1
|
Goh ESY, Chad L, Richer J, Bombard Y, Mighton C, Agatep R, Lacaria M, Penny B, Thomas MA, Zawati MH, MacFarlane J, Laberge AM, Nelson TN. Canadian College of Medical Geneticists: clinical practice advisory document - responsibility to recontact for reinterpretation of clinical genetic testing. J Med Genet 2024:jmg-2024-110330. [PMID: 39362754 DOI: 10.1136/jmg-2024-110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Advances in technology and knowledge have facilitated both an increase in the number of patient variants reported and variants reclassified. While there is currently no duty to recontact for reclassified genetic variants, there may be a responsibility. The purpose of this clinical practice advisory document is to provide healthcare practitioners guidance for recontact of previously identified and classified variants, suggest methods for recontact, and principles to consider, taking account patient safety, feasibility, ethical considerations, health service capacity and resource constraints. The target audience are practitioners who order genetic testing, follow patients who have undergone genetic testing and those analysing and reporting genetic testing. METHODS A multidisciplinary group of laboratory and ordering clinicians, patient representatives, ethics and legal researchers and a genetic counsellor from the Canadian Association of Genetic Counsellors reviewed the existing literature and guidelines on responsibility to recontact in a clinical context to make recommendations. Comments were collected from the Canadian College of Medical Geneticists (CCMG) Education, Ethics, and Public Policy, Clinical Practice and Laboratory Practice committees, and the membership at large. RESULTS Following incorporation of feedback, and external review by the Canadian Association of Genetic Counsellors and patient groups, the document was approved by the CCMG Board of Directors. The CCMG is the Canadian organisation responsible for certifying laboratory and medical geneticists who provide medical genetics services, and for establishing professional and ethical standards for clinical genetics services in Canada. CONCLUSION The document describes the ethical and practical factors and suggests a shared responsibility between patients, ordering clinician and laboratory practitioners.
Collapse
Affiliation(s)
- Elaine Suk-Ying Goh
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Chad
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julie Richer
- Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Yvonne Bombard
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Chloe Mighton
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Ron Agatep
- Genomics, Shared Health Diagnostic Services, Winnipeg, Manitoba, Canada
| | - Melanie Lacaria
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | | - Mary Ann Thomas
- Departments of Medical Genetics and Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Ma'n H Zawati
- Human Genetics, Centre of Genomics and Policy - McGill University, Montreal, Quebec, Canada
| | - Julie MacFarlane
- Screening Programs, Perinatal Services BC, Vancouver, British Columbia, Canada
| | - Anne-Marie Laberge
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
- Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Tanya N Nelson
- Genome Diagnostics, Pathology and Laboratory Medicine, BC Children's Hospital, Vancouver, British Columbia, Canada
- Genome Diagnostics, Pathology and Laboratory Medicine, BC Women's Hospital and Health Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Innella G, Fortuno C, Caleca L, Feng B, Carroll C, Parsons MT, Miccoli S, Montagna M, Calistri D, Cortesi L, Pasini B, Manoukian S, Giachino D, Matricardi L, Foti MC, Zampiga V, Piombino C, Barbieri E, Lutati FV, Azzolini J, Danesi R, Arcangeli V, Caputo SM, Boutry‐Kryza N, Goussot V, Hiraki S, Richardson M, Ferrari S, Radice P, Spurdle AB, Turchetti D. Atypical cancer risk profile in carriers of Italian founder BRCA1 variant p.His1673del: Implications for classification and clinical management. Cancer Med 2024; 13:e70114. [PMID: 39194334 PMCID: PMC11350839 DOI: 10.1002/cam4.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND BRCA1:c.5017_5019del (p.His1673del) is a founder variant relatively frequent in Northern Italy. Despite previous suggestion of pathogenicity, variant classification in public databases is still conflicting, needing additional evidence. METHODS Maximum likelihood penetrance of breast/ovarian and other cancer types was estimated using full pedigree data from 53 informative Italian families. The effect of the variant on BRCA1-ABRAXAS1 interaction was assessed using a GFP-fragment reassembly-based PPI assay. Results were combined with additional data from multiple sources to classify the variant according to ACMG/AMP classification rules specified for BRCA1/2. RESULTS Variant-carriers displayed increased risk for ovarian cancer (HR = 33.0, 95% CI = 7.0-155.0; cumulative risk at age 70 = 27.6%, 95% CI = 12.6-40.0%) but not for breast cancer (HR = 0.7, 95% CI = 0.2-2.2). An increased risk of uterine cancer (HR = 8.0, 95% CI = 1.03-61.6) emerged, warranting further evaluation. Likelihood-ratio in favor of pathogenicity was 98898642.82 under assumption of standard BRCA1 breast and ovarian penetrance, and 104240832.84 after excluding breast cancer diagnoses (based on penetrance results). Functional analysis demonstrated that the variant abrogates the BRCA1-ABRAXAS1 binding, supporting the PS3 code assignment within the ACMG/AMP rule-based model. Collectively, these findings allowed to classify the variant as pathogenic. CONCLUSION Pathogenicity of BRCA1:c.5017_5019del(p.His1673del) has been confirmed; however, breast cancer risk in Italian families is not increased, unlike in families from other countries and in carriers of most BRCA1 pathogenic variants. The knowledge of atypical risk profiles for this and other variants will pave the way for personalized management based on specific genotype.
