1
|
Román‐Montes CM, González‐Lara F, Diaz‐Lomelí P, Sánchez AC, Rangel‐Cordero A, Sifuentes‐Osornio J, Ponce‐de‐León A, Martínez‐Gamboa A. Molecular Identification and Antifungal Susceptibility of Fusarium spp. Clinical Isolates. Mycoses 2025; 68:e70012. [PMID: 39800856 PMCID: PMC11725611 DOI: 10.1111/myc.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Accurate identification of Fusarium species requires molecular identification. Treating fusariosis is challenging due to widespread antifungal resistance, high rates of treatment failure, and insufficient information relating antifungal susceptibility to the clinical outcome. Despite recent outbreaks in Mexico, there is limited information on epidemiology and antifungal susceptibility testing (AST). OBJECTIVES We aimed to analyse the distribution of Fusarium species from a referral centre in Mexico with DNA sequencing and to describe AST to the clinical outcome. METHODS We conducted a retrospective study on clinical isolates of Fusarium. They were identified by translation elongation factor-1α gene amplification and sequencing. AST was performed to determine minimal inhibitory concentrations (MICs). RESULTS A total of 35 Fusarium isolates from 26 patients were included. The most common was Fusarium solani species complex (FSSC) in 51.5%, of which Fusarium petroliphilum and Fusarium oxysporum species complex were the most frequent with 37% and 20%, respectively. AST did not show MICs above the epidemiological cut-off value. Fusariosis was diagnosed in 19 patients, mostly with hematologic neoplasm; the overall mortality rate was 32%. CONCLUSIONS Fusarium petroliphilum from the FSSC was found most frequently. Elevated mortality and MICs for all tested antifungals were found, with higher MIC50 among F. solani SC than F. oxysporum SC or F. fujikuroi SC.
Collapse
Affiliation(s)
- Carla M. Román‐Montes
- Clinical Microbiology LaboratoryInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
- Infectious Diseases DepartmentInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Fernanda González‐Lara
- Clinical Microbiology LaboratoryInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
- Infectious Diseases DepartmentInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Paulette Diaz‐Lomelí
- Clinical Microbiology LaboratoryInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Axel Cervantes Sánchez
- Clinical Microbiology LaboratoryInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Andrea Rangel‐Cordero
- Clinical Microbiology LaboratoryInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - José Sifuentes‐Osornio
- General DirectionInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Alfredo Ponce‐de‐León
- Infectious Diseases DepartmentInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Areli Martínez‐Gamboa
- Clinical Microbiology LaboratoryInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| |
Collapse
|
2
|
Sedik S, Wolfgruber S, Hoenigl M, Kriegl L. Diagnosing fungal infections in clinical practice: a narrative review. Expert Rev Anti Infect Ther 2024; 22:935-949. [PMID: 39268795 DOI: 10.1080/14787210.2024.2403017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Invasive fungal infections (IFI) present a major medical challenge, with an estimated 6.5 million cases annually, resulting in 3.8 million deaths. Pathogens such as Aspergillus spp. Candida spp. Mucorales spp. Cryptococcus spp. and other fungi species contribute to these infections, posing risks to immunocompromised individuals. Early and accurate diagnosis is crucial for effective treatment and better patient outcomes. AREAS COVERED This narrative review provides an overview of the current methods and challenges associated with diagnosing fungal diseases, including invasive aspergillosis and invasive candidiasis, as well as rare and endemic fungal infections. Various diagnostic techniques, including microscopy, culture, molecular diagnostics, and serological tests, are reviewed, highlighting their respective advantages and limitations and role in clinical guidelines. To illustrate, the need for improved diagnostic strategies to overcome existing challenges, such as the low sensitivity and specificity of current tests and the time-consuming nature of traditional culture-based methods, is addressed. EXPERT OPINION Current advancements in fungal infection diagnostics have significant implications for healthcare outcomes. Improved strategies like molecular testing and antigen detection promise early detection of fungal pathogens, enhancing patient management. Challenges include global access to advanced technologies and the need for standardized, user-friendly point-of-care diagnostics to improve diagnosis of fungal infections globally.
Collapse
Affiliation(s)
- Sarah Sedik
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Stella Wolfgruber
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Lisa Kriegl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
3
|
Kaur M, Thakur P, Verma N, Choksket S, Harshvardhan, Korpole S, Bandarupalli D, Grover V. Invasive Fungal Infections in Immunocompromised Conditions: Emphasis on COVID-19. Curr Microbiol 2024; 81:400. [PMID: 39384659 DOI: 10.1007/s00284-024-03916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
The COVID-19 pandemic caused death of 6 million lives globally, primarily from respiratory failure, but also a significant number from invasive fungal co-infections in these patients, owing to the immune dysfunction in hospitalized patients. Such complications occurred more often in critically ill, hospitalized patients particularly those admitted in intensive care units and were reported as the major reason associated with a high mortality rate worldwide. Fungal pathogens most commonly associated with COVID-19 patients comprise members of the Mucorales (such as Rhizopus, Mucor, and Lichtheimia), as well as genera Aspergillus and Candida. In India, the prevalence rate of mucormycosis is relatively high than aspergillosis and candidiasis, and the predisposing risk factors associated with such infections included uncontrolled diabetes, underlying lung disease, leukopenia, neutropenia, malignancies and prolonged steroid therapy. However, co-infection with other fungi, including Alternaria and Scedosporium was also sporadically reported. These devastating invasive fungal infections are associated with differential mortality (high-low) and morbidity rates even after active management. The diagnosis of such infections is often challenging due to lack of sensitivity in contemporary diagnostic methods and poses an enormous challenge to healthcare experts. Thus, the role of early and accurate diagnosis, and management of such fungal infections, is vital in preventing life-threatening situations. Hence, this review focusses primarily on the epidemiology, predisposing risk factors, host environment, diagnosis and treatment of the most common medically important invasive fungal infections in immunocompromised conditions associated with COVID-19.
Collapse
Affiliation(s)
- Mahaldeep Kaur
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Payal Thakur
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Nandini Verma
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Stanzin Choksket
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Harshvardhan
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suresh Korpole
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devadatha Bandarupalli
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Vishakha Grover
- Dr. HS Judge Institute of Dental Sciences and Hospital, Panjab University, Sector 25, Chandigarh, India.
| |
Collapse
|
4
|
Dobreva L, Atanasova N, Donchev P, Krumova E, Abrashev R, Karakirova Y, Mladenova R, Tolchkov V, Ralchev N, Dishliyska V, Danova S. Candidate-Probiotic Lactobacilli and Their Postbiotics as Health-Benefit Promoters. Microorganisms 2024; 12:1910. [PMID: 39338583 PMCID: PMC11434380 DOI: 10.3390/microorganisms12091910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Lactobacillus species are widely recognized for their probiotic potential, focusing on their mechanisms of health benefits and protection. Here we conducted an in vitro investigation of the probiotic potential with a role in microbiome homeostasis of four strains: Lactiplantibacillus plantarum L6 and F53, Ligilactobacillus salivarius 1, and Lactobacillus helveticus 611. A broad spectrum of antibacterial and antifungal activity was determined. The strain-specific inhibition of Staphylococcus aureus, Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, and saprophytic/toxigenic fungi makes them promising as protective cultures. DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid) measurements showed that tested samples had strain-specific capacity for scavenging of radicals. The molecular base for the antioxidant potential of two lyophilized forms of active strains was investigated by electron paramagnetic resonance spectroscopy. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, with fractions of the most active postbiotics obtained by SEC-FPLC (fast protein liquid chromatography) analysis, showed a wide variety of effects on the growth of a K562 myeloid leukemia cell line. The IC50 (half-maximal inhibitory concentration) of L. salivarius 1 was determined to be 46.15 mg/mL. The proven in vitro functionality of the selected lactobacilli make them suitable for development of target probiotics with specific beneficial effects expected in vivo. Further investigations on produced postbiotics and safety have to be completed before they can be considered as scientifically proven probiotic strains.
Collapse
Affiliation(s)
- Lili Dobreva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Nikoleta Atanasova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Petar Donchev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Ekaterina Krumova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Radoslav Abrashev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Yordanka Karakirova
- Institute of Catalysis, Bulgarian Academy of Sciences, 11 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Ralitsa Mladenova
- Institute of Catalysis, Bulgarian Academy of Sciences, 11 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Vladimir Tolchkov
- National Center of Infectious and Parasitic Diseases, Yanko Sakuzov Blvd 26, 1504 Sofia, Bulgaria
| | - Nikola Ralchev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Vladislava Dishliyska
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Svetla Danova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Amatto IVDS, Simões FADO, Garzon NGDR, Marciano CL, Silva RRD, Cabral H. Response of Fusarium oxysporum soil isolate to amphotericin B and fluconazole at the proteomic level. Braz J Microbiol 2024; 55:2557-2568. [PMID: 38954219 PMCID: PMC11405588 DOI: 10.1007/s42770-024-01417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Fusarium oxysporum is a cross-kingdom pathogen that infects humans, animals, and plants. The primary concern regarding this genus revolves around its resistance profile to multiple classes of antifungals, particularly azoles. However, the resistance mechanism employed by Fusarium spp. is not fully understood, thus necessitating further studies to enhance our understanding and to guide future research towards identifying new drug targets. Here, we employed an untargeted proteomic approach to assess the differentially expressed proteins in a soil isolate of Fusarium oxysporum URM7401 cultivated in the presence of amphotericin B and fluconazole. In response to antifungals, URM7401 activated diverse interconnected pathways, such as proteins involved in oxidative stress response, proteolysis, and lipid metabolism. Efflux proteins, antioxidative enzymes and M35 metallopeptidase were highly expressed under amphotericin B exposure. Antioxidant proteins acting on toxic lipids, along with proteins involved in lipid metabolism, were expressed during fluconazole exposure. In summary, this work describes the protein profile of a resistant Fusarium oxysporum soil isolate exposed to medical antifungals, paving the way for further targeted research and discovering new drug targets.
Collapse
Affiliation(s)
- I V da S Amatto
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - F A de O Simões
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - N G da R Garzon
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - C L Marciano
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - R R da Silva
- Department of Molecular Biosciences, School of Pharmaceutical Sciences, University of São, Ribeirão Preto, Brazil
| | - H Cabral
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
6
|
Jain P, Rudramurthy S, Patil N, Dethe G, Patil A, Jessani L. Fusarium infection on the penile prepuce in an allogeneic transplant recipient. Indian J Hematol Blood Transfus 2024; 40:547-548. [PMID: 39011270 PMCID: PMC11246397 DOI: 10.1007/s12288-023-01729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/13/2023] [Indexed: 07/17/2024] Open
Affiliation(s)
- Punit Jain
- Apollo Hospitals, Navi Mumbai, India
- HematCare - Speciality Hematology Clinic, Mumbai, India
| | | | | | | | | | | |
Collapse
|
7
|
Sáenz V, Lizcano Salas AF, Gené J, Celis Ramírez AM. Fusarium and Neocosmospora: fungal priority pathogens in laboratory diagnosis. Crit Rev Microbiol 2024:1-14. [PMID: 38949272 DOI: 10.1080/1040841x.2024.2369693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Fusarium and Neocosmospora are two fungal genera recently recognized in the list of fungal priority pathogens. They cause a wide range of diseases that affect humans, animals, and plants. In clinical laboratories, there is increasing concern about diagnosis due to limitations in sample collection and morphological identification. Despite the advances in molecular diagnosis, due to the cost, some countries cannot implement these methodologies. However, recent changes in taxonomy and intrinsic resistance to antifungals reveal the necessity of accurate species-level identification. In this review, we discuss the current phenotypic and molecular tools available for diagnosis in clinical laboratory settings and their advantages and disadvantages.
