzhou, Zhejiang, China
| | - Jianjiang Huang
- Department of Critical Care Medicine, Shengzhou People's Hospital, the First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengzhou, Zhejiang, China
| | - Fang Zhang
- Department of Critical Care Medicine, Shengzhou People's Hospital, the First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengzhou, Zhejiang, China
| | - Keli Shen
- Department of Critical Care Medicine, Shengzhou People's Hospital, the First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengzhou, Zhejiang, China
| | - Bin Qiu
- Department of Critical Care Medicine, Shengzhou People's Hospital, the First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengzhou, Zhejiang, China
| |
Collapse
|
2
|
Pichichero M, Malley R, Kaur R, Zagursky R, Anderson P. Acute otitis media pneumococcal disease burden and nasopharyngeal colonization in children due to serotypes included and not included in current and new pneumococcal conjugate vaccines. Expert Rev Vaccines 2023; 22:118-138. [PMID: 36565291 DOI: 10.1080/14760584.2023.2162506] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Despite the introduction of effective pneumococcal conjugate vaccines (PCV), Streptococcus pneumoniae remains a major cause of acute otitis media (AOM) worldwide. New, higher valency vaccines that offer broader serotype coverage have been recently developed and others are in development. However, given the capsular serotypes expressed by pneumococci causing AOM, it is unclear to what extent differing or higher valency PCVs will provide additional protection. AREAS COVERED We conducted a systematic literature search of the MEDLINE database to identify articles published from January 2016 to September 2021 in 4 low and middle income and 10 high-income countries. We searched PubMed with terms: (Streptococcus pneumoniae) OR pneumococcal AND serotype AND (conjugate vaccine). We evaluated serotype distribution and the actual or projected coverage of pneumococcal serotypes by PCV10 (GlaxoSmithKline), PCV13 (Pfizer), PCV10SII (Serum Institute of India) PCV15 (Merck) and PCV20 (Pfizer). EXPERT OPINION Our review highlights the important epidemiological differences in serotype distribution and coverage by existing and higher valency vaccines to protect against AOM in children. These data provide support for further evaluation of serotype-independent vaccines for optimal control of pneumococcal AOM disease worldwide.
Collapse
Affiliation(s)
- Michael Pichichero
- Rochester General Hospital Research Institute, Center for Infectious Diseases, Rochester, NY, USA
| | - Richard Malley
- Boston Children's Hospital, Division of Infectious Diseases, Boston Massachusetts, USA
| | - Ravinder Kaur
- Rochester General Hospital Research Institute, Center for Infectious Diseases, Rochester, NY, USA
| | - Robert Zagursky
- Rochester General Hospital Research Institute, Center for Infectious Diseases, Rochester, NY, USA
| | - Porter Anderson
- Boston Children's Hospital, Division of Infectious Diseases, Boston Massachusetts, USA
| |
Collapse
|
3
|
Silva PH, Vázquez Y, Campusano C, Retamal-Díaz A, Lay MK, Muñoz CA, González PA, Kalergis AM, Bueno SM. Non-capsular based immunization approaches to prevent Streptococcus pneumoniae infection. Front Cell Infect Microbiol 2022; 12:949469. [PMID: 36225231 PMCID: PMC9548657 DOI: 10.3389/fcimb.2022.949469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium and the leading cause of bacterial pneumonia in children and the elderly worldwide. Currently, two types of licensed vaccines are available to prevent the disease caused by this pathogen: the 23-valent pneumococcal polysaccharide-based vaccine and the 7-, 10, 13, 15 and 20-valent pneumococcal conjugate vaccine. However, these vaccines, composed of the principal capsular polysaccharide of leading serotypes of this bacterium, have some problems, such as high production costs and serotype-dependent effectiveness. These drawbacks have stimulated research initiatives into non-capsular-based vaccines in search of a universal vaccine against S. pneumoniae. In the last decades, several research groups have been developing various new vaccines against this bacterium based on recombinant proteins, live attenuated bacterium, inactivated whole-cell vaccines, and other newer platforms. Here, we review and discuss the status of non-capsular vaccines against S. pneumoniae and the future of these alternatives in a post-pandemic scenario.
