1
|
Xu L, Li C, Liao R, Xiao Q, Wang X, Zhao Z, Zhang W, Ding X, Cao Y, Cai L, Rosenecker J, Guan S, Tang J. From Sequence to System: Enhancing IVT mRNA Vaccine Effectiveness through Cutting-Edge Technologies. Mol Pharm 2025; 22:81-102. [PMID: 39601789 DOI: 10.1021/acs.molpharmaceut.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The COVID-19 pandemic has spotlighted the potential of in vitro transcribed (IVT) mRNA vaccines with their demonstrated efficacy, safety, cost-effectiveness, and rapid manufacturing. Numerous IVT mRNA vaccines are now under clinical trials for a range of targets, including infectious diseases, cancers, and genetic disorders. Despite their promise, IVT mRNA vaccines face hurdles such as limited expression levels, nonspecific targeting beyond the liver, rapid degradation, and unintended immune activation. Overcoming these challenges is crucial to harnessing the full therapeutic potential of IVT mRNA vaccines for global health advancement. This review provides a comprehensive overview of the latest research progress and optimization strategies for IVT mRNA molecules and delivery systems, including the application of artificial intelligence (AI) models and deep learning techniques for IVT mRNA structure optimization and mRNA delivery formulation design. We also discuss recent development of the delivery platforms, such as lipid nanoparticles (LNPs), polymers, and exosomes, which aim to address challenges related to IVT mRNA protection, cellular uptake, and targeted delivery. Lastly, we offer insights into future directions for improving IVT mRNA vaccines, with the hope to spur further progress in IVT mRNA vaccine research and development.
Collapse
Affiliation(s)
- Lifeng Xu
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Chao Li
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Rui Liao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Qin Xiao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Xiaoran Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Xiaoyan Ding
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich 80337, Germany
| | - Yuxue Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Larry Cai
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joseph Rosenecker
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich 80337, Germany
| | - Shan Guan
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Jie Tang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
2
|
Tang S, Zhao C, Zhu X. Engineering Escherichia coli-Derived Nanoparticles for Vaccine Development. Vaccines (Basel) 2024; 12:1287. [PMID: 39591189 PMCID: PMC11598912 DOI: 10.3390/vaccines12111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The development of effective vaccines necessitates a delicate balance between maximizing immunogenicity and minimizing safety concerns. Subunit vaccines, while generally considered safe, often fail to elicit robust and durable immune responses. Nanotechnology presents a promising approach to address this dilemma, enabling subunit antigens to mimic critical aspects of native pathogens, such as nanoscale dimensions, geometry, and highly repetitive antigen display. Various expression systems, including Escherichia coli (E. coli), yeast, baculovirus/insect cells, and Chinese hamster ovary (CHO) cells, have been explored for the production of nanoparticle vaccines. Among these, E. coli stands out due to its cost-effectiveness, scalability, rapid production cycle, and high yields. However, the E. coli manufacturing platform faces challenges related to its unfavorable redox environment for disulfide bond formation, lack of post-translational modifications, and difficulties in achieving proper protein folding. This review focuses on molecular and protein engineering strategies to enhance protein solubility in E. coli and facilitate the in vitro reassembly of virus-like particles (VLPs). We also discuss approaches for antigen display on nanocarrier surfaces and methods to stabilize these carriers. These bioengineering approaches, in combination with advanced nanocarrier design, hold significant potential for developing highly effective and affordable E. coli-derived nanovaccines, paving the way for improved protection against a wide range of infectious diseases.