Collapse
Affiliation(s)
- Valeri Sáenz
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
| | - Andrés Felipe Lizcano Salas
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
| | - Josepa Gené
- Unitat de Micologia i Microbiologia Ambiental (MicroAmb), Facultat de Medicina i Ciències de la Salut i Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
8
|
Carlesse F, Paixão de Sousa da Silva AM, Sztajnbok J, Litivinov N, Peron K, Otsuka M, Volpe Arnoni M, Schirmer M, de Oliveira Costa P, Munhoz Cavalcanti de Albuquerque AL, Morales H, Lopez-Medina E, A. Portilla C, Valenzuela R, Motta F, Motta FA, de Almeida Junior JN, Santolaya ME, Lopes Colombo A. Landscape of Invasive Fusariosis in Pediatric Cancer Patients: Results of a Multicenter Observational Study From Latin America. Open Forum Infect Dis 2024; 11:ofae285. [PMID: 38872851 PMCID: PMC11170500 DOI: 10.1093/ofid/ofae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Invasive fusariosis (IF) is a life-threatening opportunistic infection that affects vulnerable hosts. We conducted a multicenter and multinational retrospective study to characterize the natural history and clinical management of IF in pediatric cancer patients. We selected patients <18 years old who were sequentially hospitalized in 10 Latin American medical centers with a diagnosis of IF between 2002 and 2021. Data were collected using an electronic case report form complemented by a dictionary of terms. We assessed mortality rates at 30, 60, and 90 days. We collected data from 60 episodes of IF (median age, 9.8 years) that were mostly documented in patients with hematologic cancer (70%). Other risk conditions found were lymphopenia (80%), neutropenia (76.7%), and corticosteroid exposure (63.3%). IF was disseminated in 55.6% of patients. Skin lesions was present in 58.3% of our patients, followed by pulmonary involvement in 55%, sinusitis in 21.7%, bone/joint involvement in 6.7% and 1 case each of endocarditis and brain abscess. Positive blood and skin biopsy cultures were detected in 60% and 48.3% of cases, respectively. Fusarium solani complex was the most commonly identified agent (66.6%). The majority of patients received monotherapy within the first 72 hours (71.6%), either with voriconazole or amphotericin B formulation. The mortality rates at 30, 60, and 90 days were 35%, 41.6%, and 45%, respectively. An important factor affecting mortality rates appears to be disseminated disease. The high percentage of patients with fungal involvement in multiple organs and systems highlights the need for extensive workup for additional sites of infection in severely immunocompromised children.
Collapse
Affiliation(s)
- Fabianne Carlesse
- Instituto de Oncologia Pediátrica—IOP-GRAACC-UNIFESP, Departamento de Pediatria, São Paulo, Brazil
- Departamento de Pediatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Jaques Sztajnbok
- Instituto de Tratamento do Cancer Infantil (ITACI), Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Instituto de Infectologia Emilio Ribas, Intensive Care Unit, Department of Emergency Medical Care, São Paulo, Brazil
| | - Nadia Litivinov
- Instituto de Tratamento do Cancer Infantil (ITACI), Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Karina Peron
- Instituto de Tratamento do Cancer Infantil (ITACI), Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Marcelo Schirmer
- Instituto Nacional do Cancer—INCA, Department of Pediatrics, Rio de Janeiro, Brazil
| | | | | | - Hugo Morales
- Hospital Erasto Gaertner, Department of Pediatrics, Curitiba, Brazil
| | - Eduardo Lopez-Medina
- Centro de Estudios en Infectología Pediátrica CEIP, Department of Pediatrics, Universidad del Valle, Clínica Imbanaco, Grupo Quironsalud, Cali, Colombia
| | - Carlos A. Portilla
- Centro de Estudios en Infectología Pediátrica CEIP, Department of Pediatrics, Universidad del Valle, Clínica Imbanaco, Grupo Quironsalud, Cali, Colombia
| | - Romina Valenzuela
- Faculty of Medicine, Hospital Dr Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Fabrizio Motta
- Santa Casa de Misericórdia de Porto Alegre, Department of Pediatrics, Porto Alegre, Brazil
| | | | - João Nobrega de Almeida Junior
- Departamento de Medicina- Escola Paulista de Medicina, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo (ARIES), Departamento de Medicina, UNIFESP, São Paulo, Brazil
| | - Maria Elena Santolaya
- Faculty of Medicine, Hospital Dr Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Arnaldo Lopes Colombo
- Departamento de Medicina- Escola Paulista de Medicina, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo (ARIES), Departamento de Medicina, UNIFESP, São Paulo, Brazil
| |
Collapse
|
9
|
Wu L, Hwang SF, Strelkov SE, Fredua-Agyeman R, Oh SH, Bélanger RR, Wally O, Kim YM. Pathogenicity, Host Resistance, and Genetic Diversity of Fusarium Species under Controlled Conditions from Soybean in Canada. J Fungi (Basel) 2024; 10:303. [PMID: 38786658 PMCID: PMC11122035 DOI: 10.3390/jof10050303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Fusarium spp. are commonly associated with the root rot complex of soybean (Glycine max). Previous surveys identified six common Fusarium species from Manitoba, including F. oxysporum, F. redolens, F. graminearum, F. solani, F. avenaceum, and F. acuminatum. This study aimed to determine their pathogenicity, assess host resistance, and evaluate the genetic diversity of Fusarium spp. isolated from Canada. The pathogenicity of these species was tested on two soybean cultivars, 'Akras' (moderately resistant) and 'B150Y1' (susceptible), under greenhouse conditions. The aggressiveness of the fungal isolates varied, with root rot severities ranging from 1.5 to 3.3 on a 0-4 scale. Subsequently, the six species were used to screen a panel of 20 Canadian soybean cultivars for resistance in a greenhouse. Cluster and principal component analyses were conducted based on the same traits used in the pathogenicity study. Two cultivars, 'P15T46R2' and 'B150Y1', were consistently found to be tolerant to F. oxysporum, F. redolens, F. graminearum, and F. solani. To investigate the incidence and prevalence of Fusarium spp. in Canada, fungi were isolated from 106 soybean fields surveyed across Manitoba, Saskatchewan, Ontario, and Quebec. Eighty-three Fusarium isolates were evaluated based on morphology and with multiple PCR primers, and phylogenetic analyses indicated their diversity across the major soybean production regions of Canada. Overall, this study contributes valuable insights into host resistance and the pathogenicity and genetic diversity of Fusarium spp. in Canadian soybean fields.
Collapse
Affiliation(s)
- Longfei Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (L.W.); (S.-F.H.); (S.E.S.); (R.F.-A.); (S.-H.O.)
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (L.W.); (S.-F.H.); (S.E.S.); (R.F.-A.); (S.-H.O.)
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (L.W.); (S.-F.H.); (S.E.S.); (R.F.-A.); (S.-H.O.)
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (L.W.); (S.-F.H.); (S.E.S.); (R.F.-A.); (S.-H.O.)
| | - Sang-Heon Oh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (L.W.); (S.-F.H.); (S.E.S.); (R.F.-A.); (S.-H.O.)
| | - Richard R. Bélanger
- Centre de Recherche en Innovation des Végétaux, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Owen Wally
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON N0R 1G0, Canada;
| | - Yong-Min Kim
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB R7C 5Y3, Canada
| |
Collapse
|
10
|
Salazar-Hamm P, Torres-Cruz TJ. The Impact of Climate Change on Human Fungal Pathogen Distribution and Disease Incidence. CURRENT CLINICAL MICROBIOLOGY REPORTS 2024; 11:140-152. [DOI: 10.1007/s40588-024-00224-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 01/03/2025]
|
11
|
Haghani I, Hedayati MT, Shokohi T, Kermani F, Ghazanfari M, Javidnia J, Khojasteh S, Roohi B, Badali H, Fathi M, Amirizad K, Yahyazadeh Z, Abastabar M, Al-Hatmi AMS. Onychomycosis due to Fusarium species in different continents, literature review on diagnosis and treatment. Mycoses 2024; 67:e13652. [PMID: 37605217 DOI: 10.1111/myc.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
Fusarium species are an emerging cause of onychomycosis, and the number of cases has dramatically increased in recent decades worldwide. This review presents an overview of the onychomycosis cases caused by Fusarium species and diagnosis and treatment that have been reported in the literature. The most common causative agent of onychomycosis is F. solani species complex, which accounts for 11.68% of the cases of Fusarium onychomycosis, followed by the F. oxysporum species complex (164 out of 1669), which is accounted for 9.83% of the total. F. fujikuroi species complex (42 out of 1669) and F. dimerum species complex (7 out of 1669) are responsible for 2.52% and 0.42 cases, respectively. Fusarium nail infections were reported in patients aged range 1-98, accounting for 5.55% (1669 out of 30082) of all cases. Asia has the highest species diversity of Fusarium onychomycosis (31.51%). South America accounts for 21.09%, and the most common causative agent is F. solani (19.32%), followed by F. oxysporum species complex (15.63%). Europe accounts for 4.90% of cases caused by F. oxysporum, followed by F. solani. Africa accounts for 23.87% of the cases due to the F. solani species complex, followed by F. oxysporum and F. fujikuroi. Distal and lateral subungual onychomycosis was the most common clinical symptom accounting for 58.7% (135 out of 230) of the cases. Data analysis relieved that terbinafine and itraconazole are active treatments for Fusarium onychomycosis. For a definitive diagnosis, combining of direct examination, culture and sequencing of the elongation factor of translation 1α are recommended. Accurate identification of the causative agents of onychomycosis due to Fusarium species and antifungal susceptibility testing is essential in patient management.
Collapse
Affiliation(s)
- Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Taghi Hedayati
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Tahereh Shokohi
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Firoozeh Kermani
- Department of Medical Mycology and Parasitology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mona Ghazanfari
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Javidnia
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shaghayegh Khojasteh
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behrad Roohi
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Badali
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Fungus Testing Laboratory & Molecular Diagnostics Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Maryam Fathi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kazem Amirizad
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Yahyazadeh
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdullah M S Al-Hatmi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Oman
- Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Borman AM, Johnson EM. Changes in fungal taxonomy: mycological rationale and clinical implications. Clin Microbiol Rev 2023; 36:e0009922. [PMID: 37930182 PMCID: PMC10732072 DOI: 10.1128/cmr.00099-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/13/2023] [Indexed: 11/07/2023] Open
Abstract
Numerous fungal species of medical importance have been recently subjected to and will likely continue to undergo nomenclatural changes as a result of the application of molecular approaches to fungal classification together with abandonment of dual nomenclature. Here, we summarize those changes affecting key groups of fungi of medical importance, explaining the mycological (taxonomic) rationale that underpinned the changes and the clinical relevance/importance (where such exists) of the key nomenclatural revisions. Potential mechanisms to mitigate unnecessary taxonomic instability are suggested, together with approaches to raise awareness of important changes to minimize potential clinical confusion.