Collapse
Affiliation(s)
- Pedro H. Silva
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yaneisi Vázquez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Campusano
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Margarita K. Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Christian A. Muñoz
- Unidad de Microbiología, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Susan M. Bueno,
| |
Collapse
|
4
|
A Nonadjuvanted Whole-Inactivated Pneumococcal Vaccine Induces Multiserotype Opsonophagocytic Responses Mediated by Noncapsule-Specific Antibodies. mBio 2022; 13:e0236722. [PMID: 36125268 PMCID: PMC9600166 DOI: 10.1128/mbio.02367-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Streptococcus pneumoniae (Spn) remains a major cause of global mortality, with extensive antigenic diversity between capsular serotypes that poses an ongoing challenge for vaccine development. Widespread use of pneumococcal conjugate vaccines (PCVs) targeting Spn capsules has greatly reduced infections by vaccine-included serotypes but has led to increased infections by nonincluded serotypes. To date, high cost of PCVs has also limited their usefulness in low-income regions where disease burdens are highest. To overcome these limitations, serotype-independent vaccines are being actively researched. We have developed a whole-cell gamma-irradiated Spn vaccine (termed Gamma-PN) providing serotype-independent protection. We demonstrate that Gamma-PN immunization of mice or rabbits via the clinically relevant intramuscular route induces protein-specific antibodies able to bind numerous nonvaccine encapsulated serotypes, which mediate opsonophagocytic killing and protection against lethal challenges. Gamma-PN induced comparable or superior opsonophagocytic killing assay (OPKA) responses in rabbits to the licensed Prevnar 13 vaccine (PCV13) for vaccine-included serotypes, and a superior response to nonincluded serotypes, including emergent 22F and 35B. Additionally, despite a lower observed reactogenicity, administration of Gamma-PN without adjuvant resulted in higher OPKA responses and improved protection compared to adjuvanted Gamma-PN. To our knowledge, this has not been demonstrated previously for a whole-inactivated Spn vaccine. Eliminating the requirement for adjuvant comes with numerous benefits for clinical applications of this vaccine and poses interesting questions for the inclusion of adjuvant in similar vaccines in development.
Collapse
|
5
|
Arjarquah AK, Obodai E, Anie HA, Osei MA, Odoom JK, Bonney JHK, Behene E, Kotey EN, Aboagye J, Nyarko SO, Bentum J, Yeboah C, Kumordjie S, Agbodzi B, Attiku K, Mawuli G, Letizia A, Ampofo WK, Quaye O. Occurrence of influenza and bacterial infections in cancer patients receiving radiotherapy in Ghana. PLoS One 2022; 17:e0271877. [PMID: 35881575 PMCID: PMC9321433 DOI: 10.1371/journal.pone.0271877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background Influenza co-infection with bacteria is a leading cause of influenza-related deaths and severe respiratory infections, especially among high-risk groups like cancer patients undergoing treatment. However, acute respiratory infection (ARI)-like symptoms developed by upper-torso cancer (UTC) patients receiving radiotherapy are considered as side-effects of the radiation. Hence influenza and bacterial pathogens implicated in ARI are not investigated. Methods This prospective cohort study examined 85 in-patients with upper-torso cancers undergoing radiotherapy at the National Radiotherapy, Oncology and Nuclear Medicine Centre (NRONMC) of Korle-Bu Teaching Hospital (KBTH) in Accra, Ghana. Eligible patients who consented were recruited into the study from September 2018 to April 2019. Influenza viruses A and B in addition to the following bacteria species Streptococcus pneumonia, Haemophilus influenzae, Neisseria meningitidis and Staphylococcus aureus were detected from oropharyngeal and nasopharyngeal swab specimens collected at three different time points. Presence of respiratory pathogens were investigated by influenza virus isolation in cell culture, bacterial culture, polymerase chain reaction (PCR) and next generation sequencing (NGS) assays. Results Of the 85 eligible participants enrolled into the study, 87% were females. Participants were 17 to 77 years old, with a median age of 49 years. Most of the participants (88%) enrolled had at least one pathogen present. The most prevalent pathogen was N. meningitidis (63.4%), followed by H. influenzae (48.8%), Influenza viruses A and B (32.9%), S. pneumoniae (32.9%) and S. aureus (12.2%). Approximately, 65% of these participants developed ARI-like symptoms. Participants with previous episodes of ARI, did not live alone, HNC and total radiation less than 50 Gy were significantly associated with ARI. All treatment forms were also significantly associated with ARI. Conclusion Data generated from the study suggests that ARI-like symptoms observed among UTC patients receiving radiotherapy in Ghana, could be due to influenza and bacterial single and co-infections in addition to risk factors and not solely the side-effects of radiation as perceived. These findings will be prime importance for diagnosis, prevention, treatment and control for cancer patients who present with such episodes during treatment.