Collapse
Affiliation(s)
- Giovanni Innella
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
- Medical Genetics UnitBolognaItaly
| | - Cristina Fortuno
- Population HealthQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Laura Caleca
- Unit of Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental OncologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | | | | | - Michael T. Parsons
- Population HealthQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | | | - Marco Montagna
- Immunology and Molecular Oncology UnitVeneto Institute of Oncology IOV—IRCCSPaduaItaly
| | - Daniele Calistri
- Biosciences LaboratoryIRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Laura Cortesi
- Division of Medical Oncology, Department of Oncology and HematologyUniversity Hospital of ModenaModenaItaly
| | - Barbara Pasini
- Medical Genetics UnitCittà della Salute e della Scienza University HospitalTorinoItaly
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and HematologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Daniela Giachino
- Medical Genetic UnitSan Luigi Gonzaga University HospitalTorinoItaly
- Department of Clinical and Biological SciencesUniversity of TurinTorinoItaly
| | - Laura Matricardi
- Immunology and Molecular Oncology UnitVeneto Institute of Oncology IOV—IRCCSPaduaItaly
| | - Maria Cristina Foti
- Immunology and Molecular Oncology UnitVeneto Institute of Oncology IOV—IRCCSPaduaItaly
| | - Valentina Zampiga
- Biosciences LaboratoryIRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Claudia Piombino
- Division of Medical Oncology, Department of Oncology and HematologyUniversity Hospital of ModenaModenaItaly
| | - Elena Barbieri
- Division of Medical Oncology, Department of Oncology and HematologyUniversity Hospital of ModenaModenaItaly
| | | | - Jacopo Azzolini
- Unit of Medical Genetics, Department of Medical Oncology and HematologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Rita Danesi
- Romagna Cancer RegistryIRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Valentina Arcangeli
- Romagna Cancer RegistryIRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Sandrine M. Caputo
- Department of Genetics, Institut Curie, ParisFrance and Paris Sciences Lettres Research UniversityParisFrance
| | | | - Vincent Goussot
- Département de Biologie et Pathologie des TumeursCentre de Lutte Contre le Cancer Georges François LeclercDijonFrance
| | | | | | | | - Paolo Radice
- Unit of Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental OncologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Amanda B. Spurdle
- Population HealthQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
- Medical Genetics UnitBolognaItaly
| |
Collapse
|
3
|
Caeser R, Chiang J, Tan ES, Tai ES, Ngeow J. Cascade testing for hereditary cancer in Singapore: how population genomics help guide clinical policy. Fam Cancer 2024; 23:133-140. [PMID: 38662262 DOI: 10.1007/s10689-024-00376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
Hereditary Cancer makes up around 5-10% of all cancers. It is important to diagnose hereditary cancer in a timely fashion, as not only do patients require long-term care from a young age, but their relatives also require management. The main approach to capture at-risk relatives is cascade testing. It involves genetic testing of relatives of the first detected carrier of a pathogenic variant in a family i.e. the proband. The current standard of care for cascade testing is a patient-mediated approach. Probands are then advised to inform and encourage family members to undergo genetic testing. In Singapore, cascade testing is inefficient, around 10-15%, lower than the 30% global average. Here, we describe the cascade testing process and its effort to increase testing in Singapore. Precision Health Research, Singapore (PRECISE), was set up to coordinate Singapore's National Precision Medicine strategy and has awarded five clinical implementation pilots, with one of them seeking to identify strategies for how cascade testing for hereditary cancer can be increased in a safe and cost-efficient manner. Achieving this will be done through addressing barriers such as cost, manpower shortages, exploring a digital channel for contacting at-risk relatives, and getting a deeper insight into why genetic testing gets declined. If successful, it will likely result in care pathways that are a cost-effective public health intervention for identifying individuals at risk. Surveillance and management of those unaffected at-risk individuals, if caught early, will result in improved patient outcomes, and further reduce the healthcare burden for the economy.
Collapse
Affiliation(s)
- Rebecca Caeser
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Jianbang Chiang
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Ee Shien Tan
- Duke-National University of Singapore (NUS) Medical School, National University of Singapore, Singapore, Singapore
- Genetics Service, Department of Pediatrics, Kadang Kerbau (KK) Women's and Children's Hospital, Singapore, Singapore
| | - E Shyong Tai
- Duke-National University of Singapore (NUS) Medical School, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Health Research, Singapore, Singapore
| | - Joanne Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
| |
Collapse
|
4
|
Innella G, Ferrari S, Miccoli S, Luppi E, Fortuno C, Parsons MT, Spurdle AB, Turchetti D. Clinical implications of VUS reclassification in a single-centre series from application of ACMG/AMP classification rules specified for BRCA1/2. J Med Genet 2024; 61:483-489. [PMID: 38160042 DOI: 10.1136/jmg-2023-109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND BRCA1/2 testing is crucial to guide clinical decisions in patients with hereditary breast/ovarian cancer, but detection of variants of uncertain significance (VUSs) prevents proper management of carriers. The ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles) BRCA1/2 Variant Curation Expert Panel (VCEP) has recently developed BRCA1/2 variant classification guidelines consistent with ClinGen processes, specified against the ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular-Pathology) classification framework. METHODS The ClinGen-approved BRCA1/2-specified ACMG/AMP classification guidelines were applied to BRCA1/2 VUSs identified from 2011 to 2022 in a series of patients, retrieving information from the VCEP documentation, public databases, literature and ENIGMA unpublished data. Then, we critically re-evaluated carrier families based on new results and checked consistency of updated classification with main sources for clinical interpretation of BRCA1/2 variants. RESULTS Among 166 VUSs detected in 231 index cases, 135 (81.3%) found in 197 index cases were classified by applying BRCA1/2-specified ACMG/AMP criteria: 128 (94.8%) as Benign/Likely Benign and 7 (5.2%) as Pathogenic/Likely Pathogenic. The average time from the first report as 'VUS' to classification using this approach was 49.4 months. Considering that 15 of these variants found in 64 families had already been internally reclassified prior to this work, this study provided 121 new reclassifications among the 151 (80.1%) remaining VUSs, relevant to 133/167 (79.6%) families. CONCLUSIONS These results demonstrated the effectiveness of new BRCA1/2 ACMG/AMP classification guidelines for VUS classification within a clinical cohort, and their important clinical impact. Furthermore, they suggested a cadence of no more than 3 years for regular review of VUSs, which however requires time, expertise and resources.