Collapse
Affiliation(s)
- Andrew M. Borman
- UK HSA National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, United Kingdom
| | - Elizabeth M. Johnson
- UK HSA National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, United Kingdom
| |
Collapse
|
13
|
Liu S, Liu R, Chu B, Li Z, Meng Q, Gou Y, Xue C, Tian T, Chen P, Wei F, Wen S, Liu Y, Sun S, Gao S. Identification and screening of fungicides against Piper nigrum basal Fusarium wilt disease in Hainan, China. J Basic Microbiol 2023; 63:1254-1264. [PMID: 37267939 DOI: 10.1002/jobm.202300183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Fusarium wilt has occurred in the main Piper nigrum cultivation regions, which seriously affects the yield and quality of P. nigrum. To identify the pathogen of this disease, the diseased roots were collected from a demonstration base in Hainan Province. The pathogen was obtained by tissue isolation method and confirmed by pathogenicity test. Based on the morphological observation, sequence analyses of TEF1-α nuclear gene, Fusarium solani was identified as the pathogen causing P. nigrum Fusarium wilt and induced symptoms on inoculated plants, including chlorosis, necrotic spots, wilt, drying, and root rot. The experiments for the antifungal activity showed that all the 11 fungicides selected in this study showed certain inhibitory effects on the colony growth of F. solani, where 2% kasugamycin AS, 45% prochloraz EW, 25 g·L-1 fludioxonil SC and 430 g·L-1 tebuconazole SC exhibited relative higher inhibitory effects with EC50 as 0.065, 0.205, 0.395, and 0.483 mg·L-1 , respectively, and were selected to perform SEM analysis and test in seeds in vitro. The SEM analysis showed that kasugamycin, prochloraz, fludioxonil, and tebuconazole might have exerted their antifungal effect by damaging F. solani mycelia or microconidia. These preparations were applied as a seed coating of P. nigrum Reyin-1. The kasugamycin treatment was most effective in reducing the harmful impact of F. solani on the seed germination. These results presented herein provide useful guidance for the effective control of P. nigrum Fusarium wilt.
Collapse
Affiliation(s)
- Shichao Liu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning, China
| | - Ruibing Liu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning, China
| | - Bo Chu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zhuang Li
- College of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan, China
| | - Qianqian Meng
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning, China
| | - Yafeng Gou
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning, China
| | - Chao Xue
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning, China
| | - Tian Tian
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning, China
| | - Pengyun Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Fei Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Siwei Wen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning, China
| | - Yanan Liu
- College of Tropical Crop Science, Yunnan Agricultural University, Puer, China
| | - Shiwei Sun
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning, China
| | - Shengfeng Gao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning, China
| |
Collapse
|
14
|
de Pablos-Leal AA, Morales-Guzmán V, Loza-Magallanes GD, Berumen-Murra MT, Martínez-Ramírez RE, Jiménez-Colunga PM, Beltrán-Santiago D. [Fusarium meningoencephalitis in the late puerperium: A case report]. REVISTA MEDICA DEL INSTITUTO MEXICANO DEL SEGURO SOCIAL 2023; 61:S492-S496. [PMID: 37935013 PMCID: PMC10752650 DOI: 10.5281/zenodo.8319765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/13/2023] [Indexed: 11/09/2023]
Abstract
Background Fusarium infection in the central nervous system is a rare pathology generally reported in patients with hematological malignancies. Clincal case A patient with Fusarium meningoencephalitis during the late postpartum period is presented. The patient's main symptom was holocranial headache with poor response to analgesics, adding dysarthria and blurred vision. Initially, it was classified as aseptic meningitis due to the absence of bacterial isolation, however, 8 weeks after the onset of the symptoms, Fusarium development was obtained in cerebrospinal fluid cultures. Targeted treatment with liposomal amphotericin and voriconazole was established, with partial improvement at first; however, at 16 weeks from the onset of the clinical picture, the patient presented sudden deterioration of alertness, an ischemic area was found in the occipital lobe by imaging study, which quickly led the patient to a fatal outcome. Conclusion Despite the fact that in recent years Fusarium spp infection has been detected more frequently in the population, the treatment is still not well established, making management of the Central Nervous System a challenge.
Collapse
Affiliation(s)
- Armando Abraham de Pablos-Leal
- Instituto Mexicano del Seguro Social, Unidad Médica de Alta Especialidad No. 71, Servicio de Infectología. Torreón, Coahuila, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Viridiana Morales-Guzmán
- Instituto Mexicano del Seguro Social, Unidad Médica de Alta Especialidad No. 71, Servicio de Unidad de Cuidados Intensivos. Torreón, Coahuila, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Gerardo Daniel Loza-Magallanes
- Instituto Mexicano del Seguro Social, Unidad Médica de Alta Especialidad No. 71, Servicio de Unidad de Cuidados Intensivos. Torreón, Coahuila, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - María Teresa Berumen-Murra
- Instituto Mexicano del Seguro Social, Unidad Médica de Alta Especialidad No. 71, Servicio de Medicina Interna. Torreón, Coahuila, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Ricardo Emmanuel Martínez-Ramírez
- Instituto Mexicano del Seguro Social, Unidad Médica de Alta Especialidad No. 71, Servicio de Unidad de Cuidados Intensivos. Torreón, Coahuila, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Perla Marisol Jiménez-Colunga
- Instituto Mexicano del Seguro Social, Unidad Médica de Alta Especialidad No. 71, Servicio de Unidad de Cuidados Intensivos. Torreón, Coahuila, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Dinael Beltrán-Santiago
- Instituto Mexicano del Seguro Social, Hospital General de Zona No. 1, Servicio de Infectología. Durango, Durango, MéxicoInstituto Mexicano del Seguro SocialMéxico
| |
Collapse
|
15
|
Cighir A, Mare AD, Vultur F, Cighir T, Pop SD, Horvath K, Man A. Fusarium spp. in Human Disease: Exploring the Boundaries between Commensalism and Pathogenesis. Life (Basel) 2023; 13:1440. [PMID: 37511815 PMCID: PMC10381950 DOI: 10.3390/life13071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Fusarium is a large fungal genus that is widely distributed in the environment, mostly known for its plant pathogenicity. Rarely, it is involved in human pathology, where the type of infection caused is highly dependent upon the portal of entry and the immune status of the host. The study at hand aims to summarize routine methods used in diagnosing such infections as well as more advanced molecular diagnostic methods, techniques that can play a huge role in differentiating between colonization and infection when trying to decide the therapeutic outcome. Consequently, to further support our findings, two different strains (one isolated from corneal scrapings and one isolated from purulent discharge) were analyzed in a clinical context and thoroughly tested using classical and modern diagnostic methods: identification by macroscopical and microscopical examinations of the culture and mass spectrometry, completed by molecular methods such as PCR for trichothecene and ERIC-PCR for genetic fingerprinting. Isolation of a clinically relevant Fusarium spp. from a sample still remains a diagnostic challenge for both the clinician and the microbiologist, because differentiating between colonization and infection is very strenuous, but can make a difference in the treatment that is administered to the patient.
Collapse
Affiliation(s)
- Anca Cighir
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Department of Medical Laboratory, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Anca Delia Mare
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Department of Medical Laboratory, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Florina Vultur
- Department of Ophthalmology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Ophthalmology Clinic, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Teodora Cighir
- Department of Medical Laboratory, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Suzana Doina Pop
- Department of Ophthalmology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Ophthalmology Clinic, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Karin Horvath
- Department of Ophthalmology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Ophthalmology Clinic, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Adrian Man
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Department of Medical Laboratory, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| |
Collapse
|
16
|
Divyashree S, Shruthi B, Vanitha P, Sreenivasa M. Probiotics and their postbiotics for the control of opportunistic fungal pathogens: A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00800. [PMID: 37215743 PMCID: PMC10196798 DOI: 10.1016/j.btre.2023.e00800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
During past twenty years the opportunistic fungal infections have been emerging, causing morbidity and mortality. The fungi belonging to Aspergillus, Mucor, Rhizopus, Candida, Fusarium, Penicillium, Dermatophytes and others cause severe opportunistic fungal infections. Among these Aspergillus and Candida spp cause majority of the diseases. The continuum of fungal infections will prolong to progress in the surroundings of the growing inhabitants of immunocompromised individuals. Presently many chemical-based drugs were used as prophylactic and therapeutic agents. Prolonged usage of antibiotics may lead to some severe effect on the human health. Also, one of the major threats is that the fungal pathogens are becoming the drug resistant. There are many physical, chemical, and mechanical methods to prevent the contamination or to control the disease. Owing to the limitations that are observed in such methods, biological methods are gaining more interest because of the use of natural products which have comparatively less side effects and environment friendly. In recent years, research on the possible use of natural products such as probiotics for clinical use is gaining importance. Probiotics, one of the well studied biological products, are safe upon consumption and are explored to treat various fungal infections. The antifungal potency of major groups of probiotic cultures such as Lactobacillus spp, Leuconostoc spp, Saccharomyces etc. and their metabolic byproducts which act as postbiotics like organic acids, short chain fatty acids, bacteriocin like metabolites, Hydrogen peroxide, cyclic dipeptides etc. to inhibit these opportunistic fungal pathogens have been discussed here.
Collapse
|
17
|
Akosah YA, Kostennikova ZS, Lutfullin MT, Lutfullina GF, Afordoanyi DM, Vologin SG, Mardanova AM. Induced Expression of CYP51a and HK1 Genes Associated with Penconazole and Fludioxonil Resistance in the Potato Pathogen Fusarium oxysporum. Microorganisms 2023; 11:1257. [PMID: 37317231 DOI: 10.3390/microorganisms11051257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 06/16/2023] Open
Abstract
Preventing antifungal resistance development and identifying pathogens with high, medium, and low risk of resistance development to a particular fungicide or fungicide class is crucial in the fight against phytopathogens. We characterized the sensitivity of potato wilt-associated Fusarium oxysporum isolates to fludioxonil and penconazole and assessed the effect of these fungicides on the expression of fungal sterol-14-α-demethylase (CYP51a) and histidine kinase (HK1) genes. Penconazole stunted the growth of F. oxysporum strains at all concentrations used. While all isolates were susceptible to this fungicide, concentrations of up to 1.0 μg/mL were insufficient to cause a 50% inhibition. At low concentrations (0.63 and 1.25 μg/mL), fludioxonil stimulated growth in F. oxysporum. With an increase in the concentration of fludioxonil, only one strain (F. oxysporum S95) exhibited moderate sensitivity to the fungicide. Interaction of F. oxysporum with penconazole and fludioxonil leads to respective elevated expressions of the CYP51a and HK1 genes, which upsurge with increasing concentration of the fungicides. The data obtained indicate that fludioxonil may no longer be suitable for potato protection and its continuous use could only lead to an increased resistance with time.