Collapse
Affiliation(s)
- Augustina K. Arjarquah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology (DBCMB), University of Ghana, Legon, Ghana
- College of Health Sciences, University of Ghana-Noguchi Memorial Institute for Medical Research (NMIMR), Legon, Ghana
- Cocoa Research Institute of Ghana (CRIG), New Tafo—Akim, Ghana
- * E-mail: (EO); (AKA)
| | - Evangeline Obodai
- College of Health Sciences, University of Ghana-Noguchi Memorial Institute for Medical Research (NMIMR), Legon, Ghana
- * E-mail: (EO); (AKA)
| | - Hannah Ayettey Anie
- National Radiotherapy, Oncology and Nuclear Medicine Centre (NRONMC), Korle-Bu Teaching Hospital, Accra, Ghana
| | - Michael Aning Osei
- National Radiotherapy, Oncology and Nuclear Medicine Centre (NRONMC), Korle-Bu Teaching Hospital, Accra, Ghana
| | - John Kofi Odoom
- College of Health Sciences, University of Ghana-Noguchi Memorial Institute for Medical Research (NMIMR), Legon, Ghana
| | - Joseph H. K. Bonney
- College of Health Sciences, University of Ghana-Noguchi Memorial Institute for Medical Research (NMIMR), Legon, Ghana
| | - Eric Behene
- College of Health Sciences, University of Ghana-Noguchi Memorial Institute for Medical Research (NMIMR), Legon, Ghana
- United States Naval Medical Research Unit No. 3 (US-NAMRU 3), Ghana Detachment, Accra, Ghana
| | - Erasmus N. Kotey
- College of Health Sciences, University of Ghana-Noguchi Memorial Institute for Medical Research (NMIMR), Legon, Ghana
| | - James Aboagye
- College of Health Sciences, University of Ghana-Noguchi Memorial Institute for Medical Research (NMIMR), Legon, Ghana
| | - Stephen O. Nyarko
- College of Health Sciences, University of Ghana-Noguchi Memorial Institute for Medical Research (NMIMR), Legon, Ghana
| | - Jeannette Bentum
- College of Health Sciences, University of Ghana-Noguchi Memorial Institute for Medical Research (NMIMR), Legon, Ghana
- United States Naval Medical Research Unit No. 3 (US-NAMRU 3), Ghana Detachment, Accra, Ghana
| | - Clara Yeboah
- College of Health Sciences, University of Ghana-Noguchi Memorial Institute for Medical Research (NMIMR), Legon, Ghana
- United States Naval Medical Research Unit No. 3 (US-NAMRU 3), Ghana Detachment, Accra, Ghana
| | - Selassie Kumordjie
- College of Health Sciences, University of Ghana-Noguchi Memorial Institute for Medical Research (NMIMR), Legon, Ghana
- United States Naval Medical Research Unit No. 3 (US-NAMRU 3), Ghana Detachment, Accra, Ghana
| | - Bright Agbodzi
- College of Health Sciences, University of Ghana-Noguchi Memorial Institute for Medical Research (NMIMR), Legon, Ghana
- United States Naval Medical Research Unit No. 3 (US-NAMRU 3), Ghana Detachment, Accra, Ghana
| | - Keren Attiku
- College of Health Sciences, University of Ghana-Noguchi Memorial Institute for Medical Research (NMIMR), Legon, Ghana
| | - Gifty Mawuli
- College of Health Sciences, University of Ghana-Noguchi Memorial Institute for Medical Research (NMIMR), Legon, Ghana
| | - Andrew Letizia
- United States Naval Medical Research Unit No. 3 (US-NAMRU 3), Ghana Detachment, Accra, Ghana
| | - William K. Ampofo
- College of Health Sciences, University of Ghana-Noguchi Memorial Institute for Medical Research (NMIMR), Legon, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology (DBCMB), University of Ghana, Legon, Ghana
| |
Collapse
|
6
|
Finkensieper J, Issmail L, Fertey J, Rockstroh A, Schopf S, Standfest B, Thoma M, Grunwald T, Ulbert S. Low-Energy Electron Irradiation of Tick-Borne Encephalitis Virus Provides a Protective Inactivated Vaccine. Front Immunol 2022; 13:825702. [PMID: 35340807 PMCID: PMC8942778 DOI: 10.3389/fimmu.2022.825702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a zoonotic flavivirus which is endemic in many European and Asian countries. Humans can get infected with TBEV usually via ticks, and possible symptoms of the infection range from fever to severe neurological complications such as encephalitis. Vaccines to protect against TBEV-induced disease are widely used and most of them consist of whole viruses, which are inactivated by formaldehyde. Although this production process is well established, it has several drawbacks, including the usage of hazardous chemicals, the long inactivation times required and the potential modification of antigens by formaldehyde. As an alternative to chemical treatment, low-energy electron irradiation (LEEI) is known to efficiently inactivate pathogens by predominantly damaging nucleic acids. In contrast to other methods of ionizing radiation, LEEI does not require substantial shielding constructions and can be used in standard laboratories. Here, we have analyzed the potential of LEEI to generate a TBEV vaccine and immunized mice with three doses of irradiated or chemically inactivated TBEV. LEEI-inactivated TBEV induced binding antibodies of higher titer compared to the formaldehyde-inactivated virus. This was also observed for the avidity of the antibodies measured after the second dose. After viral challenge, the mice immunized with LEEI- or formaldehyde-inactivated TBEV were completely protected from disease and had no detectable virus in the central nervous system. Taken together, the results indicate that LEEI could be an alternative to chemical inactivation for the production of a TBEV vaccine.