Collapse
Affiliation(s)
- Giovanni Innella
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simona Ferrari
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Sara Miccoli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elena Luppi
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Cristina Fortuno
- Population Health, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michael T Parsons
- Population Health, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Amanda B Spurdle
- Population Health, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Daniela Turchetti
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
5
|
Walsh N, Cooper A, Dockery A, O'Byrne JJ. Variant reclassification and clinical implications. J Med Genet 2024; 61:207-211. [PMID: 38296635 DOI: 10.1136/jmg-2023-109488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Genomic technologies have transformed clinical genetic testing, underlining the importance of accurate molecular genetic diagnoses. Variant classification, ranging from benign to pathogenic, is fundamental to these tests. However, variant reclassification, the process of reassigning the pathogenicity of variants over time, poses challenges to diagnostic legitimacy. This review explores the medical and scientific literature available on variant reclassification, focusing on its clinical implications.Variant reclassification is driven by accruing evidence from diverse sources, leading to variant reclassification frequency ranging from 3.6% to 58.8%. Recent studies have shown that significant changes can occur when reviewing variant classifications within 1 year after initial classification, illustrating the importance of early, accurate variant assignation for clinical care.Variants of uncertain significance (VUS) are particularly problematic. They lack clear categorisation but have influenced patient treatment despite recommendations against it. Addressing VUS reclassification is essential to enhance the credibility of genetic testing and the clinical impact. Factors affecting reclassification include standardised guidelines, clinical phenotype-genotype correlations through deep phenotyping and ancestry studies, large-scale databases and bioinformatics tools. As genomic databases grow and knowledge advances, reclassification rates are expected to change, reducing discordance in future classifications.Variant reclassification affects patient diagnosis, precision therapy and family screening. The exact patient impact is yet unknown. Understanding influencing factors and adopting standardised guidelines are vital for precise molecular genetic diagnoses, ensuring optimal patient care and minimising clinical risk.
Collapse
Affiliation(s)
- Nicola Walsh
- Department of Clinical Genetics, Children's Health Ireland, Dublin, Ireland
| | - Aislinn Cooper
- Next Generation Sequencing Lab, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Adrian Dockery
- Next Generation Sequencing Lab, Mater Misericordiae University Hospital, Dublin, Ireland
| | - James J O'Byrne
- National Centre for Inherited Metabolic Disorders, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Barili V, Ambrosini E, Bortesi B, Minari R, De Sensi E, Cannizzaro IR, Taiani A, Michiara M, Sikokis A, Boggiani D, Tommasi C, Serra O, Bonatti F, Adorni A, Luberto A, Caggiati P, Martorana D, Uliana V, Percesepe A, Musolino A, Pellegrino B. Genetic Basis of Breast and Ovarian Cancer: Approaches and Lessons Learnt from Three Decades of Inherited Predisposition Testing. Genes (Basel) 2024; 15:219. [PMID: 38397209 PMCID: PMC10888198 DOI: 10.3390/genes15020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Germline variants occurring in BRCA1 and BRCA2 give rise to hereditary breast and ovarian cancer (HBOC) syndrome, predisposing to breast, ovarian, fallopian tube, and peritoneal cancers marked by elevated incidences of genomic aberrations that correspond to poor prognoses. These genes are in fact involved in genetic integrity, particularly in the process of homologous recombination (HR) DNA repair, a high-fidelity repair system for mending DNA double-strand breaks. In addition to its implication in HBOC pathogenesis, the impairment of HR has become a prime target for therapeutic intervention utilizing poly (ADP-ribose) polymerase (PARP) inhibitors. In the present review, we introduce the molecular roles of HR orchestrated by BRCA1 and BRCA2 within the framework of sensitivity to PARP inhibitors. We examine the genetic architecture underneath breast and ovarian cancer ranging from high- and mid- to low-penetrant predisposing genes and taking into account both germline and somatic variations. Finally, we consider higher levels of complexity of the genomic landscape such as polygenic risk scores and other approaches aiming to optimize therapeutic and preventive strategies for breast and ovarian cancer.