Collapse
Affiliation(s)
- Yaw A Akosah
- Department of Molecular Pathology, New York University College of Dentistry, New York, NY 10010, USA
| | - Zarina S Kostennikova
- Laboratory of Microbial Biotechnology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Marat T Lutfullin
- Laboratory of Microbial Biotechnology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Guzel F Lutfullina
- Laboratory of Microbial Biotechnology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Daniel M Afordoanyi
- Department of Agrobiological Research, Tatar Scientific Research Institute of Agricultural Chemistry and Soil Science, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420059, Russia
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of Russian Academy of Sciences, Kazan 420059, Russia
| | - Semyon G Vologin
- Department of Agrochemical and Biochemical Analysis, Tatar Research Institute of Agriculture, Kazan Scientific Center of Russian Academy of Sciences, Kazan 420059, Russia
| | - Ayslu M Mardanova
- Laboratory of Microbial Biotechnology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| |
Collapse
|
18
|
A Practical Workflow for the Identification of Aspergillus, Fusarium, Mucorales by MALDI-TOF MS: Database, Medium, and Incubation Optimization. J Clin Microbiol 2022; 60:e0103222. [PMID: 36326257 PMCID: PMC9769873 DOI: 10.1128/jcm.01032-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is an increasing body of literature on the utility of MALDI-TOF MS in the identification of filamentous fungi. However, the process still lacks standardization. In this study, we attempted to establish a practical workflow for the identification of three clinically important molds: Aspergillus, Fusarium, and Mucorales using MALDI-TOF MS. We evaluated the performance of Bruker Filamentous Fungi database v3.0 for the identification of these fungi, highlighting when there would be a benefit of using an additional database, the MSI-2 for further identification. We also examined two other variables, namely, medium effect and incubation time on the accuracy of fungal identification. The Bruker database achieved correct species level identification in 85.7% of Aspergillus and 90% of Mucorales, and correct species-complex level in 94.4% of Fusarium. Analysis of spectra using the MSI-2 database would also offer additional value for species identification of Aspergillus species, especially when suspecting species with known identification limits within the Bruker database. This issue would only be of importance in selected cases where species-level identification would impact therapeutic options. Id-Fungi plates (IDFP) had almost equivalent performance to Sabouraud dextrose agar (SDA) for species-level identification of isolates and enabled an easier harvest of the isolates with occasional faster identification. Our study showed accurate identification at 24 h for Fusarium and Mucorales species, but not for Aspergillus species, which generally required 48 h.
Collapse
|
19
|
Bakare OO, Gokul A, Jimoh MO, Klein A, Keyster M. In silico discovery of biomarkers for the accurate and sensitive detection of Fusarium solani. FRONTIERS IN BIOINFORMATICS 2022; 2:972529. [PMID: 36304265 PMCID: PMC9580926 DOI: 10.3389/fbinf.2022.972529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium solani is worrisome because it severely threatens the agricultural productivity of certain crops such as tomatoes and peas, causing the general decline, wilting, and root necrosis. It has also been implicated in the infection of the human eye cornea. It is believed that early detection of the fungus could save these crops from the destructive activities of the fungus through early biocontrol measures. Therefore, the present work aimed to build a sensitive model of novel anti-Fusarium solani antimicrobial peptides (AMPs) against the fungal cutinase 1 (CUT1) protein for early, sensitive and accurate detection. Fusarium solani CUT1 receptor protein 2D secondary structure, model validation, and functional motifs were predicted. Subsequently, anti-Fusarium solani AMPs were retrieved, and the HMMER in silico algorithm was used to construct a model of the AMPs. After their structure predictions, the interaction analysis was analyzed for the Fusarium solani CUT1 protein and the generated AMPs. The putative anti-Fusarium solani AMPs bound the CUT1 protein very tightly, with OOB4 having the highest binding energy potential for HDock. The pyDockWeb generated high electrostatic, desolvation, and low van der Waals energies for all the AMPs against CUT1 protein, with OOB1 having the most significant interaction. The results suggested the utilization of AMPs for the timely intervention, control, and management of these crops, as mentioned earlier, to improve their agricultural productivity and reduce their economic loss and the use of HMMER for constructing models for disease detection.
Collapse
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu, Ogun State, Nigeria
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba, South Africa
| | - Muhali Olaide Jimoh
- Department of Plant Science, Faculty of Sciences, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
20
|
Asiimwe DD, Ravi M, Isache C. Fusariosis: An Invasive Fungal Disease in a Neutropenic Patient With Acute Myeloid Leukemia. Cureus 2022; 14:e29303. [PMID: 36277532 PMCID: PMC9579060 DOI: 10.7759/cureus.29303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022] Open
|
21
|
Hou X, Geng Y, Dai R, Zhao F, He L, Gong J. Rapid Identification of Four Fusarium spp. Complex by High-Resolution Melting Curve Analysis and their Antifungal Susceptibility Profiles. Mycopathologia 2022; 187:345-354. [PMID: 35612712 DOI: 10.1007/s11046-022-00635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/14/2022] [Indexed: 11/30/2022]
Abstract
Fusarium species are globally distributed filamentous ascomycete fungi that are frequently reported as plant pathogens and opportunistic human pathogens, leading to yield loss of crops, mycotoxin contamination of food and feed products as well as damage to human and livestock. Human infections of Fusarium spp. are difficult to treat due to broad antifungal resistance by members of this genus. Their role as disease-causing agents in crops and humans suggests a need for antifungal resistance profiles as well as a simple, rapid, and cost effective identification method. Fusarium strains were isolated from food and clinical samples. High-resolution melting curve (HRM) analysis was performed using specific primers targeting internal transcribed spacer (ITS) region, followed with evaluation of specificity and sensitivity. The antifungal susceptibility of four Fusarium species was studied using the Sensititre YeastOne method. HRM analysis revealed reproducible, unimodal melting profiles specific to each of the four Fusarium strains, while no amplification of the negative controls. The minimum detection limits were 100-120 copies based on a 2 µl volume of template. Clear susceptibility differences were observed against antifungal agents by different Fusarium isolates, with amphotericin B and voriconazole displayed strongest antifungal effects to all the tested strains. We developed a simple, rapid, and low-cost qPCR-HRM method for identification of four Fusarium spp. (F. oxysporum, F. lateritium, F. fujikuroi, and F. solani). The antifungal susceptibility profiles supplied antifungal information of foodborne and clinical Fusarium spp. and provided guidance for clinical treatment of human infections.
Collapse
Affiliation(s)
- Xuexin Hou
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206, China
| | - Yuanyuan Geng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206, China
| | - Rongchen Dai
- College of Public Health, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Fei Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206, China
| | - Lihua He
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206, China
| | - Jie Gong
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206, China.
| |
Collapse
|
22
|
Central Nervous System Fungal Infections in Paediatric Patients. CURRENT FUNGAL INFECTION REPORTS 2022. [DOI: 10.1007/s12281-021-00427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Gherbawy YA, Hussein MA, Hassany NA, Shebany YM, Hassan S, El-Dawy EGAE. Phylogeny and pathogenicity of Fusarium solani species complex (FSSC) associated with potato tubers. J Basic Microbiol 2021; 61:1133-1144. [PMID: 34766353 DOI: 10.1002/jobm.202100393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 11/10/2022]
Abstract
Potato (Solanum tuberosum L.) is one of the known five crops cultivated throughout the world after corn, barley, cereals, rice, and wheat, due to its content of high carbohydrates. In developing countries, potatoes are especially had valuable contents as a rich source of starch, vitamins C and B6, and essential amino acids. Fusarium solani species complex (FSSC) is one of the prevalent pathogens of potato, causing dry rot in Upper Egypt. In this study, FSSC were isolated and identified from potato tubers based on the morphological and molecular characteristics. F. solani isolates (187) were isolated from infected and noninfected potato tubers collected from various markets in Upper Egypt. Based on the morphology observations, sequence data from amplifying β-tubulin, and specific translation elongation factor (TEF-1α) genes, all of the chosen 88 FSSC isolates were grouped into three major groups (F. keratoplasticum, F. falciforme, and F. solani). All the tested FSSC were able to produce amylases. The selected isolates were examined for their pathogenic ability on healthy potato tubers, which exhibited pathogenic effects; with lesions sizes were quite variable. F. solani SVUFs73 showed a highly virulent effect.
Collapse
Affiliation(s)
- Youssuf A Gherbawy
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt.,Applied and Environmental Microbiology Center, Faculty of Science, South Valley University, Qena, Egypt
| | - Mohamed A Hussein
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt.,Applied and Environmental Microbiology Center, Faculty of Science, South Valley University, Qena, Egypt
| | - Nabila A Hassany
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt.,Applied and Environmental Microbiology Center, Faculty of Science, South Valley University, Qena, Egypt
| | - Yassmin M Shebany
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Sabry Hassan
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Eman G A E El-Dawy
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt.,Applied and Environmental Microbiology Center, Faculty of Science, South Valley University, Qena, Egypt
| |
Collapse
|
24
|
Morgan FC, Chelliah MP, Andrasik WJ, Piliang M. Epidermal extension of hyphae from vessels in a case of disseminated fusariosis. J Cutan Pathol 2021; 49:917-920. [PMID: 34632617 DOI: 10.1111/cup.14136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/16/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Affiliation(s)
| | | | - Wyatt J Andrasik
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Melissa Piliang
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
25
|
Jain N, Jansone I, Obidenova T, Sīmanis R, Meisters J, Straupmane D, Reinis A. Epidemiological Characterization of Clinical Fungal Isolates from Pauls Stradinš Clinical University Hospital, Latvia: A 4-Year Surveillance Report. Life (Basel) 2021; 11:1002. [PMID: 34685374 PMCID: PMC8537438 DOI: 10.3390/life11101002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Nosocomial fungal infections are an emerging global public health threat that requires urgent attention and proper management. With the limited availability of treatment options, it has become necessary to understand the emerging epidemiological trends, mechanisms, and risk factors. However, very limited surveillance reports are available in the Latvian and broader European context. We therefore conducted a retrospective analysis of laboratory data (2017-2020) from Pauls Stradinš Clinical University Hospital (PSCUH), Riga, Latvia, which is one of the largest public multispecialty hospitals in Latvia. A total of 2278 fungal isolates were analyzed during the study period, with Candida spp. comprising 95% of the isolates, followed by Aspergillus spp. and Geotrichum spp. Amongst the Candida spp., C. albicans and C. glabrata made up about 75% of the isolates. The Department of Lung Diseases and Thoracic Surgery had the highest caseload followed by Intensive Care Department. Majority of the fungal isolates were collected from the bronchoalveolar lavage (37%), followed by urine (19%) and sputum (18%) samples. A total of 34 cases of candidemia were noted during the study period with C. albicans being the most common candidemia pathogen. Proper surveillance of emerging epidemiological trends serve as the most reliable and powerful cornerstone towards tackling this emerging threat.