Collapse
Affiliation(s)
- Julia Finkensieper
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Leila Issmail
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Jasmin Fertey
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Alexandra Rockstroh
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Simone Schopf
- Fraunhofer-Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Dresden, Germany
| | - Bastian Standfest
- Department of Laboratory Automation and Biomanufacturing Engineering, Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Stuttgart, Germany
| | - Martin Thoma
- Department of Laboratory Automation and Biomanufacturing Engineering, Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Stuttgart, Germany
| | - Thomas Grunwald
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Sebastian Ulbert
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| |
Collapse
|
7
|
Dessalegn B, Bitew M, Asfaw D, Khojaly E, Ibrahim SM, Abayneh T, Gelaye E, Unger H, Wijewardana V. Gamma-Irradiated Fowl Cholera Mucosal Vaccine: Potential Vaccine Candidate for Safe and Effective Immunization of Chicken Against Fowl Cholera. Front Immunol 2021; 12:768820. [PMID: 34917086 PMCID: PMC8670175 DOI: 10.3389/fimmu.2021.768820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Fowl cholera (FC) caused by Pasteurella multocida is among the serious infectious diseases of poultry. Currently, formalin inactivated FC (FI-FC) vaccine is widely used in Ethiopia. However, reports of the disease complaint remain higher despite the use of the vaccine. The aim of this study was to develop and evaluate gamma-irradiated mucosal FC vaccines that can be used nationally. In a vaccination-challenge experiment, the performance of gamma-irradiated P. multocida (at 1 kGy) formulated with Montanide gel/01 PR adjuvant was evaluated at different dose rates (0.5 and 0.3 ml) and routes (intranasal, intraocular, and oral), in comparison with FI-FC vaccine in chicken. Chickens received three doses of the candidate vaccine at 3-week intervals. Sera, and trachea and crop lavage were collected to assess the antibody levels using indirect and sandwich ELISAs, respectively. Challenge exposure was conducted by inoculation at 3.5×109 CFU/ml of P. multocida biotype A intranasally 2 weeks after the last immunization. Repeated measures ANOVA test and Kaplan Meier curve analysis were used to examine for statistical significance of antibody titers and survival analysis, respectively. Sera IgG and secretory IgA titers were significantly raised after second immunization (p=0.0001). Chicken survival analysis showed that intranasal and intraocular administration of the candidate vaccine at the dose of 0.3 ml resulted in 100% protection as compared to intramuscular injection of FI-FC vaccine, which conferred 85% protection (p=0.002). In conclusion, the results of this study showed that gamma-irradiated FC mucosal vaccine is safe and protective, indicating its potential use for immunization of chicken against FC.
Collapse
Affiliation(s)
- Bereket Dessalegn
- College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| | - Molalegne Bitew
- Health Biotechnology Directorate, Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia
| | - Destaw Asfaw
- College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| | - Esraa Khojaly
- MSc Program on Vaccine Production and Quality Control, Pan Africa University for Life and Earth Sciences Institute (PAULESI), University of Ibadan, Ibadan, Nigeria
| | | | - Takele Abayneh
- Vaccine Research and Development Directorate, National Veterinary Institute, Debre Zeit, Ethiopia
| | - Esayas Gelaye
- Vaccine Research and Development Directorate, National Veterinary Institute, Debre Zeit, Ethiopia
| | - Hermann Unger
- Animal Production and Health Section, Joint Food and Agriculture Organization (FAO)/International Atomic Energy Agency (IAEA) Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Viskam Wijewardana
- Animal Production and Health Section, Joint Food and Agriculture Organization (FAO)/International Atomic Energy Agency (IAEA) Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| |
Collapse
|
8
|
Low-Energy Electron Irradiation (LEEI) for the Generation of Inactivated Bacterial Vaccines. Methods Mol Biol 2021. [PMID: 34784034 DOI: 10.1007/978-1-0716-1900-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Vaccines consisting of whole inactivated bacteria (bacterins) are generated by incubation of the pathogen with chemicals. This is a time-consuming procedure which may lead to less immunogenic material, as critical antigenic structures can be altered by chemical modification. A promising alternative approach is low-energy electron irradiation (LEEI). Like other types of ionizing radiation, it mainly acts by destroying nucleic acids but causes less damage to structural components like proteins. As the electrons have a limited penetration depth, LEEI is currently used for sterilization of surfaces. The inactivation of pathogens in liquids requires irradiation of the culture in a thin film to ensure complete penetration. Here, we describe two approaches for the irradiation of bacterial suspensions in a research scale. After confirmation of inactivation, the material can be directly used for vaccination, without any purification steps.
Collapse
|
9
|
Walkowski W, Bassett J, Bhalla M, Pfeifer BA, Ghanem ENB. Intranasal Vaccine Delivery Technology for Respiratory Tract Disease Application with a Special Emphasis on Pneumococcal Disease. Vaccines (Basel) 2021; 9:vaccines9060589. [PMID: 34199398 PMCID: PMC8230341 DOI: 10.3390/vaccines9060589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022] Open
Abstract
This mini-review will cover recent trends in intranasal (IN) vaccine delivery as it relates to applications for respiratory tract diseases. The logic and rationale for IN vaccine delivery will be compared to methods and applications accompanying this particular administration route. In addition, we will focus extended discussion on the potential role of IN vaccination in the context of respiratory tract diseases, with a special emphasis on pneumococcal disease. Here, elements of this disease, including its prevalence and impact upon the elderly population, will be viewed from the standpoint of improving health outcomes through vaccine design and delivery technology and how IN administration can play a role in such efforts.