Collapse
Affiliation(s)
- Valeria Barili
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Enrico Ambrosini
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Beatrice Bortesi
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Erika De Sensi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Antonietta Taiani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Maria Michiara
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Angelica Sikokis
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Daniela Boggiani
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Chiara Tommasi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Olga Serra
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Francesco Bonatti
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Alessia Adorni
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Anita Luberto
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Davide Martorana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Vera Uliana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Antonio Percesepe
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Antonino Musolino
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Benedetta Pellegrino
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
7
|
Tam B, Qin Z, Zhao B, Sinha S, Lei CL, Wang SM. Classification of MLH1 Missense VUS Using Protein Structure-Based Deep Learning-Ramachandran Plot-Molecular Dynamics Simulations Method. Int J Mol Sci 2024; 25:850. [PMID: 38255924 PMCID: PMC10815254 DOI: 10.3390/ijms25020850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Pathogenic variation in DNA mismatch repair (MMR) gene MLH1 is associated with Lynch syndrome (LS), an autosomal dominant hereditary cancer. Of the 3798 MLH1 germline variants collected in the ClinVar database, 38.7% (1469) were missense variants, of which 81.6% (1199) were classified as Variants of Uncertain Significance (VUS) due to the lack of functional evidence. Further determination of the impact of VUS on MLH1 function is important for the VUS carriers to take preventive action. We recently developed a protein structure-based method named "Deep Learning-Ramachandran Plot-Molecular Dynamics Simulation (DL-RP-MDS)" to evaluate the deleteriousness of MLH1 missense VUS. The method extracts protein structural information by using the Ramachandran plot-molecular dynamics simulation (RP-MDS) method, then combines the variation data with an unsupervised learning model composed of auto-encoder and neural network classifier to identify the variants causing significant change in protein structure. In this report, we applied the method to classify 447 MLH1 missense VUS. We predicted 126/447 (28.2%) MLH1 missense VUS were deleterious. Our study demonstrates that DL-RP-MDS is able to classify the missense VUS based solely on their impact on protein structure.
Collapse
Affiliation(s)
- Benjamin Tam
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zixin Qin
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Bojin Zhao
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Siddharth Sinha
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chon Lok Lei
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
8
|
Martorana D, Barili V, Uliana V, Ambrosini E, Riva M, De Sensi E, Luppi E, Messina C, Caleffi E, Pisani F, Percesepe A. Reassessment of the NF1 variants of unknown significance found during the 20-year activity of a genetics diagnostic laboratory. Eur J Med Genet 2023; 66:104847. [PMID: 37751797 DOI: 10.1016/j.ejmg.2023.104847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/05/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
The finding of variants of uncertain significance (VUS) in the activity of a diagnostic genetic laboratory is a common issue, which is however provisional and needs to be periodically re-evaluated, due to the continuous advancements in our knowledge of the genetic diseases. Neurofibromatosis type 1, caused by the occurrence of heterozygous pathogenic NF1 variants, is a good model for studying the evolution of VUS, due to the widespread use of genetic testing for the disease, the constant enrichment of the international databases with NF1 variants and the full adult penetrance of the disease, which makes genotyping the parents a crucial step in the diagnostic workflow. The present study retrospectively reviewed and reinterpreted the genetic test results of NF1 in a diagnostic genetic laboratory in the period from January 1, 2000 to December 31, 2020. All the VUS were reinterpreted using the 2015 consensus standards and guidelines for the interpretation. Out of 589 NF1 genetic tests which were performed in the period, a total of 85 VUS were found and reinterpreted in 72 cases (84.7%): 21 (29.2%) were reclassified as benign/likely benign, whereas 51 (70.8%) were recoded as pathogenic/likely pathogenic with a significant trend distribution (Chi square test for trend p = 0.005). Synonymous VUS have mainly been reclassified as class 1 and 2 (7/8, 87.5%), whereas missense variants have been attributed to class 4 and 5 in 38 out of the 58 cases (65.5%). These findings underline an improvement in the classification of variants over time, suggesting that a reinterpretation of the genetic tests should be routinely performed to support the physicians in the clinical diagnosis of genetic diseases.
Collapse
Affiliation(s)
- Davide Martorana
- Medical Genetics, University Hospital of Parma, 43126, Parma, Italy; CoreLAB Research Center, University Hospital of Parma, 43126, Italy
| | - Valeria Barili
- Medical Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Vera Uliana
- Medical Genetics, University Hospital of Parma, 43126, Parma, Italy
| | - Enrico Ambrosini
- Medical Genetics, University Hospital of Parma, 43126, Parma, Italy
| | - Matteo Riva
- Medical Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Erika De Sensi
- Medical Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elena Luppi
- Medical Genetics, University of Bologna, Italy
| | - Corinne Messina
- Medical Genetics, University Hospital of Parma, 43126, Parma, Italy
| | - Edoardo Caleffi
- Plastic Surgery, University Hospital of Parma, 43126, Parma, Italy
| | - Francesco Pisani
- Children's Neuropsychological Services, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Percesepe
- Medical Genetics, University Hospital of Parma, 43126, Parma, Italy; Medical Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
9
|
Henkel J, Laner A, Locher M, Wohlfrom T, Neitzel B, Becker K, Neuhann T, Abicht A, Steinke-Lange V, Holinski-Feder E. Diagnostic yield and clinical relevance of expanded germline genetic testing for nearly 7000 suspected HBOC patients. Eur J Hum Genet 2023; 31:925-930. [PMID: 37188824 PMCID: PMC10400578 DOI: 10.1038/s41431-023-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/18/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
Here we report the results of a retrospective germline analysis of 6941 individuals fulfilling the criteria necessary for genetic testing of hereditary breast- and ovarian cancer (HBOC) according to the German S3 or AGO Guidelines. Genetic testing was performed by next-generation sequencing using 123 cancer-associated genes based on the Illumina TruSight® Cancer Sequencing Panel. In 1431 of 6941 cases (20.6%) at least one variant was reported (ACMG/AMP classes 3-5). Of those 56.3% (n = 806) were class 4 or 5 and 43.7% (n = 625) were a class 3 (VUS). We defined a 14 gene HBOC core gene panel and compared this to a national and different internationally recommended gene panels (German Hereditary Breast and Ovarian Cancer Consortium HBOC Consortium, ClinGen expert Panel, Genomics England PanelsApp) in regard of diagnostic yield, revealing a diagnostic range of pathogenic variants (class 4/5) from 7.8 to 11.6% depending on the panel evaluated. With the 14 HBOC core gene panel having a diagnostic yield of pathogenic variants (class 4/5) of 10.8%. Additionally, 66 (1%) pathogenic variants (ACMG/AMP class 4 or 5) were found in genes outside the 14 HBOC core gene set (secondary findings) that would have been missed with the restriction to the analysis of HBOC genes. Furthermore, we evaluated a workflow for a periodic re-evaluation of variants of uncertain clinical significance (VUS) for the improvement of clinical validity of germline genetic testing.