Collapse
Affiliation(s)
- Nityanand Jain
- Department of Biology and Microbiology, Faculty of Medicine, Riga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia;
| | - Inese Jansone
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| | - Tatjana Obidenova
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| | - Raimonds Sīmanis
- Department of Infectology, Faculty of Medicine, Riga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia;
| | - Jānis Meisters
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| | - Dagnija Straupmane
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| | - Aigars Reinis
- Department of Biology and Microbiology, Faculty of Medicine, Riga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia;
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| |
Collapse
|
26
|
Khalid SN, Rizwan N, Khan ZA, Najam A, Khan AM, Almas T, Khedro T, Nagarajan VR, Alshamlan A, Gronfula A, Alshehri R. Fungal burn wound infection caused by Fusarium dimerum: A case series on a rare etiology. Ann Med Surg (Lond) 2021; 70:102848. [PMID: 34540224 PMCID: PMC8435921 DOI: 10.1016/j.amsu.2021.102848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction Fusarium dimerum is a filamentous mold associated with poor outcomes in immunocompromised hosts and burn victims. It can be acquired via inhalation or through skin dehiscence. Methods Our work presents a Case series of 8 patients from ages 3–57 years who were admitted with multiple burn wounds over the past 6 months. After initial stabilization measures, they all underwent debridement for the lesions after negative initial fungal cultures. The 44-year-old male was the first patient to develop punched-out eruptions on burn areas 7 days after admission; all the other patients experienced similar lesions during the next 6 days. Tissue cultures of the lesions exhibited Fusarium dimerum growth. The patients were managed accordingly with amphotericin B or voriconazoles. All the patients recovered except the 11-year-old boy, who expired on day 9 due to ARDS and sepsis complications. Outcomes Infection with Fusarium dimerum carries a high risk of dissemination in burn infections. Hence, appropriate screening should be carried out via histologic and mycologic diagnostics early in the disease course. Conclusion Considering the sparse literature that is available regarding Fusarium infection in burn victims, this study aims to improve the knowledge surrounding different facets of this disease including its epidemiology, diagnosis, management, and the need to maintain high suspicion of this fungal disease in burn patients. Fusarium dimerum is a filamentous mold associated with poor outcomes in immunocompromised hosts and burn victims. It can be acquired via inhalation or through skin dehiscence. Our work presents a Case series of 8 patients from ages 3–57 years who were admitted with multiple burn wounds over the past 6 months. After initial stabilization measures, they all underwent debridement for the lesions after negative initial fungal cultures. Infection with Fusarium dimerum carries a high risk of dissemination in burn infections. Hence, appropriate screening should be carried out via histologic and mycologic diagnostics early in the disease course.
Collapse
Affiliation(s)
- Subaina Naeem Khalid
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | | | - Zeest Ali Khan
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Ali Najam
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Amin Moazzam Khan
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Talal Almas
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tarek Khedro
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | - Amin Gronfula
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | | |
Collapse
|
27
|
Scharf S, Bartels A, Kondakci M, Haas R, Pfeffer K, Henrich B. fuPCR as diagnostic method for the detection of rare fungal pathogens, such as Trichosporon, Cryptococcus and Fusarium. Med Mycol 2021; 59:1101-1113. [PMID: 34379780 DOI: 10.1093/mmy/myab045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/21/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Fungal respiratory tract colonisation is a common finding in patients with hematologic neoplasms due to immunosuppression inherent in the diseases and exacerbated by therapy. This greatly increases the risk of fungal infections of the lungs, which is associated with significant mortality. Therefore, reliable diagnostic methods with rapidly available results are needed to administer adequate antifungal therapy.We have established an improved method for fungal DNA extraction and amplification that allows simultaneous detection of fungal families based on a set of multiplexed real time PCR reactions (fuPCR). We analysed respiratory rinses and blood of 94 patients with haematological systemic diseases by fuPCR and compared it with the results of culture and serological diagnostic methods. 40 healthy subjects served as controls.Regarding Candida species, the highest prevalence resulted from microbiological culture of respiratory rinses and from detection of antibodies in blood serum in patients (61% and 47%, respectively) and in the control group (29% and 51%, respectively). Detection of other pathogenic yeasts, such as Cryptococcus and Trichosporon, and moulds, such as Fusarium, was only possible in patients by fuPCR from both respiratory rinses and whole blood and serum. These fungal species were found statistically significantly more frequent in respiratory rinses collected from patients after myeloablative therapy for stem cell transplantation compared to samples collected before treatment (p<<0.05i>).The results show that fuPCR is a valuable complement to culturing and its inclusion in routine mycological diagnostics might be helpful for early detection of pathophysiologically relevant respiratory colonisation for patients with hematologic neoplasms. LAY ABSTRACT We validated a set of PCR reactions (fuPCR) for use in routine diagnostic. In contrast to culture and serological methods, only by fuPCR pathogenic yeasts (Cryptococcus and Trichosporon) and moulds (Aspergillus and Fusarium) were detected in respiratory rinses and blood of haematological patients.
Collapse
Affiliation(s)
- Sebastian Scharf
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Anna Bartels
- Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Mustafa Kondakci
- Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Rainer Haas
- Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Birgit Henrich
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| |
Collapse
|
28
|
Conrado PCV, Sakita KM, Arita GS, Gonçalves RS, Cesar GB, Caetano W, Hioka N, Voidaleski MF, Vicente VA, Svidzinski TIE, Bonfim-Mendonça PS, Kioshima ES. Hypericin-P123-photodynamic therapy in an ex vivo model as an alternative treatment approach for onychomycosis caused by Fusarium spp. Photodiagnosis Photodyn Ther 2021; 35:102414. [PMID: 34186264 DOI: 10.1016/j.pdpdt.2021.102414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
BackgroundFusarium has been considered an opportunistic pathogen, causing several infections in humans, including onychomycosis. In addition, a high resistance to conventional antifungals has been linked to this genus. Photodynamic Therapy (PDT), known as a non-invasive therapy, can be an alternative treatment for fungal infections, based on the excitation of a photosensitizing compound (PS) by a specific length of light, causing damage to the target. The aim of this study was to evaluate the effects of a formulation of Hypericin (Hyp) encapsulated in Pluronic™ (P123), via photodynamic therapy (PDT), on planktonic cells and biofilms in Fusarium spp. using in vitro and ex vivo assays. Materials & Methods epidemiology studies about Fusarium spp. in onychomycosis was perfomed, carried out molecular identification, compared the antifungal activity of the conventional antifungals with PDT with encapsulated Hypericin (Hyp-P123), carried out detection of reactive oxygen species, and measured the antibiofilm effect of the Hyp-P123-PDT in vitro and in an ex vivo model of onychomycosis. Results Hyp-P123-PDT exhibited a fungicidal effect in vitro with reductions ≥ 3 log10. ROS generation increased post-Hyp-P123-PDT in Fusarium spp. Hyp-P123-PDT showed a potent inhibitory effect on adhesion-phase and mature biofilms in vitro tests and an ex vivo model of onychomycosis (p<0.0001). Conclusion Hyp-P123-PDT had a potent effect against Fusarium spp., suggesting that photodynamic therapy with Hyp-P123 is a safe and promising treatment for onychomycosis in clinical practice.
Collapse
Affiliation(s)
- Pollyanna C V Conrado
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Karina M Sakita
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Glaucia S Arita
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | | | - Gabriel B Cesar
- Department of Chemistry, State University of Maringa, Parana, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringa, Parana, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringa, Parana, Brazil
| | - Morgana F Voidaleski
- Department of Pathology Basic, State Federal University of Parana, Parana, Brazil
| | - Vania A Vicente
- Department of Pathology Basic, State Federal University of Parana, Parana, Brazil
| | | | | | - Erika S Kioshima
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil.
| |
Collapse
|
29
|
da Rosa PD, Aquino V, Fuentefria AM, Goldani LZ. Diversity of Fusarium species causing invasive and disseminated infections. J Mycol Med 2021; 31:101137. [PMID: 33932878 DOI: 10.1016/j.mycmed.2021.101137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/13/2021] [Accepted: 04/05/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Invasive fusariosis (IF) is considered an emerging fungal disease and an important problem worldwide that increasingly affects immunocompromised individuals. There is currently concern about establishing the genetic diversity and phylogenetic relationship of the species Fusarium causing invasive fusariosis. MATERIALS AND METHODS The aim of this study was to characterize the molecular profile and morphological characteristics of Fusarium species isolated from 21 patients with invasive fusariosis. Multilocus sequence typing was performed for molecular identification of the following genes: the second largest subunit of the RNA polymerase gene (RPB2) and elongation factor 1 alpha (EF-1α). The morphological features of different species were carefully described and revised by experienced mycologists. RESULTS Morphological and molecular analyses revealed that the F. solani species complex (FSSC) and F. oxysporum species complex (FOSC) were the most common species isolated from patients with invasive fusariosis; FSSC-2 h (5), FSSC-1 (2) and FOSC-183 (2) were the most frequent haplotypes. The macroscopic characterization revealed great variation in the tonalities of the FSSC colonies and particularities amongst the species in relation to the macroconidia structures, while the FOSC was more homogeneous and presented shades from white to lilac. CONCLUSIONS Our study characterized the diversity, haplotypes, and morphological aspects of Fusarium species and the haplotypes prevalent in patients with invasive fusariosis. FSSC and FSSC-2 h were the predominant species and haplotype, respectively. Although we have described interesting morphological aspects in Fusarium species, particularly haplotypes, their identification cannot rely on phenotypical aspects. Molecular biology techniques are necessary and should be introduced for routine use in mycology laboratories.
Collapse
Affiliation(s)
- Priscila Dallé da Rosa
- Programa de Pós-graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Valério Aquino
- Microbiology Unit, Hospital de Clínicas de Porto Alegre, Brazil
| | | | - Luciano Zubaran Goldani
- Programa de Pós-graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Effects of Season and House Microclimate on Fungal Flora in Air and Broiler Trachea. ATMOSPHERE 2021. [DOI: 10.3390/atmos12040459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fungi are present in abundance in poultry housing. The aim of the study was to assess the effect of season and microclimate parameters in poultry housing on fungal flora in the air and broiler trachea in commercial fattening conditions. The study was conducted in summer and winter. Study results indicated seasonal impact and association between fungal flora composition in housing air and broiler trachea. However, the total fungal count in housing air was significantly higher in summer and in broiler trachea in winter, both significantly correlated with indoor relative humidity and ammonia concentration. There was no significant correlation between outdoor and indoor air temperature, relative humidity and airflow rate, respectively. Study results suggested that environmental determination of fungi should be accompanied by their determination in broilers. In addition, seasonal impact on fungal contamination should be associated with microclimate conditions in the poultry house rather than the season itself. The fungi detected and the results obtained have implications not only for broiler health but also for the health of humans working in such environments.