Collapse
Affiliation(s)
- William Walkowski
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Justin Bassett
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Manmeet Bhalla
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Elsa N. Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
- Correspondence:
| |
Collapse
|
10
|
Sartori GP, da Costa A, Macarini FLDS, Mariano DOC, Pimenta DC, Spencer PJ, Nali LHDS, Galisteo AJ. Characterization and evaluation of the enzymatic activity of tetanus toxin submitted to cobalt-60 gamma radiation. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200140. [PMID: 33995513 PMCID: PMC8092855 DOI: 10.1590/1678-9199-jvatitd-2020-0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Tetanus toxin blocks the release of the inhibitory neurotransmitters in the central nervous system and causes tetanus and its main form of prevention is through vaccination. The vaccine is produced by inactivation of tetanus toxin with formaldehyde, which may cause side effects. An alternative way is the use of ionizing radiation for inactivation of the toxin and also to improve the potential immunogenic response and to reduce the post-vaccination side effects. Therefore, the aim of this study was to characterize the tetanus toxin structure after different doses of ionizing radiation of 60Co. METHODS Irradiated and native tetanus toxin was characterized by SDS PAGE in reducing and non-reducing conditions and MALD-TOF. Enzymatic activity was measured by FRET substrate. Also, antigenic properties were assessed by ELISA and Western Blot data. RESULTS Characterization analysis revealed gradual modification on the tetanus toxin structure according to doses increase. Also, fragmentation and possible aggregations of the protein fragments were observed in higher doses. In the analysis of peptide preservation by enzymatic digestion and mass spectrometry, there was a slight modification in the identification up to the dose of 4 kGy. At subsequent doses, peptide identification was minimal. The analysis of the enzymatic activity by fluorescence showed 35 % attenuation in the activity even at higher doses. In the antigenic evaluation, anti-tetanus toxin antibodies were detected against the irradiated toxins at the different doses, with a gradual decrease as the dose increased, but remaining at satisfactory levels. CONCLUSION Ionizing radiation promoted structural changes in the tetanus toxin such as fragmentation and/or aggregation and attenuation of enzymatic activity as the dose increased, but antigenic recognition of the toxin remained at good levels indicating its possible use as an immunogen. However, studies of enzymatic activity of tetanus toxin irradiated with doses above 8 kGy should be further analyzed.
Collapse
Affiliation(s)
- Giselle Pacifico Sartori
- Laboratory of Protozoology, Institute of Tropical Medicine,
University of São Paulo (IMT/FMUSP), São Paulo, SP, Brazil
| | - Andréa da Costa
- Laboratory of Protozoology, Institute of Tropical Medicine,
University of São Paulo (IMT/FMUSP), São Paulo, SP, Brazil
| | | | | | | | - Patrick Jack Spencer
- Biotechnology Center, Nuclear and Energy Research Institute
(IPEN/CNEN/SP), São Paulo, SP, Brazil
| | | | - Andrés Jimenez Galisteo
- Laboratory of Protozoology, Institute of Tropical Medicine,
University of São Paulo (IMT/FMUSP), São Paulo, SP, Brazil
- LIM49, Hospital das Clínicas HCFMUSP, School of Medicine, University
of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Ko E, Jeong S, Jwa MY, Kim AR, Ha YE, Kim SK, Jeong S, Ahn KB, Seo HS, Yun CH, Han SH. Immune Responses to Irradiated Pneumococcal Whole Cell Vaccine. Vaccines (Basel) 2021; 9:vaccines9040405. [PMID: 33921842 PMCID: PMC8073785 DOI: 10.3390/vaccines9040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) can cause respiratory and systemic diseases. Recently, γ-irradiation-inactivated, non-encapsulated, intranasal S. pneumoniae (r-SP) vaccine has been introduced as a novel serotype-independent and cost-effective vaccine. However, the immunogenic mechanism of r-SP is poorly understood. Here, we comparatively investigated the protective immunity and immunogenicity of r-SP to the heat-(h-SP) or formalin-inactivated vaccine (f-SP) without adjuvants. Mice were intranasally immunized with each vaccine three times and then challenged with a lethal dose of S. pneumoniae TIGR4 strain and then subsequently evaluated for their immune responses. Immunization with r-SP elicited modestly higher protection against S. pneumoniae than h-SP or f-SP. Immunization with r-SP enhanced pneumococcal-specific IgA in the nasal wash and IgG in bronchoalveolar lavage fluid. Immunization with r-SP enhanced S. pneumoniae-specific IgG, IgG1, and IgG2b in the serum. r-SP more potently induced the maturation of dendritic cells in the cervical lymph nodes than h-SP or f-SP. Interestingly, populations of follicular helper T cells and IL-4-producing cells were potently increased in cervical lymph nodes of r-SP-immunized mice. Collectively, r-SP could be an effective intranasal, inactivated whole-cell vaccine in that it elicits S. pneumoniae-specific antibody production and follicular helper T cell activation leading to protective immune responses against S. pneumoniae infection.