Collapse
Affiliation(s)
- Jan Henkel
- MGZ - Medizinisch Genetisches Zentrum, München, Germany
| | - Andreas Laner
- MGZ - Medizinisch Genetisches Zentrum, München, Germany
| | | | | | | | | | | | - Angela Abicht
- MGZ - Medizinisch Genetisches Zentrum, München, Germany
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, München, Germany
| | - Verena Steinke-Lange
- MGZ - Medizinisch Genetisches Zentrum, München, Germany
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität, München, Germany
| | - Elke Holinski-Feder
- MGZ - Medizinisch Genetisches Zentrum, München, Germany.
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität, München, Germany.
| |
Collapse
|
10
|
Makhnoon S, Levin B, Ensinger M, Mattie K, Volk RJ, Zhao Z, Mendoza T, Shete S, Samiian L, Grana G, Grainger A, Arun B, Shirts BH, Peterson SK. A multicenter study of clinical impact of variant of uncertain significance reclassification in breast, ovarian and colorectal cancer susceptibility genes. Cancer Med 2023; 12:2875-2884. [PMID: 36426404 PMCID: PMC9939195 DOI: 10.1002/cam4.5202] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/30/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Clinical interpretation of genetic test results is complicated by variants of uncertain significance (VUS) that have an unknown impact on health but can be clarified through reclassification. There is little empirical evidence regarding VUS reclassification in oncology care settings, including the prevalence and outcomes of reclassification, and racial/ethnic differences. METHODS This was a retrospective analysis of persons with and without a personal history of cancer carrying VUS (with or without an accompanying pathogenic or likely pathogenic [P/LP] variant) in breast, ovarian, and colorectal cancer predisposition genes seen at four cancer care settings (in Texas, Florida, Ohio, and New Jersey) between 2013 and 2019. RESULTS In 2715 individuals included in the study, 3261 VUS and 313 P/LP variants were reported; 8.1% of all individuals with VUS experienced reclassifications and rates varied significantly among cancer care settings from 4.81% to 20.19% (overall p < 0.001). Compared to their prevalence in the overall sample, reclassification rates for Black individuals were higher (13.6% vs. 19.0%), whereas the rates for Asian individuals were lower (6.3% vs. 3.5%) and rates for White and Hispanic individuals were proportional. Two-year prevalence of VUS reclassification remained steady between 2014 and 2019. Overall, 11.3% of all reclassified VUS resulted in clinically actionable findings and 4.6% subsequently changed individuals' clinical managements. CONCLUSIONS The findings from this large multisite study suggest that VUS reclassification alters clinical management, has implications for precision cancer prevention, and highlights the need for implementing practices and solutions for efficiently returning reinterpreted genetic test results.
Collapse
Affiliation(s)
- Sukh Makhnoon
- Department of Behavioral ScienceUT MD Anderson Cancer CenterHoustonTexasUSA
| | - Brooke Levin
- William G. Rohrer Cancer Genetics Program, Division of Hematology and Medical OncologyMD Anderson Cancer Center at Cooper University Health CareCamdenNew JerseyUSA
| | | | - Kristin Mattie
- William G. Rohrer Cancer Genetics Program, Division of Hematology and Medical OncologyMD Anderson Cancer Center at Cooper University Health CareCamdenNew JerseyUSA
| | - Robert J. Volk
- Department of Health Services ResearchUT MD Anderson Cancer CenterHoustonTexasUSA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Tito Mendoza
- Department of Symptoms researchUT MD Anderson Cancer CenterHoustonTexasUSA
| | - Sanjay Shete
- Division of Cancer Prevention and Population SciencesUT MD Anderson Cancer CenterHoustonTexasUSA
| | | | - Generosa Grana
- William G. Rohrer Cancer Genetics Program, Division of Hematology and Medical OncologyMD Anderson Cancer Center at Cooper University Health CareCamdenNew JerseyUSA
| | | | - Banu Arun
- Clinical Cancer GeneticsUT MD Anderson Cancer CenterHoustonTexasUSA
| | | | - Susan K. Peterson
- Department of Behavioral ScienceUT MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
11
|
Bang YJ, Kwon WK, Kim JW, Lee JE, Jung BY, Kim M, Kim J, An J, Jung SP, Kim HK, Kim Z, Youn HJ, Ryu JM, Kim SW. Comprehensive clinical characterization of patients with BRCA1: c.5017_5019del germline variant. Ann Surg Treat Res 2022; 103:323-330. [PMID: 36601340 PMCID: PMC9763777 DOI: 10.4174/astr.2022.103.6.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose We provide evidence for the reclassification of the BRCA1:c.5017_5019del variant by presenting the clinicopathological characteristics, clinical outcomes, and family history of breast or ovarian cancer in 17 patients with this variant. Methods This study included breast or ovarian cancer patients tested for BRCA1/2 genes between January 2008 and June 2020 at 10 medical centers in Korea. We retrospectively reviewed 17 probands from 15 families who had the BRCA1:c.5017_5019del variant according to the electronic medical records. Results We present 10 breast cancer patients and 7 ovarian cancer patients from 15 families identified as having BRCA1:c.5017_5019del and a total of 19 cases of breast cancer and 14 cases of ovarian cancer in these families. The ratio of breast-to-ovarian cancer was 1.3:1. Breast cancer patients with this variant showed a rich family history of breast or ovarian cancer, 8 patients (80.0%). The mean age at diagnosis was 45.4 years and 6 patients (60.0%) were categorized into hormone-receptor-negative breast cancer. Also, the ovarian cancer patients with this variant showed strong family histories of breast and/or ovarian cancer in 4 patients (57.1%). Conclusion We presented clinical evidence for the reclassification of BRCA1:c.5017_5019del as a likely pathogenic variant (LPV). Reclassification as LPV could result in the prophylactic treatment and medical surveillance of probands, family testing recommendations, and appropriate genetic counseling of their families.