Collapse
|
31
|
Biddeci G, Donà D, Geranio G, Spadini S, Petris MG, Pillon M, Biffi A, Putti MC. Systemic Fusariosis: A Rare Complication in Children with Acute Lymphoblastic Leukemia. J Fungi (Basel) 2020; 6:jof6040212. [PMID: 33050258 PMCID: PMC7712314 DOI: 10.3390/jof6040212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Fusarium species are ubiquitous pathogens causing opportunistic infections in immunocompromised patients. Clinical presentation depends on a host’s immunity and can be localized or disseminated. Since there are few reports of disseminated fusariosis in children, we described an unusual case of Fusarium solani infection in a 9-year-old child with acute lymphoblastic leukemia (ALL). This patient presented a deep wound in the elbow at diagnosis. During the induction phase of chemotherapy, he developed multiple skin lesions and severe pneumonia; Fusarium solani was cultured from the skin lesions. He was treated with a high dose of liposomal amphotericin B, followed by voriconazole. Starting from this peculiar case, we collected all patients with acute leukemia affected by Fusarium infection, treated in the pediatric Onco-Hematology Division of Padua University Hospital during the last 20 years. We identified another six cases: all these patients were affected by acute myeloid leukemia (AML) and five of them presented a relapsed/refractory disease. Two out of seven patients died because of infection; five patients recovered from infection, but three out of seven died because of leukemia. Skin lesions in immunocompromised patients should rise the suspicion of disseminated fusariosis. Furthermore, considering the emergence of filamentous fungi in immunocompromised patients, we all should be aware of Fusarium infection, reminding us that the diagnosis is important to cure the infection.
Collapse
Affiliation(s)
- Giada Biddeci
- Maternal and Child Health Department, Pediatric Hematology, Oncology and Stem Cell Transplantation Division, Padua University Hospital, 35128 Padua, Italy; (G.G.); (S.S.); (M.G.P.); (M.P.); (A.B.); (M.C.P.)
- Correspondence:
| | - Daniele Donà
- Maternal and Child Health Department, Pediatric Infectious Disease Division, Padua University Hospital, 35128 Padua, Italy;
| | - Giulia Geranio
- Maternal and Child Health Department, Pediatric Hematology, Oncology and Stem Cell Transplantation Division, Padua University Hospital, 35128 Padua, Italy; (G.G.); (S.S.); (M.G.P.); (M.P.); (A.B.); (M.C.P.)
| | - Silvia Spadini
- Maternal and Child Health Department, Pediatric Hematology, Oncology and Stem Cell Transplantation Division, Padua University Hospital, 35128 Padua, Italy; (G.G.); (S.S.); (M.G.P.); (M.P.); (A.B.); (M.C.P.)
| | - Maria Grazia Petris
- Maternal and Child Health Department, Pediatric Hematology, Oncology and Stem Cell Transplantation Division, Padua University Hospital, 35128 Padua, Italy; (G.G.); (S.S.); (M.G.P.); (M.P.); (A.B.); (M.C.P.)
| | - Marta Pillon
- Maternal and Child Health Department, Pediatric Hematology, Oncology and Stem Cell Transplantation Division, Padua University Hospital, 35128 Padua, Italy; (G.G.); (S.S.); (M.G.P.); (M.P.); (A.B.); (M.C.P.)
| | - Alessandra Biffi
- Maternal and Child Health Department, Pediatric Hematology, Oncology and Stem Cell Transplantation Division, Padua University Hospital, 35128 Padua, Italy; (G.G.); (S.S.); (M.G.P.); (M.P.); (A.B.); (M.C.P.)
| | - Maria Caterina Putti
- Maternal and Child Health Department, Pediatric Hematology, Oncology and Stem Cell Transplantation Division, Padua University Hospital, 35128 Padua, Italy; (G.G.); (S.S.); (M.G.P.); (M.P.); (A.B.); (M.C.P.)
| |
Collapse
|
32
|
Villafana RT, Rampersad SN. Signatures of TRI5, TRI8 and TRI11 Protein Sequences of Fusarium incarnatum-equiseti Species Complex (FIESC) Indicate Differential Trichothecene Analogue Production. Toxins (Basel) 2020; 12:E386. [PMID: 32545314 PMCID: PMC7354511 DOI: 10.3390/toxins12060386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 11/24/2022] Open
Abstract
The variability and phylogeny among TRI5, TRI8 and TRI11 nucleotide and translated protein sequences of isolates from Trinidad belonging to Fusarium incarnatum-equiseti species complex (FIESC) were compared with FIESC reference sequences. Taxa appeared to be more divergent when DNA sequences were analyzed compared to protein sequences. Neutral and non-neutral mutations in TRI protein sequences that may correspond to variability in the function and structure of the selected TRI proteins were identified. TRI5p had the lowest amino acid diversity with zero predicted non-neutral mutations. TRI5p had potentially three protein disorder regions compared to TRI8p with five protein disorder regions. The deduced TRI11p was more conserved than TRI8p of the same strains. Amino acid substitutions that may be non-neutral to protein function were only detected in diacetoxyscirpenol (DAS) and fusarenon-X (FUS-X) producers of the reference sequence subset for TRI8p and TRI11p. The deduced TRI5 and TRI8 amino acid sequences were mapped to known 3D-structure models and indicated that variations in specific protein order/disorder regions exist in these sequences which affect the overall structural conservation of TRI proteins. Assigning single or combination non-neutral mutations to a particular toxicogenic phenotype may be more representative of potential compared to using genotypic data alone, especially in the absence of wet-lab, experimental validation.
Collapse
Affiliation(s)
| | - Sephra N. Rampersad
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies;
| |
Collapse
|
33
|
Batista BG, de Chaves MA, Reginatto P, Saraiva OJ, Fuentefria AM. Human fusariosis: An emerging infection that is difficult to treat. Rev Soc Bras Med Trop 2020; 53:e20200013. [PMID: 32491099 PMCID: PMC7269539 DOI: 10.1590/0037-8682-0013-2020] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
Fusarium spp. has been associated with a broad spectrum of emerging infections collectively termed fusariosis. This review includes articles published between 2005 and 2018 that describe the characteristics, clinical management, incidence, and emergence of these fungal infections. Fusarium solani and F. oxysporum are globally distributed and represent the most common complexes. Few therapeutic options exist due to intrinsic resistance, especially for the treatment of invasive fusariosis. Therefore, the use of drug combinations could be an important alternative for systemic antifungal resistance. Increase in the number of case reports on invasive fusariosis between 2005 and 2018 is evidence of the emergence of this fungal infection.
Collapse
Affiliation(s)
- Bruna Gerardon Batista
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação Stricto Sensu em Ciências Farmacêuticas, Porto Alegre, RS, Brasil
| | - Magda Antunes de Chaves
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Porto Alegre, RS, Brasil
| | - Paula Reginatto
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação Stricto Sensu em Ciências Farmacêuticas, Porto Alegre, RS, Brasil
| | - Otávio Jaconi Saraiva
- Universidade Federal do Rio Grande do Sul, Faculdade de Farmácia, Departamento de Análises, Porto Alegre, RS, Brasil
| | - Alexandre Meneghello Fuentefria
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação Stricto Sensu em Ciências Farmacêuticas, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Faculdade de Farmácia, Departamento de Análises, Porto Alegre, RS, Brasil
| |
Collapse
|
34
|
Three-Locus Sequence Identification and Differential Tebuconazole Sensitivity Suggest Novel Fusarium equiseti Haplotype from Trinidad. Pathogens 2020; 9:pathogens9030175. [PMID: 32121520 PMCID: PMC7157627 DOI: 10.3390/pathogens9030175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
The Fusarium incarnatum-equiseti species complex (FIESC) consists of 33 phylogenetic species according to multi-locus sequence typing (MLST) and Genealogical Concordance Phylogenetic Species Recognition (GCPSR). A multi-locus dataset consisting of nucleotide sequences of the translation elongation factor (EF-1α), calmodulin (CAM), partial RNA polymerase largest subunit (RPB1), and partial RNA polymerase second largest subunit (RPB2), was generated to distinguish among phylogenetic species within the FIESC isolates infecting bell pepper in Trinidad. Three phylogenetic species belonged to the Incarnatum clade (FIESC-15, FIESC-16, and FIESC-26), and one species belonged to the Equiseti clade (FIESC-14). Specific MLST types were sensitive to 10 µg/mL of tebuconazole fungicide as a discriminatory dose. The EC50 values were significantly different among the four MLST groups, which were separated into two homogeneous groups: FIESC-26a and FIESC-14a, demonstrating the “sensitive” azole phenotype and FIESC-15a and FIESC-16a as the “less sensitive” azole phenotype. CYP51C sequences of the Trinidad isolates, although under positive selection, were without any signatures of recombination, were highly conserved, and were not correlated with these azole phenotypes. CYP51C sequences were unable to resolve the FIESC isolates as phylogenetic inference indicated polytomic branching for these sequences. This data is important to different research communities, including those studying Fusarium phytopathology, mycotoxins, and public health impacts.
Collapse
|
35
|
Bansal Y, Singla N, Kaistha N, Sood S, Chander J. Molecular identification of Fusarium species complex isolated from clinical samples and its antifungal susceptibility patterns. Curr Med Mycol 2020; 5:43-49. [PMID: 32104743 PMCID: PMC7034782 DOI: 10.18502/cmm.5.4.2149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background and Purpose: More than 300 Fusarium species are grouped into approximately 23 species complexes out of which around 70 are involved in human infections. The nomenclature of these species has undergone considerable changes in recent years. These species cause localized infections in individuals while inducing systemic infections mainly in immunocompromised patients. The present study was conducted to identify Fusarium species in clinical isolates by molecular methods and determine their in vitro minimum inhibitory concentration (MIC) patterns to address the lack of data in this domain in Northern India. Materials and Methods: For the purpose of the study, Fusarium isolates obtained from various clinical samples were sent to the Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands, for molecular identification. The MIC testing was performed using the microbroth dilution method as per the Clinical and Laboratory Standards Institute reference method (M38-A2). Results: Fusarium was isolated from 33 patients (i.e., 1, 1, 2, 14, and 15 cases with endophthalmitis, sinusitis, pulmonary involvement, onychomycosis, and keratitis, respectively). These 33 isolates belonged to three species complexes, namely F. solani species complex (FSSC; n=13), F. fujikuroi species complex (FFSC; n=13), and F. incarnatumequiseti species complex (FIESC; n=7). The species identified within FSSC, FFSC, and FIESC included F. keratoplasticum (n=6)/F. falciforme (n=6)/F. solani (n=1), F. proliferatum (n=7)/F. sacchari (n=5)/F. anthophilum (n=1), and F. incarnatum SC species (n=6)/F. equiseti SC species (n=1), respectively. The MIC results showed that all isolates had a lower MIC against amphotericin B than against the other antifungal agents.