Collapse
Affiliation(s)
- Shubing Tang
- Shanghai Reinovax Biologics Co., Ltd., Pudong New District, Shanghai 200135, China;
| | - Chen Zhao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201058, China
| | - Xianchao Zhu
- Shanghai Reinovax Biologics Co., Ltd., Pudong New District, Shanghai 200135, China;
| |
Collapse
|
3
|
Sun X, Lian Y, Tian T, Cui Z. Virus-like particle encapsulation of functional proteins: advances and applications. Theranostics 2024; 14:7604-7622. [PMID: 39659581 PMCID: PMC11626933 DOI: 10.7150/thno.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 12/12/2024] Open
Abstract
Proteins face several challenges in biomedicine, including issues with antibody production, degradation by proteases, rapid clearance by the kidneys, and short half-lives. To address these problems, various nano delivery systems have been developed, with virus-like particles (VLPs) emerging as a leading solution. VLPs, which are self-assembled protein complexes, offer effective encapsulation and transport of proteins. They provide enhanced stability, extended circulation time, preserved biological activity, improved targeting for therapies or imaging, and reduced side effects due to minimized systemic exposure. This review explores various methods for encapsulating proteins within VLPs. It assesses the benefits and limitations of each method and their applications in imaging, therapeutic enzyme delivery, vaccines, immunotherapy, nanoreactors, and biosensors. Future advancements in VLPs will depend on improving packaging methods, controlling protein loading, optimizing assembly techniques, and enhancing capsid design. The review also discusses current challenges and proposes solutions to advance the use of VLPs in various applications.
Collapse
Affiliation(s)
- Xianxun Sun
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Yindong Lian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tao Tian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
4
|
Ren M, Abdullah SW, Pei C, Guo H, Sun S. Use of virus-like particles and nanoparticle-based vaccines for combating picornavirus infections. Vet Res 2024; 55:128. [PMID: 39350170 PMCID: PMC11443892 DOI: 10.1186/s13567-024-01383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024] Open
Abstract
Picornaviridae are non-enveloped ssRNA viruses that cause diseases such as poliomyelitis, hand-foot-and-mouth disease (HFMD), hepatitis A, encephalitis, myocarditis, and foot-and-mouth disease (FMD). Virus-like particles (VLPs) vaccines mainly comprise particles formed through the self-assembly of viral capsid proteins (for enveloped viruses, envelope proteins are also an option). They do not contain the viral genome. On the other hand, the nanoparticles vaccine (NPs) is mainly composed of self-assembling biological proteins or nanomaterials, with viral antigens displayed on the surface. The presentation of viral antigens on these particles in a repetitive array can elicit a strong immune response in animals. VLPs and NPs can be powerful platforms for multivalent antigen presentation. This review summarises the development of virus-like particle vaccines (VLPs) and nanoparticle vaccines (NPs) against picornaviruses. By detailing the progress made in the fight against various picornaviruses such as poliovirus (PV), foot-and-mouth disease virus (FMDV), enterovirus (EV), Senecavirus A (SVA), and encephalomyocarditis virus (EMCV), we in turn highlight the significant strides made in vaccine technology. These advancements include diverse construction methods, expression systems, elicited immune responses, and the use of various adjuvants. We see promising prospects for the continued development and optimisation of VLPs and NPs vaccines. Future research should focus on enhancing these vaccines' immunogenicity, stability, and delivery methods. Moreover, expanding our understanding of the interplay between these vaccines and the immune system will be crucial. We hope these insights will inspire and guide fellow researchers in the ongoing quest to combat picornavirus infections more effectively.
Collapse
Affiliation(s)
- Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gembloux Agro-Biotech, University of Liege, Gembloux, Belgium
| | - Sahibzada Waheed Abdullah
- Livestock and dairy development department peshawar, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Chenchen Pei
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Nguyen HT, Falzarano D, Gerdts V, Liu Q. Construction and immunogenicity of SARS-CoV-2 virus-like particle expressed by recombinant baculovirus BacMam. Microbiol Spectr 2024; 12:e0095924. [PMID: 38916311 PMCID: PMC11302303 DOI: 10.1128/spectrum.00959-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
The pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve to give rise to variants of concern that can escape vaccine-induced immunity. As such, more effective vaccines are urgently needed. In this study, we evaluated virus-like particle (VLP) as a vaccine platform for SARS-CoV-2. The spike, envelope, and membrane proteins of the SARS-CoV-2 Wuhan strain were expressed by a single recombinant baculovirus BacMam and assembled into VLPs in cell culture. The morphology and size of the SARS-CoV-2 VLP as shown by transmission electron microscopy were similar to the authentic SARS-CoV-2 virus particle. In a mouse trial, two intramuscular immunizations of the VLP BacMam with no adjuvant elicited spike-specific binding antibodies in both sera and bronchoalveolar lavage fluids. Importantly, BacMam VLP-vaccinated mouse sera showed neutralization activity against SARS-CoV-2 spike pseudotyped lentivirus. Our results indicated that the SARS-CoV-2 VLP BacMam stimulated spike-specific immune responses with neutralization activity. IMPORTANCE Although existing vaccines have significantly mitigated the impact of the COVID-19 pandemic, none of the vaccines can induce sterilizing immunity. The spike protein is the main component of all approved vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due primarily to its ability to induce neutralizing antibodies. The conformation of the spike protein in the vaccine formulation should be critical for the efficacy of a vaccine. By way of closely resembling the authentic virions, virus-like particles (VLPs) should render the spike protein in its natural conformation. To this end, we utilized the baculovirus vector, BacMam, to express virus-like particles consisting of the spike, membrane, and envelope proteins of SARS-CoV-2. We demonstrated the immunogenicity of our VLP vaccine with neutralizing activity. Our data warrant further evaluation of the virus-like particles as a vaccine candidate in protecting against virus challenges.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/administration & dosage
- Baculoviridae/genetics
- Baculoviridae/immunology
- Mice
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Humans
- Mice, Inbred BALB C
- Female
- Immunogenicity, Vaccine
- Coronavirus Envelope Proteins/immunology
- Coronavirus Envelope Proteins/genetics
- Coronavirus M Proteins
Collapse
Affiliation(s)
- Hai Trong Nguyen
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
6
|
Li Y, Tian S, Ai Y, Hu Z, Ma C, Fu M, Xu Z, Li Y, Liu S, Zou Y, Zhou Y, Jin J. A nanoparticle vaccine displaying varicella-zoster virus gE antigen induces a superior cellular immune response than a licensed vaccine in mice and non-human primates. Front Immunol 2024; 15:1419634. [PMID: 39081325 PMCID: PMC11286566 DOI: 10.3389/fimmu.2024.1419634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Herpes zoster (HZ), also known as shingles, remains a significant global health issue and most commonly seen in elderly individuals with an early exposure history to varicella-zoster virus (VZV). Currently, the licensed vaccine Shingrix, which comprises a recombinant VZV glycoprotein E (gE) formulated with a potent adjuvant AS01B, is the most effective shingles vaccine on the market. However, undesired reactogenicity and increasing global demand causing vaccine shortage, prompting the development of novel shingles vaccines. Here, we developed novel vaccine candidates utilising multiple nanoparticle (NP) platforms to display the recombinant gE antigen, formulated in an MF59-biosimilar adjuvant. In naïve mice, all tested NP vaccines induced higher humoral and cellular immune responses than Shingrix, among which, the gEM candidate induced the highest cellular response. In live attenuated VZV (VZV LAV)-primed mouse and rhesus macaque models, the gEM candidate elicited superior cell-mediated immunity (CMI) over Shingrix. Collectively, we demonstrated that NP technology remains a suitable tool for developing shingles vaccine, and the reported gEM construct is a highly promising candidate in the next-generation shingles vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jing Jin
- Patronus Biotech Co. Ltd., Guangzhou, China
| |
Collapse
|
7
|
Xi Y, Ma R, Li S, Liu G, Liu C. Functionally Designed Nanovaccines against SARS-CoV-2 and Its Variants. Vaccines (Basel) 2024; 12:764. [PMID: 39066402 PMCID: PMC11281565 DOI: 10.3390/vaccines12070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
COVID-19, generated by SARS-CoV-2, has significantly affected healthcare systems worldwide. The epidemic has highlighted the urgent need for vaccine development. Besides the conventional vaccination models, which include live-attenuated, recombinant protein, and inactivated vaccines, nanovaccines present a distinct opportunity to progress vaccine research and offer convenient alternatives. This review highlights the many widely used nanoparticle vaccine vectors, outlines their benefits and drawbacks, and examines recent developments in nanoparticle vaccines to prevent SARS-CoV-2. It also offers a thorough overview of the many advantages of nanoparticle vaccines, including an enhanced host immune response, multivalent antigen delivery, and efficient drug delivery. The main objective is to provide a reference for the development of innovative antiviral vaccines.
Collapse
Affiliation(s)
- Yue Xi
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (Y.X.); (R.M.); (S.L.)
| | - Rongrong Ma
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (Y.X.); (R.M.); (S.L.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
| | - Shuo Li
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (Y.X.); (R.M.); (S.L.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (Y.X.); (R.M.); (S.L.)