Collapse
Affiliation(s)
- Eunbyeol Ko
- Department of Oral Microbiology and Immunology and DRI, School of Dentistry, Seoul National University, Seoul 08826, Korea; (E.K.); (S.J.); (M.Y.J.); (AR.K.); (Y.-E.H.); (S.K.K.); (S.J.)
| | - Soyoung Jeong
- Department of Oral Microbiology and Immunology and DRI, School of Dentistry, Seoul National University, Seoul 08826, Korea; (E.K.); (S.J.); (M.Y.J.); (AR.K.); (Y.-E.H.); (S.K.K.); (S.J.)
| | - Min Yong Jwa
- Department of Oral Microbiology and Immunology and DRI, School of Dentistry, Seoul National University, Seoul 08826, Korea; (E.K.); (S.J.); (M.Y.J.); (AR.K.); (Y.-E.H.); (S.K.K.); (S.J.)
| | - A Reum Kim
- Department of Oral Microbiology and Immunology and DRI, School of Dentistry, Seoul National University, Seoul 08826, Korea; (E.K.); (S.J.); (M.Y.J.); (AR.K.); (Y.-E.H.); (S.K.K.); (S.J.)
| | - Ye-Eun Ha
- Department of Oral Microbiology and Immunology and DRI, School of Dentistry, Seoul National University, Seoul 08826, Korea; (E.K.); (S.J.); (M.Y.J.); (AR.K.); (Y.-E.H.); (S.K.K.); (S.J.)
| | - Sun Kyung Kim
- Department of Oral Microbiology and Immunology and DRI, School of Dentistry, Seoul National University, Seoul 08826, Korea; (E.K.); (S.J.); (M.Y.J.); (AR.K.); (Y.-E.H.); (S.K.K.); (S.J.)
| | - Sungho Jeong
- Department of Oral Microbiology and Immunology and DRI, School of Dentistry, Seoul National University, Seoul 08826, Korea; (E.K.); (S.J.); (M.Y.J.); (AR.K.); (Y.-E.H.); (S.K.K.); (S.J.)
| | - Ki Bum Ahn
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (K.B.A.); (H.S.S.)
| | - Ho Seong Seo
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (K.B.A.); (H.S.S.)
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon 34113, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology and DRI, School of Dentistry, Seoul National University, Seoul 08826, Korea; (E.K.); (S.J.); (M.Y.J.); (AR.K.); (Y.-E.H.); (S.K.K.); (S.J.)
- Correspondence: ; Tel.: +82-2-880-2310
| |
Collapse
|
12
|
Jesudhasan PR, Bhatia SS, Sivakumar KK, Praveen C, Genovese KJ, He HL, Droleskey R, McReynolds JL, Byrd JA, Swaggerty CL, Kogut MH, Nisbet DJ, Pillai SD. Controlling the Colonization of Clostridium perfringens in Broiler Chickens by an Electron-Beam-Killed Vaccine. Animals (Basel) 2021; 11:671. [PMID: 33802503 PMCID: PMC7998924 DOI: 10.3390/ani11030671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 01/13/2023] Open
Abstract
Clostridium perfringens (Cp) is a Gram-positive anaerobe that is one of the causative agents of necrotic enteritis (NE) in chickens, which leads to high mortality. Owing to the ban of administering antibiotics in feed to chickens, there has been an increase in the number of NE outbreaks all over the world, and the estimated loss is approximately 6 billion U.S. dollars. The best alternative method to control NE without antibiotics could be vaccination. In this study, we exposed three different strains of Cp to electron beam (eBeam) irradiation to inactivate them and then used them as a killed vaccine to control the colonization of Cp in broiler chickens. The vaccine was delivered to 18-day old embryos in ovo and the chickens were challenged with the respective vaccine strain at two different time points (early and late) to test the protective efficacy of the vaccine. The results indicate that an effective eBeam dose of 10 kGy inactivated all three strains of Cp, did not affect the cell membrane or epitopes, induced significant levels of IgY in the vaccinated birds, and further reduced the colonization of Cp strains significantly (p < 0.0001) in late challenge (JGS4064: 4 out of 10; JGS1473: 0 out of 10; JGS4104: 3 out of 10). Further studies are necessary to enhance the efficacy of the vaccine and to understand the mechanism of vaccine protection.
Collapse
Affiliation(s)
- Palmy R. Jesudhasan
- Poultry Production and Product Safety, USDA-ARS, 1260 W Maple St., O-306 POSC Building, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Sohini S. Bhatia
- National Center for Electron Beam Research, An IAEA Collaborating Centre for Electron Beam Technology, Texas A&M University, College Station, TX 77843, USA; (S.S.B.); (K.K.S.); (C.P.)
| | - Kirthiram K. Sivakumar
- National Center for Electron Beam Research, An IAEA Collaborating Centre for Electron Beam Technology, Texas A&M University, College Station, TX 77843, USA; (S.S.B.); (K.K.S.); (C.P.)
| | - Chandni Praveen
- National Center for Electron Beam Research, An IAEA Collaborating Centre for Electron Beam Technology, Texas A&M University, College Station, TX 77843, USA; (S.S.B.); (K.K.S.); (C.P.)
| | - Kenneth J. Genovese
- Food and Feed Safety Research Unit, USDA-ARS, 2881 F and B Rd, College Station, TX 77845, USA; (K.J.G.); (H.L.H.); (R.D.); (J.A.B.); (C.L.S.); (M.H.K.); (D.J.N.)
| | - Haiqi L. He
- Food and Feed Safety Research Unit, USDA-ARS, 2881 F and B Rd, College Station, TX 77845, USA; (K.J.G.); (H.L.H.); (R.D.); (J.A.B.); (C.L.S.); (M.H.K.); (D.J.N.)