Collapse
Affiliation(s)
- Yoon Ju Bang
- Department of Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Won Kyung Kwon
- Department of Laboratory and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong-Won Kim
- Department of Laboratory and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Eon Lee
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Boo Yeon Jung
- Breast Cancer Center, Samsung Medical Center, Seoul, Korea
| | - Mina Kim
- Breast Cancer Center, Samsung Medical Center, Seoul, Korea
| | - Jisun Kim
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeongshin An
- Institute of Convergence Medicine Research, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| | - Seung Pil Jung
- Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hong-Kyu Kim
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Zisun Kim
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Hyun Jo Youn
- Department of Surgery, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Korea
| | - Jai Min Ryu
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung-Won Kim
- Department of Surgery, Breast Care Center, Daerim St. Mary’s Hospital, Seoul, Korea
| | | |
Collapse
|
12
|
McDonald JT, Ricks-Santi LJ. Hereditary variants of unknown significance in African American women with breast cancer. PLoS One 2022; 17:e0273835. [PMID: 36315513 PMCID: PMC9621418 DOI: 10.1371/journal.pone.0273835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022] Open
Abstract
Expanded implementation of genetic sequencing has precipitously increased the discovery of germline and somatic variants. The direct benefit of identifying variants in actionable genes may lead to risk reduction strategies such as increased surveillance, prophylactic surgery, as well as lifestyle modifications to reduce morbidity and mortality. However, patients with African ancestry are more likely to receive inconclusive genetic testing results due to an increased number of variants of unknown significance decreasing the utility and impact on disease management and prevention. This study examines whole exome sequencing results from germline DNA samples in African American women with a family history of cancer including 37 cases that were diagnosed with breast cancer and 51 family members. Self-identified ancestry was validated and compared to the 1000 genomes population. The analysis of sequencing results was limited to 85 genes from three clinically available common genetic screening platforms. This target region had a total of 993 variants of which 6 (<1%) were pathogenic or likely pathogenic, 736 (74.1%) were benign, and 170 (17.1%) were classified as a variant of unknown significance. There was an average of 3.4±1.8 variants with an unknown significance per individual and 85 of 88 individuals (96.6%) harbored at least one of these in the targeted genes. Pathogenic or likely pathogenic variants were only found in 6 individuals for the BRCA1 (p.R1726fs, rs80357867), BRCA2 (p.K589fs, rs397507606 & p.L2805fs, rs397507402), RAD50 (p.E995fs, rs587780154), ATM (p.V2424G, rs28904921), or MUTYH (p.G396D, rs36053993) genes. Strategies to functionally validate the remaining variants of unknown significance, especially in understudied and hereditary cancer populations, are greatly needed to increase the clinical utility and utilization of clinical genetic screening platforms to reduce cancer incidence and mortality.
Collapse
Affiliation(s)
- J. Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, DC, United States of America
| | - Luisel J. Ricks-Santi
- Cancer Research Center, Hampton University, Hampton, VA, United States of America
- Department of Pharmacotherapy and Translational Research, College of Medicine, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
13
|
Effects of Laparoscopic Hyperthermic Perfusion Therapy Combined with Adjuvant Treatment of Compound Yew Capsule on Ovarian Blood Flow Parameters and Immune Function in Patients with Ovarian Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9603492. [PMID: 35873625 PMCID: PMC9300267 DOI: 10.1155/2022/9603492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022]
Abstract
Objective To determine the effects of laparoscopic hyperthermic perfusion therapy combined with adjuvant compound yew capsules on ovarian blood flow parameters and immune function in patients with ovarian cancer (OC). Methods A total of 90 OC patients enrolled in our hospital between January 2019 and January 2020 were randomly distributed into the control (Con group) and experimental group (Exp group) based on the sealed envelope method. The Con group was administered laparoscopic hyperthermic perfusion therapy. On this basis, the Exp group was subjected to compound yew capsules; the ovarian blood flow parameters and immune function indexes were compared between the two groups. Results The Exp group was reported to perform better than the Con group regarding ovarian blood flow parameters and immune indexes after treatment (p < 0.001). Conclusion Laparoscopic hyperthermic perfusion therapy combined with adjuvant compound yew capsules for patients with OC can substantially improve the clinical indexes and immune function. Furthermore, research and adequate promotion are needed to elicit the evidence beyond preclinical studies to understand the intricacies of its implementation.