- China Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
8
|
Wu G, Li Q, Dai J, Mao G, Ma Y. Design and Application of Biosafe Coronavirus Engineering Systems without Virulence. Viruses 2024; 16:659. [PMID: 38793541 PMCID: PMC11126016 DOI: 10.3390/v16050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the last twenty years, three deadly zoonotic coronaviruses (CoVs)-namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2-have emerged. They are considered highly pathogenic for humans, particularly SARS-CoV-2, which caused the 2019 CoV disease pandemic (COVID-19), endangering the lives and health of people globally and causing unpredictable economic losses. Experiments on wild-type viruses require biosafety level 3 or 4 laboratories (BSL-3 or BSL-4), which significantly hinders basic virological research. Therefore, the development of various biosafe CoV systems without virulence is urgently needed to meet the requirements of different research fields, such as antiviral and vaccine evaluation. This review aimed to comprehensively summarize the biosafety of CoV engineering systems. These systems combine virological foundations with synthetic genomics techniques, enabling the development of efficient tools for attenuated or non-virulent vaccines, the screening of antiviral drugs, and the investigation of the pathogenic mechanisms of novel microorganisms.
Collapse
Affiliation(s)
- Guoqiang Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Qiaoyu Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guobin Mao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| |
Collapse
|
9
|
Kim TH, Bae S, Goo S, Myoung J. Distinctive Combinations of RBD Mutations Contribute to Antibody Evasion in the Case of the SARS-CoV-2 Beta Variant. J Microbiol Biotechnol 2023; 33:1587-1295. [PMID: 37915256 PMCID: PMC10772562 DOI: 10.4014/jmb.2308.08020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
Since its first report in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a grave threat to public health. Virus-specific countermeasures, such as vaccines and therapeutics, have been developed and have contributed to the control of the viral pandemic, which has become endemic. Nonetheless, new variants continue to emerge and could cause a new pandemic. Consequently, it is important to comprehensively understand viral evolution and the roles of mutations in viral infectivity and transmission. SARS-CoV-2 beta variant encode mutations (D614G, N501Y, E484K, and K417N) in the spike which are frequently found in other variants as well. While their individual role in viral infectivity has been elucidated against various therapeutic antibodies, it still remains unclear whether those mutations may act additively or synergistically when combined. Here, we report that N501Y mutation shows differential effect on two therapeutic antibodies tested. Interestingly, the relative importance of E484K and K417N mutations in antibody evasion varies depending on the antibody type. Collectively, these findings suggest that continuous efforts to develop effective antibody therapeutics and combinatorial treatment with multiple antibodies are more rational and effective forms of treatment.
Collapse
Affiliation(s)
- Tae-Hun Kim
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Sojung Bae
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Sunggeun Goo
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| |
Collapse
|
10
|
Hempel H, Mantis N, Heaney CD, Pinto LA. The SeroNet Clinical and Translational Serology Task Force (CTTF) SARS-CoV-2 mucosal immunity methodological considerations and best practices workshop. Hum Vaccin Immunother 2023; 19:2253598. [PMID: 37695268 PMCID: PMC10496519 DOI: 10.1080/21645515.2023.2253598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
SARS-CoV-2 persists in certain populations, even with vaccination and boosters. Emerging evidence suggests that reductions in virus transmission and infection will likely require involvement of the mucosal immune system, especially secretory antibodies in the upper respiratory tract. The Clinical and Translational Serology Task Force (CTTF) within The National Cancer Institute (NCI)'s Serological Sciences Network for COVID-19 (SeroNet) hosted a workshop to review the status of development and standardization of mucosal sample collection methods and assays, identify challenges, and develop action plans to bridge gaps. Speakers presented data underscoring a role for secretory IgA in protection, mucosal markers as correlates of protection, methods for tracking and assessing mucosal antibodies, and lessons learned from other infectious agents. Perspectives from regulators and industry were put forward to guide mucosal vaccine development. Methodological considerations for optimizing collection protocols and assays and harmonizing data were highlighted. Rigorous studies, standardized protocols, controls, standards, and assay validation were identified as necessary to gain momentum in expanding SARS-CoV-2 vaccines to the mucosa.