| | - Robert Droleskey
- Food and Feed Safety Research Unit, USDA-ARS, 2881 F and B Rd, College Station, TX 77845, USA; (K.J.G.); (H.L.H.); (R.D.); (J.A.B.); (C.L.S.); (M.H.K.); (D.J.N.)
| | - Jack L. McReynolds
- Arm & Hammer Animal and Food Production, Church & Dwight Co. Inc., 6935 Vista Drive, West Des Moines, IA 50266, USA;
| | - James A. Byrd
- Food and Feed Safety Research Unit, USDA-ARS, 2881 F and B Rd, College Station, TX 77845, USA; (K.J.G.); (H.L.H.); (R.D.); (J.A.B.); (C.L.S.); (M.H.K.); (D.J.N.)
| | - Christina L. Swaggerty
- Food and Feed Safety Research Unit, USDA-ARS, 2881 F and B Rd, College Station, TX 77845, USA; (K.J.G.); (H.L.H.); (R.D.); (J.A.B.); (C.L.S.); (M.H.K.); (D.J.N.)
| | - Michael H. Kogut
- Food and Feed Safety Research Unit, USDA-ARS, 2881 F and B Rd, College Station, TX 77845, USA; (K.J.G.); (H.L.H.); (R.D.); (J.A.B.); (C.L.S.); (M.H.K.); (D.J.N.)
| | - David J. Nisbet
- Food and Feed Safety Research Unit, USDA-ARS, 2881 F and B Rd, College Station, TX 77845, USA; (K.J.G.); (H.L.H.); (R.D.); (J.A.B.); (C.L.S.); (M.H.K.); (D.J.N.)
| | - Suresh D. Pillai
- National Center for Electron Beam Research, An IAEA Collaborating Centre for Electron Beam Technology, Texas A&M University, College Station, TX 77843, USA; (S.S.B.); (K.K.S.); (C.P.)
| |
Collapse
|
13
|
Blackwood CB, Sen-Kilic E, Boehm DT, Hall JM, Varney ME, Wong TY, Bradford SD, Bevere JR, Witt WT, Damron FH, Barbier M. Innate and Adaptive Immune Responses against Bordetella pertussis and Pseudomonas aeruginosa in a Murine Model of Mucosal Vaccination against Respiratory Infection. Vaccines (Basel) 2020; 8:vaccines8040647. [PMID: 33153066 PMCID: PMC7712645 DOI: 10.3390/vaccines8040647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
Whole cell vaccines are frequently the first generation of vaccines tested for pathogens and can inform the design of subsequent acellular or subunit vaccines. For respiratory pathogens, administration of vaccines at the mucosal surface can facilitate the generation of a localized mucosal immune response. Here, we examined the innate and vaccine-induced immune responses to infection by two respiratory pathogens: Bordetella pertussis and Pseudomonas aeruginosa. In a model of intranasal administration of whole cell vaccines (WCVs) with the adjuvant curdlan, we examined local and systemic immune responses following infection. These studies showed that intranasal vaccination with a WCV led to a reduction of the bacterial burden in the airways of animals infected with the respective pathogen. However, there were unique changes in the cytokines produced, cells recruited, and inflammation at the site of infection. Both mucosal vaccinations induced antibodies that bind the target pathogen, but linear regression and principal component analysis revealed that protection from these pathogens is not solely related to antibody titer. Protection from P. aeruginosa correlated to a reduction in lung weight, blood lymphocytes and neutrophils, and the cytokines IL-6, TNF-α, KC/GRO, and IL-10, and promotion of serum IgG antibodies and the cytokine IFN-γ in the lung. Protection from B. pertussis infection correlated strongly with increased anti-B-pertussis serum IgG antibodies. These findings reveal valuable correlates of protection for mucosal vaccination that can be used for further development of both B. pertussis and P. aeruginosa vaccines.
Collapse
|
14
|
Automated application of low energy electron irradiation enables inactivation of pathogen- and cell-containing liquids in biomedical research and production facilities. Sci Rep 2020; 10:12786. [PMID: 32732876 PMCID: PMC7393095 DOI: 10.1038/s41598-020-69347-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/08/2020] [Indexed: 01/22/2023] Open
Abstract
Ionizing radiation is widely used to inactivate pathogens. It mainly acts by destroying nucleic acids but causes less damage to structural components like proteins. It is therefore highly suited for the sterilization of biological samples or the generation of inactivated vaccines. However, inactivation of viruses or bacteria requires relatively high doses and substantial amounts of radiation energy. Consequently, irradiation is restricted to shielded facilities—protecting personnel and the environment. We have previously shown that low energy electron irradiation (LEEI) has the same capacity to inactivate pathogens in liquids as current irradiation methods, but generates much less secondary X-ray radiation, which enables the use in normal laboratories by self-shielded irradiation equipment. Here, we present concepts for automated LEEI of liquids, in disposable bags or as a continuous process. As the electrons have a limited penetration depth, the liquid is transformed into a thin film. High concentrations of viruses (Influenza, Zika virus and Respiratory Syncytial Virus), bacteria (E. coli, B. cereus) and eukaryotic cells (NK-92 cell line) are efficiently inactivated by LEEI in a throughput suitable for various applications such as sterilization, vaccine manufacturing or cell therapy. Our results validate the premise that for pathogen and cell inactivation in liquids, LEEI represents a suitable and versatile irradiation method for standard biological research and production laboratories.