Collapse
Affiliation(s)
- Yashik Bansal
- Department of Microbiology, Government Medical College Hospital, Chandigarh, India
| | - Nidhi Singla
- Department of Microbiology, Government Medical College Hospital, Chandigarh, India
| | - Neelam Kaistha
- Department of Microbiology, Government Medical College Hospital, Chandigarh, India
| | - Sunandan Sood
- Department of Ophthalmology, Government Medical College Hospital, Chandigarh, India
| | - Jagdish Chander
- Department of Microbiology, Government Medical College Hospital, Chandigarh, India
| |
Collapse
|
36
|
A Fatal Case of Bloodstream Infection by Fusarium Solani in a Patient with Adrenocortical Carcinoma From Isfahan, Iran. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2020. [DOI: 10.5812/ijcm.98610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
First Comprehensive Report of Clinical Fusarium Strains Isolated in the State of Sao Paulo (Brazil) and Identified by MALDI-TOF MS and Molecular Biology. Microorganisms 2019; 8:microorganisms8010066. [PMID: 31906188 PMCID: PMC7022604 DOI: 10.3390/microorganisms8010066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/22/2019] [Accepted: 12/28/2019] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to compare the performance of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), phenotypic and molecular methods for the identification of Fusarium species complexes isolated from clinical cases in the State of Sao Paulo (Brazil) between the years 2001 and 2017. Sequencing of ITS region of ribosomal DNA and elongation factor 1 alpha gene (ET1α) were used as reference method in the analysis of a total of 108 Fusarium spp. clinical strains isolated from human hosts with superficial and systemic infections. Agreement between MALDI-TOF-MS and molecular data was observed for 97 out of 108 clinical isolates (89.8%), whereas five (4.6%) and six (5.5%) clinical isolates were misidentified and were not identified by MALDI-TOF MS, respectively. ITS region sequences and MALDI-TOF MS mass spectra identified and grouped correctly most of Fusarium clinical isolates at species complex level. This investigation highlights the potential of MALDI-TOF MS technique as a fast and cost-efficient alternative for clinical Fusarium identification. However, MALDI-TOF MS requires a more accurate and larger database. This work is the first comprehensive report for Fusarium population, based on phenotypic analyses, proteomic profile by MALDI-TOF and phylogenetic analyses of Fusarium species complexes isolated from clinical cases in the State of Sao Paulo, Brazil.
Collapse
|
38
|
Thornton CR. Detection of the 'Big Five' mold killers of humans: Aspergillus, Fusarium, Lomentospora, Scedosporium and Mucormycetes. ADVANCES IN APPLIED MICROBIOLOGY 2019; 110:1-61. [PMID: 32386603 DOI: 10.1016/bs.aambs.2019.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fungi are an important but frequently overlooked cause of morbidity and mortality in humans. Life-threatening fungal infections mainly occur in immunocompromised patients, and are typically caused by environmental opportunists that take advantage of a weakened immune system. The filamentous fungus Aspergillus fumigatus is the most important and well-documented mold pathogen of humans, causing a number of complex respiratory diseases, including invasive pulmonary aspergillosis, an often fatal disease in patients with acute leukemia or in immunosuppressed bone marrow or solid organ transplant recipients. However, non-Aspergillus molds are increasingly reported as agents of disseminated diseases, with Fusarium, Scedosporium, Lomentospora and mucormycete species now firmly established as pathogens of immunosuppressed and immunocompetent individuals. Despite well-documented risk factors for invasive fungal diseases, and increased awareness of the risk factors for life-threatening infections, the number of deaths attributable to molds is likely to be severely underestimated driven, to a large extent, by the lack of readily accessible, cheap, and accurate tests that allow detection and differentiation of infecting species. Early diagnosis is critical to patient survival but, unlike Aspergillus diseases, where a number of CE-marked or FDA-approved biomarker tests are now available for clinical diagnosis, similar tests for fusariosis, scedosporiosis and mucormycosis remain experimental, with detection reliant on insensitive and slow culture of pathogens from invasive bronchoalveolar lavage fluid, tissue biopsy, or from blood. This review examines the ecology, epidemiology, and contemporary methods of detection of these mold pathogens, and the obstacles to diagnostic test development and translation of novel biomarkers to the clinical setting.
Collapse
|
39
|
Rosa PDD, Ramirez-Castrillon M, Borges R, Aquino V, Meneghello Fuentefria A, Zubaran Goldani L. Epidemiological aspects and characterization of the resistance profile of Fusarium spp. in patients with invasive fusariosis. J Med Microbiol 2019; 68:1489-1496. [PMID: 31419209 DOI: 10.1099/jmm.0.001059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Introduction. The remarkable intrinsic resistance of Fusarium species to most antifungal agents results in high mortality rates in the immunocompromised population.Aims. This study aimed to investigate the epidemiology, clinical features and antifungal susceptibility of Fusarium isolates in patients with invasive fusariosis.Methodology. A total of 27 patients admitted to a referral hospital from January 2008 to June 2017 were evaluated. Antifungal susceptibility testing of isolates was performed by broth microdilution according to the Clinical and Laboratory Standards Institute guidelines.Results. Haematological malignancy was the predominant underlying condition, with an incidence of invasive fusariosis of 14.8 cases per 1000 patients with acute lymphoid leukaemia and 13.1 cases per 1000 patients with acute myeloid leukaemia. The Fusarium solani species complex (FSSC) was the most frequent agent group, followed by the Fusarium oxysporum species complex (FOSC). Voriconazole showed the best activity against Fusarium, followed by amphotericin B. Itraconazole showed high minimum inhibitory concentration values, indicating in vitro resistance. Clinical FSSC isolates were significantly (P<0.05) more resistant to amphotericin B and voriconazole than FOSC isolates.Conclusion. The present antifungal susceptibility profiles indicate a high incidence of fusariosis in patients with haematological malignancy. Species- and strain-specific differences in antifungal susceptibility exist within Fusarium in this setting.
Collapse
Affiliation(s)
- Priscila Dallé da Rosa
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Rafael Borges
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Valério Aquino
- Department of Microbiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Luciano Zubaran Goldani
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
40
|
Thomas B, Contet Audonneau N, Machouart M, Debourgogne A. Molecular identification of Fusarium species complexes: Which gene and which database to choose in clinical practice? J Mycol Med 2019; 29:56-58. [DOI: 10.1016/j.mycmed.2019.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/16/2022]
|
41
|
Mardani M, Khodashahi R, Lotfali E, Abolghasemi S, Hakemi-Vala M. Disseminated fusariosis with ecthyma gangrenosum-like lesions in a refractory acute myeloid leukemia patient. Curr Med Mycol 2019; 5:27-31. [PMID: 31049455 PMCID: PMC6488287 DOI: 10.18502/cmm.5.1.534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background and Purpose Fusarium species is an opportunistic mold that causes disseminated infections in immunocompromised patients. Given the high mortality rate of this infection, it is important to make a definite diagnosis when encountering suspected cases. Case report Herein, we presented a 35-year-old man diagnosed with acute myeloid leukemia with a prolonged febrile neutropenic period and ecthyma gangrenosum-like lesions, along with fungemia and disseminated fusariosis. The patient died despite receiving combination therapy, perhaps due to the nonrecovery of neutrophil. Conclusion Ecthyma gangrenosum-like lesions due to disseminated fusariosis might be easily misdiagnosed. Consequently, more attention should be paid to the cutaneous lesions in immunocompromised patients.
Collapse
Affiliation(s)
- Masoud Mardani
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rozita Khodashahi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Abolghasemi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojhde Hakemi-Vala
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Abstract
Fungal keratitis (FK) is a difficult diagnostic challenge for ophthalmologists.
The aim is to familiarize practicing physicians with the diagnostic algorithm worked out in the Ophthalmological Center of SPB City hospital No. 2 using modern research methods, and to assess the epidemiology of fungal keratitis in the North-West Region.
Materials and methods. Patients underwent laboratory diagnostics (fluorescence microscopy of corneal scrapings from the cornea, сulture on Sabouraud agar and broth), confocal in vivo microscopy, optical coherence tomography.
Results. During the period from 2007 to 2017, 41 cases of FK were identified in the City hospital No. 2, of which filamentous fungi were the causative agent in 32 cases (78%), yeast fungi — in 9 cases (22%). Our analysis included patients with fungal keratitis over the past three years, all of them underwent a full diagnostic cycle. Filamentous fungi were found among 12 of them (63%), yeast — in 7 (37%). Our data, considering the statistics of fungal keratitis in the North-West of Russia — a region with a high level of urbanization and industrialization, and located in the temperate zone — showed a predominance of filamentous fungi as pathogens (prevalence 1.3 times higher). Our scheme of keratitis diagnostics — confocal in vivo microscopy, OCT, fungal culture — is a reliable way to identify fungal pathogens in the cornea, and can be recommended for use in practical ophthalmology.
Collapse
|
43
|
Fluorine-18-fluorodeoxyglucose PET/CT in hematopoietic stem cell transplant patients with fusariosis: initial findings of a case series review. Nucl Med Commun 2018; 39:545-552. [PMID: 29652746 DOI: 10.1097/mnm.0000000000000834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Fusariosis is an opportunistic fungal infection that affects mostly leukemic and hematopoietic stem cell transplant patients. Locally invasive and disseminated infection may occur. Treatment is challenging, and besides evaluation of immune status, one also needs to take into account organ involvement to predict the duration and prognosis. OBJECTIVE The aim of this study was to present the findings and clinical follow-up from a series of cases of Fusarium spp. infections in patients subjected to hematopoietic stem cell transplant evaluated with one or more fluorine-18-fluorodeoxyglucose (18F-FDG) PET/CT scans, according to the source of clinical culture sample (blood or wound secretion). RESULTS Ten patients were included. In this series, 18F-FDG PET/CT was able to detect osteomyelitis in three patients. CONCLUSION Although having a small number of patients and lack of standard approach, 18F-FDG PET/CT seemed useful to discriminate uncomplicated cases of primary bloodstream infections and detect occult foci of metastatic infection in patients with positive cutaneous lesions cultures.
Collapse
|
44
|
Abstract
Fusarium is an emerging human opportunistic pathogen of growing importance, especially among immunosuppressed haematology patients due to an increased incidence of disseminated infections over the past two decades. This trend is expected only to continue due to the advances in medical and surgical technologies that will prolong the lives of the severely ill, making these patients susceptible to rare opportunistic infections. Production of mycotoxins, enzymes such as proteases, angio-invasive property and an intrinsically resistant nature, makes this genus very difficult to treat. Fusarium is frequently isolated from the cornea and less commonly from nail, skin, blood, tissue, Continuous Ambulatory Peritoneal Dialysis (CAPD) fluid, urine and pleural fluid. Conventional microscopy establishes the genus, but accurate speciation requires multilocus sequence typing with housekeeping genes such as internal transcribed spacer, translation elongation factor-1α and RPB1 and 2 (largest and second largest subunits of RNA polymerase), for which expansive internet databases exist. Identifying pathogenic species is of epidemiological significance, and the treatment includes immune reconstitution by granulocyte-colony-stimulating factor, granulocyte macrophage-colony-stimulating factor and a combination of the most active species - specific antifungals, typically liposomal amphotericin-B and voriconazole. However, patient outcome is difficult to predict even with in vitro susceptibility with these drugs. Therefore, prevention methods and antifungal prophylaxis have to be taken seriously for these vulnerable patients by vigilant healthcare workers. The current available literature on PubMed and Google Scholar using search terms 'Fusarium', 'opportunistic invasive fungi' and 'invasive fusariosis' was summarised for this review.