Collapse
Affiliation(s)
- Heidi Hempel
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nicholas Mantis
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Ligia A. Pinto
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
11
|
Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, Ramezani Farani M, Zalpoor H, Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal 2023; 21:110. [PMID: 37189112 PMCID: PMC10183699 DOI: 10.1186/s12964-023-01104-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Maryam VaezJalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Cristina Diaconu C, Madalina Pitica I, Chivu-Economescu M, Georgiana Necula L, Botezatu A, Virginia Iancu I, Iulia Neagu A, L. Radu E, Matei L, Maria Ruta S, Bleotu C. SARS-CoV-2 Variant Surveillance in Genomic Medicine Era. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/26/2024] Open
Abstract
In the genomic medicine era, the emergence of SARS-CoV-2 was immediately followed by viral genome sequencing and world-wide sequences sharing. Almost in real-time, based on these sequences, resources were developed and applied around the world, such as molecular diagnostic tests, informed public health decisions, and vaccines. Molecular SARS-CoV-2 variant surveillance was a normal approach in this context yet, considering that the viral genome modification occurs commonly in viral replication process, the challenge is to identify the modifications that significantly affect virulence, transmissibility, reduced effectiveness of vaccines and therapeutics or failure of diagnostic tests. However, assessing the importance of the emergence of new mutations and linking them to epidemiological trend, is still a laborious process and faster phenotypic evaluation approaches, in conjunction with genomic data, are required in order to release timely and efficient control measures.
Collapse
|
13
|
Ghazvini K, Keikha M. Multivalent vaccines against new SARS-CoV-2 hybrid variants. VACUNAS (ENGLISH EDITION) 2023; 24. [PMCID: PMC9969532 DOI: 10.1016/j.vacune.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Keikha
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author
| |
Collapse
|
14
|
Ghazvini K, Keikha M. Multivalent vaccines against new SARS-CoV-2 hybrid variants. VACUNAS 2023; 24:76-77. [PMID: 35757082 PMCID: PMC9212962 DOI: 10.1016/j.vacun.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/08/2023]
Affiliation(s)
- Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Keikha
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author
| |
Collapse
|
15
|
Mufamadi MS, Ngoepe MP, Nobela O, Maluleke N, Phorah B, Methula B, Maseko T, Masebe DI, Mufhandu HT, Katata-Seru LM. Next-Generation Vaccines: Nanovaccines in the Fight against SARS-CoV-2 Virus and beyond SARS-CoV-2. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4588659. [PMID: 37181817 PMCID: PMC10175023 DOI: 10.1155/2023/4588659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
The virus responsible for the coronavirus viral pandemic is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging SARS-CoV-2 variants caused by distinctive mutations within the viral spike glycoprotein of SARS-CoV-2 are considered the cause for the rapid spread of the disease and make it challenging to treat SARS-CoV-2. The manufacturing of appropriate efficient vaccines and therapeutics is the only option to combat this pandemic. Nanomedicine has enabled the delivery of nucleic acids and protein-based vaccines to antigen-presenting cells to produce protective immunity against the coronavirus. Nucleic acid-based vaccines, particularly mRNA nanotechnology vaccines, are the best prevention option against the SARS-CoV-2 pandemic worldwide, and they are effective against the novel coronavirus and its multiple variants. This review will report on progress made thus far with SARS-CoV-2 vaccines and beyond employing nanotechnology-based nucleic acid vaccine approaches.