Collapse
|
15
|
Low-Energy Electron Irradiation Efficiently Inactivates the Gram-Negative Pathogen Rodentibacter pneumotropicus-A New Method for the Generation of Bacterial Vaccines with Increased Efficacy. Vaccines (Basel) 2020; 8:vaccines8010113. [PMID: 32121656 PMCID: PMC7157226 DOI: 10.3390/vaccines8010113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial pathogens cause severe infections worldwide in livestock and in humans, and antibiotic resistance further increases the importance of prophylactic vaccines. Inactivated bacterial vaccines (bacterins) are usually produced via incubation of the pathogen with chemicals such as formaldehyde, which is time consuming and may cause loss of immunogenicity due to the modification of structural components. We evaluated low-energy electron irradiation (LEEI) as an alternative method to generate a bacterin. Rodentibacter pneumotropicus, an invasive Gram-negative murine pathogen, was inactivated with LEEI and formaldehyde. LEEI resulted in high antigen conservation, and LPS activity was significantly better maintained when compared with formaldehyde treatment. Immunization of mice with LEEI-inactivated R. pneumotropicus elicited a strong immune response with no detectable bacterial burden upon sublethal challenge. The results of this study suggest the inactivation of bacteria with LEEI as an alternative, fast and efficient method to generate bacterial vaccines with increased efficacy.
Collapse
|
16
|
Morais V, Texeira E, Suarez N. Next-Generation Whole-Cell Pneumococcal Vaccine. Vaccines (Basel) 2019; 7:E151. [PMID: 31623286 PMCID: PMC6963273 DOI: 10.3390/vaccines7040151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae remains a major public health hazard. Although Pneumococcal Conjugate Vaccines (PCVs) are available and have significantly reduced the rate of invasive pneumococcal diseases, there is still a need for new vaccines with unlimited serotype coverage, long-lasting protection, and lower cost to be developed. One of the most promising candidates is the Whole-Cell Pneumococcal Vaccine (WCV). The new generation of whole-cell vaccines is based on an unencapsulated serotype that allows the expression of many bacterial antigens at a lower cost than a recombinant vaccine. These vaccines have been extensively studied, are currently in human trial phase 1/2, and seem to be the best treatment choice for pneumococcal diseases, especially for developing countries.
Collapse
Affiliation(s)
- Victor Morais
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo 11600, Uruguay.
| | - Esther Texeira
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo 11600, Uruguay.
| | - Norma Suarez
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo 11600, Uruguay.
| |
Collapse
|
17
|
Jwa MY, Ko EB, Kim HY, Kim SK, Jeong S, Seo HS, Yun CH, Han SH. Gamma-irradiation-killed Streptococcus pneumoniae potently induces the expression of IL-6 and IL-8 in human bronchial epithelial cells. Microb Pathog 2018; 124:38-46. [PMID: 30114464 DOI: 10.1016/j.micpath.2018.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022]
Abstract
Streptococcus pneumoniae is a major respiratory pathogen that can cause pneumonia, meningitis, and otitis media. Although capsular polysaccharide-based vaccines are commercially available, there is a need for broad-spectrum, serotype-independent, and cost-effective vaccines. Recently, an intranasal vaccine formulated with gamma-irradiated nonencapsulated S. pneumoniae whole cells has been developed and its immunogenicity is under investigation. Since innate immunity influences the subsequent adaptive immunity, in the present study, we investigated the immunostimulatory activity of gamma-irradiated S. pneumoniae (r-SP) in the human bronchial epithelial cell-line, BEAS-2B, by comparing with heat-inactivated S. pneumoniae (h-SP) and formalin-inactivated S. pneumoniae (f-SP). r-SP potently induced interleukin (IL)-6 and IL-8 at both mRNA and protein levels in a dose- and time-dependent manner, whereas h-SP and f-SP poorly induced them. Of note, the mRNA levels of IL-6 and IL-8 were approximately two-fold higher when cells were stimulated with 3 × 107 CFU/ml of r-SP for 3 h, while the protein levels of IL-6 and IL-8 were approximately five-fold higher after stimulation with 3 × 107 CFU/ml of r-SP for 24 h. Furthermore, r-SP exhibited potent activation of Toll-like receptor 2 compared with h-SP or f-SP. The expression of IL-6 and IL-8 induced by r-SP was mediated through the activation of mitogen-activated protein kinases. Remarkably, when r-SP was further treated with heat or formalin, there was a decrease in the aforementioned activities. Taken together, we suggest that r-SP stimulates the human respiratory epithelial cells to produce the cytokines IL-6 and IL-8, which might influence the induction of adaptive immune responses.
Collapse
Affiliation(s)
- Min Yong Jwa
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Byeol Ko
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Young Kim
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sun Kyung Kim
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soyoung Jeong
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|