Collapse
Affiliation(s)
- Ananya Tupaki-Sreepurna
- Department of Microbiology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| | - Anupma Jyoti Kindo
- Department of Microbiology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
45
|
Recent Advances in the Treatment of Scedosporiosis and Fusariosis. J Fungi (Basel) 2018; 4:jof4020073. [PMID: 29912161 PMCID: PMC6023441 DOI: 10.3390/jof4020073] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 12/18/2022] Open
Abstract
Species of Scedosporium and Fusarium are considered emerging opportunistic pathogens, causing invasive fungal diseases in humans that are known as scedosporiosis and fusariosis, respectively. These mold infections typically affect patients with immune impairment; however, cases have been reported in otherwise healthy individuals. Clinical manifestations vary considerably, ranging from isolated superficial infection to deep-seated invasive infection—affecting multiple organs—which is often lethal. While there have been a number of advances in the detection of these infections, including the use of polymerase chain reaction (PCR) and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS), diagnosis is often delayed, leading to substantial morbidity and mortality. Although the optimal therapy is controversial, there have also been notable advances in the treatment of these diseases, which often depend on a combination of antifungal therapy, reversal of immunosuppression, and in some cases, surgical resection. In this paper, we review these advances and examine how the management of scedosporiosis and fusariosis may change in the near future.
Collapse
|
46
|
Homa M, Galgóczy L, Manikandan P, Narendran V, Sinka R, Csernetics Á, Vágvölgyi C, Kredics L, Papp T. South Indian Isolates of the Fusarium solani Species Complex From Clinical and Environmental Samples: Identification, Antifungal Susceptibilities, and Virulence. Front Microbiol 2018; 9:1052. [PMID: 29875757 PMCID: PMC5974209 DOI: 10.3389/fmicb.2018.01052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/03/2018] [Indexed: 11/13/2022] Open
Abstract
Members of the Fusarium solani species complex (FSSC) are the most frequently isolated fusaria from soil. Moreover, this complex solely affects more than 100 plant genera, and is also one of the major opportunistic human pathogenic filamentous fungi, being responsible for approximately two-third of fusariosis cases. Mycotic keratitis due to Fusarium species is among the leading causes of visual impairment and blindness in South India, but its management is still challenging due to the poor susceptibility of the isolates to conventional antifungal drugs. Aims of the present study were to isolate South Indian clinical and environmental FSSC strains and identify them to species level, to determine the actual trends in their susceptibilities to antifungal therapeutic drugs and to compare the virulence of clinical and environmental FSSC members. Based on the partial sequences of the translation elongation factor 1α gene, the majority of the isolates-both from keratomycosis and environment-were confirmed as F. falciforme, followed by F. keratoplasticum and F. solani sensu stricto. In vitro antifungal susceptibilities to commonly used azole, allylamine and polyene antifungals were determined by the CLSI M38-A2 broth microdilution method. The first generation triazoles, fluconazole and itraconazole proved to be ineffective against all isolates tested. This phenomenon has already been described before, as fusaria are intrinsically resistant to them. However, our results indicated that despite the intensive agricultural use of azole compounds, fusaria have not developed resistance against the imidazole class of antifungals. In order to compare the virulence of different FSSC species from clinical and environmental sources, a Drosophila melanogaster model was used. MyD88 mutant flies having impaired immune responses were highly susceptible to all the examined fusaria. In wild-type flies, one F. falciforme and two F. keratoplasticum strains also reduced the survival significantly. Pathogenicity seemed to be independent from the origin of the isolates.
Collapse
Affiliation(s)
- Mónika Homa
- MTA-SZTE "Lendület" Fungal Pathogenicity Mechanisms Research Group, Szeged, Hungary.,Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Galgóczy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.,Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Palanisamy Manikandan
- Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Coimbatore, India.,Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Greenlink Analytical and Research Laboratory India Private Limited, Coimbatore, India
| | | | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Árpád Csernetics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Tamás Papp
- MTA-SZTE "Lendület" Fungal Pathogenicity Mechanisms Research Group, Szeged, Hungary.,Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
47
|
Dallé da Rosa P, Nunes A, Borges R, Batista B, Meneghello Fuentefria A, Goldani LZ. In vitro susceptibility and multilocus sequence typing of Fusarium isolates causing keratitis. J Mycol Med 2018; 28:482-485. [PMID: 29779647 DOI: 10.1016/j.mycmed.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/28/2018] [Accepted: 05/03/2018] [Indexed: 01/07/2023]
Abstract
Fungal keratitis is recognized as a significant cause of ocular morbidity and blindness especially in developing countries. In this study, we aimed to present the molecular identification and susceptibility of Fusarium isolates causing fungal keratitis in a university hospital in southern Brazil. The samples were identified using the second largest subunit of the RNA polymerase gene (RPB2) and the translation elongation factor 1-alpha (TEF1), while the antifungal susceptibility was tested by the broth microdilution method according to the Clinical and Laboratory Standards Institute (CLSI) methodology. The majority of the isolates belonged to the Fusarium solani species complex (F. solani, F. keratoplasticum and F. falciforme) and Fusarium oxysporum species complex. Antifungal susceptibility has shown that amphotericin B and natamycin were the most effective antifungals across all isolates, followed by voriconazole. Variation among Fusarium complexes in their antifungal sensitivities was observed in our study. The identification of Fusarium species from human samples is important not only from an epidemiological viewpoint, but also for choosing the appropriate antifungal agent for difficult-to-treat Fusarium infections such as keratitis.
Collapse
Affiliation(s)
- P Dallé da Rosa
- Programa de Pós-graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - A Nunes
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - R Borges
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - B Batista
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - A Meneghello Fuentefria
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - L Z Goldani
- Programa de Pós-graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
48
|
Arnoni MV, Paula CR, Auler ME, Simões CCN, Nakano S, Szeszs MW, Melhem MDSC, Pereira VBR, Garces HG, Bagagli E, Silva EG, de Macêdo MF, Ruiz LDS. Infections Caused by Fusarium Species in Pediatric Cancer Patients and Review of Published Literature. Mycopathologia 2018; 183:941-949. [PMID: 29564632 DOI: 10.1007/s11046-018-0257-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/06/2018] [Indexed: 01/12/2023]
Abstract
Fusarium species have emerged as responsible for a broad spectrum of infections, including superficial, locally invasive and disseminated ones, especially in the hospital environment. Since there are few reports of invasive and disseminated fusariosis in children, the aim of this study was to report four cases of nosocomial infection caused by this microorganism in children with cancer hospitalized in a public children's hospital located in Brazil. Two of these patients were female and two were male. All patients presented febrile neutropenia, while three patients had acute lymphocytic leukemia and one patient had Wilms' tumor as underlying disease. In two cases, fungi were isolated from blood and identified as Fusarium oxysporum species complex after phenotypic and genotypic studies, while in two other cases fungi were isolated from skin biopsies and identified as Fusarium solani species complex. One patient died 12 days after the onset of cutaneous lesions. All isolates, after susceptibility testing, presented high levels of minimum inhibitory concentration for itraconazole, voriconazole and amphotericin B. Considering the emergence of filamentous fungi as etiologic agents of nosocomial infections, health professionals should be aware of the problems these infections, especially fungal ones, may cause to debilitated patients.
Collapse
Affiliation(s)
| | | | - Marcos Ereno Auler
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Guarapuava, PR, Brazil
| | | | | | | | | | | | - Hans Garcia Garces
- Departamento de Microbiologia e Imunologia, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Eduardo Bagagli
- Departamento de Microbiologia e Imunologia, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | | | | | - Luciana da Silva Ruiz
- Núcleo de Ciências Biomédicas, Instituto Adolfo Lutz (IAL), CLR II, Bauru, SP, Brazil. .,Instituto Adolfo Lutz - Rua Rubens Arruda, s/n, quadra 06, Centro, Bauru, SP, CEP 17015-110, Brazil.
| |
Collapse
|
49
|
Dallé Rosa P, Ramirez-Castrillon M, Valente P, Meneghello Fuentefria A, Van Diepeningen AD, Goldani LZ. Fusarium riograndense sp. nov., a new species in the Fusarium solani species complex causing fungal rhinosinusitis. J Mycol Med 2018. [PMID: 29525269 DOI: 10.1016/j.mycmed.2018.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Invasive fusariosis has a high mortality and is predominantly observed in patients with leukemia. We report the first case of a novel species of Fusarium, Fusarium riograndense sp. nov, isolated from a lesion in the nasal cavity lesion of a patient with acute lymphoblastic leukemia. The etiological agent was identified by Multilocus Sequencing Typing (MLST), including RPB2, TEF-1α, and ITS-LSU sequences, the gold standard technique to identify new species of Fusarium. MLST and phenotypic data strongly supported its inclusion in the F. solani species complex (FSSC). The new species produced a red pigment in the Sabouraud Dextrose Agar similar to other members of the complex. The macroconiodia developed from phialides on multibranched conidiophores which merge to form effuse sporodochia with a basal foot-cell instead of papilla in basal cell shape. The microconidia were ellipsoidal, 0-1-septated, produced from long monophialides. Chlamydospores were produced singly or in pairs. Amphotericin B (MIC 1μg/mL) was the most active drug, followed by voriconazole (MIC 8μg/mL). The patient was successfully treated with voriconazole. Our findings indicate another lineage within FSSC capable causing of invasive human infection.
Collapse
Affiliation(s)
- P Dallé Rosa
- Infectious Diseases Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - M Ramirez-Castrillon
- Research group in Mycology (GIM/CICBA), Universidad Santiago de Cali, Cali, Colombia
| | - P Valente
- Research group in Mycology (GIM/CICBA), Universidad Santiago de Cali, Cali, Colombia; Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A Meneghello Fuentefria
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - A D Van Diepeningen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; Wageningen University and Research Centre, Wageningen, The Netherlands
| | - L Z Goldani
- Infectious Diseases Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
50
|
Gaviria-Rivera AM, Giraldo-López AD, Cano Restrepo LE. In vitro antifungal susceptibility of clinical isolates of Fusarium from Colombia. Rev Salud Publica (Bogota) 2017; 19:800-805. [DOI: 10.15446/rsap.v19n6.54654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/07/2017] [Indexed: 11/09/2022] Open
Abstract
Objetivo Evaluar la susceptibilidad antifúngica in vitro de aislamientos de Fusarium a los antimicóticos amfotericina B, itraconazol y voriconazol.Métodos La susceptibilidad de 44 aislamientos clínicos de Fusarium fue evaluada por el método de difusión en disco, E-test.Resultados Todos los aislamientos fueron resistentes al itraconazol, y 89 % y 54,5 % fueron resistentes a la amfotericina B y al voriconazol, respectivamente.Discusión Los resultados confirman el alto nivel de resistencia reportado, independiente de la especie o la cepa de Fusarium involucrada. Los valores tan altos de MICs son preocupantes y sugieren la necesidad de evaluar nuevos medicamentos.
Collapse
|