Collapse
Affiliation(s)
- Maluta Steven Mufamadi
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha 6059, South Africa
- Nabio Consulting (Pty) Ltd., Pretoria 0183, South Africa
| | - Mpho Phehello Ngoepe
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha 6059, South Africa
| | - Ofentse Nobela
- Nabio Consulting (Pty) Ltd., Pretoria 0183, South Africa
| | | | | | - Banele Methula
- Nabio Consulting (Pty) Ltd., Pretoria 0183, South Africa
| | - Thapelo Maseko
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha 6059, South Africa
- Nabio Consulting (Pty) Ltd., Pretoria 0183, South Africa
| | | | | | | |
Collapse
|
16
|
Current progress in the development of prophylactic and therapeutic vaccines. SCIENCE CHINA. LIFE SCIENCES 2022; 66:679-710. [PMID: 36469218 PMCID: PMC9734355 DOI: 10.1007/s11427-022-2230-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022]
Abstract
Vaccines are essential public health tools and play an important role in reducing the burden of infectious diseases in the population. Emerging infectious diseases and outbreaks pose new challenges for vaccine development, requiring the rapid design and production of safe and effective vaccines against diseases with limited resources. Here, we focus on the development of vaccines in broad fields ranging from conventional prophylactic vaccines against infectious diseases to therapeutic vaccines against chronic diseases and cancer providing a comprehensive overview of recent advances in eight different vaccine forms (live attenuated vaccines, inactivated vaccines, polysaccharide and polysaccharide conjugate vaccines, recombinant subunit vaccines, virus-like particle and nanoparticle vaccines, polypeptide vaccines, DNA vaccines, and mRNA vaccines) and the therapeutic vaccines against five solid tumors (lung cancer breast cancer colorectal cancer liver cancer and gastric cancer), three infectious diseases (human immunodeficiency virus, hepatitis B virus and human papillomavirus-induced diseases) and three common chronic diseases (hypertension, diabetes mellitus and dyslipidemia). We aim to provide new insights into vaccine technologies, platforms, applications and understanding of potential next-generation preventive and therapeutic vaccine technologies paving the way for the vaccines design in the future.
Collapse
|
17
|
Zhou YF, Nie JJ, Shi C, Ning K, Cao YF, Xie Y, Xiang H, Xie Q. Expression and Immunogenicity of SARS-CoV-2 Virus-Like Particles based on Recombinant Truncated HEV-3 ORF2 Capsid Protein. J Microbiol Biotechnol 2022; 32:1335-1343. [PMID: 36224764 PMCID: PMC9668089 DOI: 10.4014/jmb.2205.05023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022]
Abstract
COVID-19 is an emerging disease that poses a severe threat to global public health. As such, there is an urgent demand for vaccines against SARS-CoV-2, the virus that causes COVID-19. Here, we describe a virus-like nanoparticle candidate vaccine against SARS-CoV-2 produced by an E. coli expression system. The fusion protein of a truncated ORF2-encoded protein of aa 439~608 (p170) from hepatitis E virus CCJD-517 and the receptor-binding domain of the spike protein from SARS-CoV-2 were expressed, purified and characterized. The antigenicity and immunogenicity of p170-RBD were evaluated in vitro and in Kunming mice. Our investigation revealed that p170-RBD self-assembled into approximately 24 nm virus-like particles, which could bind to serum from vaccinated people (p < 0.001) and receptors on cells. Immunization with p170-RBD induced the titer of IgG antibody vaccine increased from 14 days post-immunization and was significantly enhanced after a booster immunization at 28 dpi, ultimately reaching a peak level on 42 dpi with a titer of 4.97 log10. Pseudovirus neutralization tests showed that the candidate vaccine induced a strong neutralizing antibody response in mice. In this research, we demonstrated that p170-RBD possesses strong antigenicity and immunogenicity and could be a potential candidate for use in future SARS-CoV-2 vaccine development.
Collapse
Affiliation(s)
- Yong-Fei Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China,School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Jiao-Jiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China,School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Chao Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China,School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Ke Ning
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China,School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Yu-Feng Cao
- Immune-Path Biotechnology (Suzhou) Co., Ltd., Suzhou 215000, P.R. China
| | - Yanbo Xie
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, P.R. China,
Y. Xie E-mail:
| | - Hongyu Xiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China,School of Life Sciences, Jilin University, Changchun 130012, P.R. China,Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, P.R. China
| | - Qiuhong Xie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China,School of Life Sciences, Jilin University, Changchun 130012, P.R. China,Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, P.R. China,Corresponding authors Q. Xie Phone/Fax: +86-431-85153832 E-mail:
| |
Collapse
|
18
|
Levasseur MD, Hofmann R, Edwardson TGW, Hehn S, Thanaburakorn M, Bode JW, Hilvert D. Post-Assembly Modification of Protein Cages by Ubc9-Mediated Lysine Acylation. Chembiochem 2022; 23:e202200332. [PMID: 35951442 PMCID: PMC9826087 DOI: 10.1002/cbic.202200332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/09/2022] [Indexed: 01/11/2023]
Abstract
Although viruses have been successfully repurposed as vaccines, antibiotics, and anticancer therapeutics, they also raise concerns regarding genome integration and immunogenicity. Virus-like particles and non-viral protein cages represent a potentially safer alternative but often lack desired functionality. Here, we investigated the utility of a new enzymatic bioconjugation method, called lysine acylation using conjugating enzymes (LACE), to chemoenzymatically modify protein cages. We equipped two structurally distinct protein capsules with a LACE-reactive peptide tag and demonstrated their modification with diverse ligands. This modular approach combines the advantages of chemical conjugation and genetic fusion and allows for site-specific modification with recombinant proteins as well as synthetic peptides with facile control of the extent of labeling. This strategy has the potential to fine-tune protein containers of different shape and size by providing them with new properties that go beyond their biologically native functions.