Collapse
|
14
|
Agaoglu NB, Unal B, Akgun Dogan O, Kanev MO, Zolfagharian P, Ozemri Sag S, Temel SG, Doganay L. Consistency of variant interpretations among bioinformaticians and clinical geneticists in hereditary cancer panels. Eur J Hum Genet 2022; 30:378-383. [PMID: 35132179 PMCID: PMC8904571 DOI: 10.1038/s41431-022-01060-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/19/2021] [Accepted: 01/28/2022] [Indexed: 01/12/2023] Open
Abstract
Next-generation sequencing (NGS) is used increasingly in hereditary cancer patients' (HCP) management. While enabling evaluation of multiple genes simultaneously, the technology brings to light the dilemma of variant interpretation. Here, we aimed to reveal the underlying reasons for the discrepancy in the evidence titles used during variant classification according to ACMG guidelines by two different bioinformatic specialists (BIs) and two different clinical geneticists (CGs). We evaluated final reports of 1920 cancer patients and 189 different variants from 285 HCP were enrolled to the study. A total of 173 of these variants were classified as pathogenic (n = 132) and likely pathogenic (n = 41) by the BI and an additional 16 variants, that were classified as VUS by at least one interpreter and their classification would change the clinical management, were compared for their evidence titles between different specialists. The attributed evidence titles and the final classification of the variants among BIs and CGs were compared. The discrepancy between P/LP final reports was 22.5%. The discordance between CGs was 30% whereas the discordance between two BIs was almost 75%. The use of PVS1, PS3, PP3, PP5, PM1, PM2, BP1, BP4 criteria markedly varied from one expert to another. This difference was particularly noticeable in PP3, PP5, and PM1 evidence and mostly in the variants affecting splice sites like BRCA1(NM_007294.4) c.4096 + 1 G > A and CHEK2(NM_007194.4) c.592 + 3 A > T. With recent advancements in precision medicine, the importance of variant interpretations is emerging. Our study shows that variant interpretation is subjective process that is in need of concrete definitions for accurate and standard interpretation.
Collapse
Affiliation(s)
- Nihat Bugra Agaoglu
- Department of Medical Genetics, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.
- Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.
| | - Busra Unal
- Department of Medical Genetics, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
- Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ozlem Akgun Dogan
- Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
- Department of Pediatric Genetics, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Martin Orlinov Kanev
- Department of Biotechnology and Genetic, Institute of Science, Trakya University, Edirne, Turkey
| | - Payam Zolfagharian
- Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Sehime Gulsun Temel
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
- Department of Medical Genetics PhD. Program, Institute of Health Sciences, Faculty of Medicine, Baskent University, Ankara, Turkey
| | - Levent Doganay
- Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
15
|
Fanale D, Pivetti A, Cancelliere D, Spera A, Bono M, Fiorino A, Pedone E, Barraco N, Brando C, Perez A, Guarneri MF, Russo TDB, Vieni S, Guarneri G, Russo A, Bazan V. BRCA1/2 variants of unknown significance in hereditary breast and ovarian cancer (HBOC) syndrome: looking for the hidden meaning. Crit Rev Oncol Hematol 2022; 172:103626. [PMID: 35150867 DOI: 10.1016/j.critrevonc.2022.103626] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Hereditary breast and ovarian cancer syndrome is caused by germline mutations in BRCA1/2 genes. These genes are very large and their mutations are heterogeneous and scattered throughout the coding sequence. In addition to the above-mentioned mutations, variants of uncertain/unknown significance (VUSs) have been identified in BRCA genes, which make more difficult the clinical management of the patient and risk assessment. In the last decades, several laboratories have developed different databases that contain more than 2000 variants for the two genes and integrated strategies which include multifactorial prediction models based on direct and indirect genetic evidence, to classify the VUS and attribute them a clinical significance associated with a deleterious, high-low or neutral risk. This review provides a comprehensive overview of literature studies concerning the VUSs, in order to assess their impact on the population and provide new insight for the appropriate patient management in clinical practice.