Collapse
Affiliation(s)
- Mikail D. Levasseur
- Laboratory of Organic ChemistryETH ZürichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
| | - Raphael Hofmann
- Laboratory of Organic ChemistryETH ZürichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
| | - Thomas G. W. Edwardson
- Laboratory of Organic ChemistryETH ZürichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
| | - Svenja Hehn
- Laboratory of Organic ChemistryETH ZürichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
| | | | - Jeffrey W. Bode
- Laboratory of Organic ChemistryETH ZürichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
| | - Donald Hilvert
- Laboratory of Organic ChemistryETH ZürichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
| |
Collapse
|
19
|
Contribution of T- and B-cell intrinsic toll-like receptors to the adaptive immune response in viral infectious diseases. Cell Mol Life Sci 2022; 79:547. [PMID: 36224474 PMCID: PMC9555683 DOI: 10.1007/s00018-022-04582-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/03/2022]
Abstract
Toll-like receptors (TLRs) comprise a class of highly conserved molecules that recognize pathogen-associated molecular patterns and play a vital role in host defense against multiple viral infectious diseases. Although TLRs are highly expressed on innate immune cells and play indirect roles in regulating antiviral adaptive immune responses, intrinsic expression of TLRs in adaptive immune cells, including T cells and B cells, cannot be ignored. TLRs expressed in CD4 + and CD8 + T cells play roles in enhancing TCR signal-induced T-cell activation, proliferation, function, and survival, serving as costimulatory molecules. Gene knockout of TLR signaling molecules has been shown to diminish antiviral adaptive immune responses and affect viral clearance in multiple viral infectious animal models. These results have highlighted the critical role of TLRs in the long-term immunological control of viral infection. This review summarizes the expression and function of TLR signaling pathways in T and B cells, focusing on the in vitro and vivo mechanisms and effects of intrinsic TLR signaling in regulating T- and B-cell responses during viral infection. The potential clinical use of TLR-based immune regulatory drugs for viral infectious diseases is also explored.
Collapse
|
20
|
Wu Y, Liu B, Liu Z, Zhang P, Mu X, Tong Z. Construction, Characterization, and Application of a Nonpathogenic Virus-like Model for SARS-CoV-2 Nucleocapsid Protein by Phage Display. Toxins (Basel) 2022; 14:toxins14100683. [PMID: 36287952 PMCID: PMC9607219 DOI: 10.3390/toxins14100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
With the outbreak and spread of COVID-19, a deep investigation of SARS-CoV-2 is urgent. Direct usage of this virus for scientific research could provide reliable results and authenticity. However, it is strictly constrained and unrealistic due to its high pathogenicity and infectiousness. Considering its biosafety, different systems and technologies have been employed in immunology and biomedical studies. In this study, phage display technology was used to construct a nonpathogenic model for COVID-19 research. The nucleocapsid protein of SARS-CoV-2 was fused with the M13 phage capsid p3 protein and expressed on the M13 phages. After validation of its successful expression, its potential as the standard for qPCR quantification and affinity with antibodies were confirmed, which may show the possibility of using this nonpathogenic bacteriophage to replace the pathogenic virus in scientific research concerning SARS-CoV-2. In addition, the model was used to develop a system for the classification and identification of different samples using ATR–FTIR, which may provide an idea for the development and evaluation of virus monitoring equipment in the future.
Collapse
|
21
|
van Oosten L, Yan K, Rawle DJ, Le TT, Altenburg JJ, Fougeroux C, Goksøyr L, Adriaan de Jongh W, Nielsen MA, Sander AF, Pijlman GP, Suhrbier A. An S1-Nanoparticle Vaccine Protects against SARS-CoV-2 Challenge in K18-hACE2 Mice. J Virol 2022; 96:e0084422. [PMID: 35766489 PMCID: PMC9327679 DOI: 10.1128/jvi.00844-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Linda van Oosten
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Daniel J. Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Thuy T. Le
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jort J. Altenburg
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
| | | | - Louise Goksøyr
- AdaptVac Aps, Hørsholm, Denmark
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Morten A. Nielsen
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adam F. Sander
- AdaptVac Aps, Hørsholm, Denmark
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- GVN Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, Australia
| |
Collapse
|
22
|
Chen J, Xu W, Li L, Yi L, Jiang Y, Hao P, Xu Z, Zou W, Li P, Gao Z, Tian M, Jin N, Ren L, Li C. Immunogenicity and protective potential of chimeric virus-like particles containing SARS-CoV-2 spike and H5N1 matrix 1 proteins. Front Cell Infect Microbiol 2022; 12:967493. [PMID: 35923799 PMCID: PMC9339902 DOI: 10.3389/fcimb.2022.967493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 12/17/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has posed a constant threat to human beings and the world economy for more than two years. Vaccination is the first choice to control and prevent the pandemic. However, an effective SARS-CoV-2 vaccine against the virus infection is still needed. This study designed and prepared four kinds of virus-like particles (VLPs) using an insect expression system. Two constructs encoded wild-type SARS-CoV-2 spike (S) fused with or without H5N1 matrix 1 (M1) (S and SM). The other two constructs contained a codon-optimized spike gene and/or M1 gene (mS and mSM) based on protein expression, stability, and ADE avoidance. The results showed that the VLP-based vaccine could induce high SARS-CoV-2 specific antibodies in mice, including specific IgG, IgG1, and IgG2a. Moreover, the mSM group has the most robust ability to stimulate humoral immunity and cellular immunity than the other VLPs, suggesting the mSM is the best immunogen. Further studies showed that the mSM combined with Al/CpG adjuvant could stimulate animals to produce sustained high-level antibodies and establish an effective protective barrier to protect mice from challenges with mouse-adapted strain. The vaccine based on mSM and Al/CpG adjuvant is a promising candidate vaccine to prevent the COVID-19 pandemic.
Collapse
Affiliation(s)
- Jing Chen
- College of Veterinary medicine, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lichao Yi
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuhang Jiang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhiqiang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wancheng Zou
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peiheng Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zihan Gao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Mingyao Tian
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Chang Li, ; Linzhu Ren, ; Ningyi Jin,
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Chang Li, ; Linzhu Ren, ; Ningyi Jin,
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Chang Li, ; Linzhu Ren, ; Ningyi Jin,
| |
Collapse
|
23
|
Abstract
Unprecedented. This is the closest and most appropriate word to describe the COVID-19 pandemic, which the world has been experiencing with pain and fear. The first case of pneumonia-like symptoms of unknown etiology appeared presumably in November 2019, with the subsequent official report to the WHO by the Chinese authorities on December 31, 2019. China’s first confirmed death from the virus occurred on January 11, 2020, when a 61-year-old male resident of Hubei, the capital of Wuhan Province, died. Within a month, the COVID-19 death toll surpassed 1,000 (February 10, 2020). Accordingly, just 30 days after the initial report, the coronavirus outbreak was called a “public health emergency of international concern” by the WHO, the organization’s highest alert level. Unfortunately, the WHO soon declared the COVID-19 outbreak a pandemic (March 11, 2020). Within a year of viral emergence, and by December 2020, more than 80 million confirmed cases had been reported worldwide. Infections increased exponentially over the following year. As of February 11, 2022, over 400 million cases have been reported, with nearly 6 million deaths, an unprecedented rate of spread across borders.
Collapse
Affiliation(s)
- Jinjong Myoung
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju, 54531, Republic of Korea.
| |
Collapse
|