Collapse
Affiliation(s)
- Daniele Fanale
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Pivetti
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Daniela Cancelliere
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Spera
- Department of Radiotherapy, San Giovanni di Dio Hospital, ASP of Agrigento, Agrigento, Italy
| | - Marco Bono
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Fiorino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Erika Pedone
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Nadia Barraco
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Chiara Brando
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessandro Perez
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | | | - Tancredi Didier Bazan Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Salvatore Vieni
- Division of General and Oncological Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Italy
| | - Girolamo Guarneri
- Gynecology Section, Mother - Child Department, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
16
|
Li J, Wang P, Zhang C, Han S, Xiao H, Liu Z, Wang X, Liu W, Wei B, Ma J, Li H, Guo Y. Characterization of Synonymous BRCA1:c.132C>T as a Pathogenic Variant. Front Oncol 2022; 11:812656. [PMID: 35087763 PMCID: PMC8789006 DOI: 10.3389/fonc.2021.812656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
Breast cancer gene 1 (BRCA1) and BRCA2 are tumor suppressors involved in DNA damage response and repair. Carriers of germline pathogenic or likely pathogenic variants in BRCA1 or BRCA2 have significantly increased lifetime risks of breast cancer, ovarian cancer, and other cancer types; this phenomenon is known as hereditary breast and ovarian cancer (HBOC) syndrome. Accurate interpretation of BRCA1 and BRCA2 variants is important not only for disease management in patients, but also for determining preventative measures for their families. BRCA1:c.132C>T (p.Cys44=) is a synonymous variant recorded in the ClinVar database with “conflicting interpretations of its pathogenicity”. Here, we report our clinical tests in which we identified this variant in two unrelated patients, both of whom developed breast cancer at an early age with ovarian presentation a few years later and had a family history of relevant cancers. Minigene assay showed that this change caused a four-nucleotide loss at the end of exon 3, resulting in a truncated p.Cys44Tyrfs*5 protein. Reverse transcription-polymerase chain reaction identified two fragments (123 and 119 bp) using RNA isolated from patient blood samples, in consistency with the results of the minigene assay. Collectively, we classified BRCA1:c.132C>T (p.Cys44=) as a pathogenic variant, as evidenced by functional studies, RNA analysis, and the patients’ family histories. By analyzing variants recorded in the BRCA Exchange database, we found synonymous changes at the ends of exons could potentially influence splicing; meanwhile, current in silico tools could not predict splicing changes efficiently if the variants were in the middle of an exon, or in the deep intron region. Future studies should attempt to identify variants that influence gene expression and post-transcription modifications to improve our understanding of BRCA1 and BRCA2, as well as their related cancers.
Collapse
Affiliation(s)
- Jun Li
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,Henan International Joint Laboratory of Cancer Genetics, Zhengzhou, China
| | - Ping Wang
- Department of Pathophysiology, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Cuiyun Zhang
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,Henan International Joint Laboratory of Cancer Genetics, Zhengzhou, China
| | - Sile Han
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Han Xiao
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiyuan Liu
- Amoy Diagnostics Co., Ltd. (AmoyDx), Xiamen, China
| | - Xiaoyan Wang
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,Henan International Joint Laboratory of Cancer Genetics, Zhengzhou, China
| | - Weiling Liu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzou, China
| | - Bing Wei
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,Henan International Joint Laboratory of Cancer Genetics, Zhengzhou, China
| | - Jie Ma
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,Henan International Joint Laboratory of Cancer Genetics, Zhengzhou, China
| | - Hongle Li
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yongjun Guo
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,Henan International Joint Laboratory of Cancer Genetics, Zhengzhou, China
| |
Collapse
|
17
|
Chiang J, Chia TH, Yuen J, Shaw T, Li ST, Binte Ishak ND, Chew EL, Chong ST, Chan SH, Ngeow J. Impact of Variant Reclassification in Cancer Predisposition Genes on Clinical Care. JCO Precis Oncol 2022; 5:577-584. [PMID: 34994607 DOI: 10.1200/po.20.00399] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Genetic testing has clinical utility in the management of patients with hereditary cancer syndromes. However, the increased likelihood of encountering a variant of uncertain significance in individuals of non-European descent such as Asians may be challenging to both clinicians and patients. This study aims to evaluate the impact of variant reclassification in an Asian country with variants of uncertain significance reported in cancer predisposition genes. METHODS A retrospective analysis of patients seen at the Cancer Genetics Service at the National Cancer Centre Singapore between February 2014 and March 2020 was conducted. The frequency, direction, and time to variant reclassification were evaluated by comparing the reclassified report against the original report. RESULTS A total of 1,412 variants of uncertain significance were reported in 49.9% (845 of 1,695) of patients. Over 6 years, 6.7% (94 of 1,412) of variants were reclassified. Most variants of uncertain significance (94.1%, 80 of 85) were downgraded to benign or likely benign variant, with a smaller proportion of variants of uncertain significance (5.9%, 5 of 85) upgraded to pathogenic or likely pathogenic variant. Actionable variants of uncertain significance upgrades and pathogenic or likely pathogenic variant downgrades, which resulted in management changes, happened in 31.0% (39 of 126) of patients. The median and mean time taken for reclassification were 1 and 1.62 year(s), respectively. CONCLUSION We propose a clinical guideline to standardize management of patients reported to have variants of uncertain significance. Management should be based on the patient's personal history, family history, and variant interpretation. For clinically relevant or suspicious variants of uncertain significance, follow-up is recommended every 2 years, as actionable reclassifications may happen during this period.
Collapse
Affiliation(s)
- Jianbang Chiang
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Tze Hao Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jeanette Yuen
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Tarryn Shaw
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Shao-Tzu Li
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Nur Diana Binte Ishak
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Ee Ling Chew
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Siao Ting Chong
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Sock Hoai Chan
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Joanne Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
18
|
Ha HI, Ryu JS, Shim H, Kong SY, Lim MC. Reclassification of BRCA1 and BRCA2 variants found in ovarian epithelial, fallopian tube, and primary peritoneal cancers. J Gynecol Oncol 2021; 31:e83. [PMID: 33078592 PMCID: PMC7593220 DOI: 10.3802/jgo.2020.31.e83] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/22/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022] Open
Abstract
Objective We investigated the proportions of and reclassified BRCA1/2 variants of unknown significance (VUS) in Korean patients with epithelial ovarian, tubal, and primary peritoneal cancers. Methods Data from 805 patients who underwent genetic testing for BRCA1/2 from January 1, 2006 to August 31, 2018 were included. The VUS in BRCA1/2 were reclassified using the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology standards and guidelines. Results A BRCA1 pathogenic variant was found in 17.0% (137/805) of the patients, and BRCA1 VUS were found in 15.9% (128/805) of the patients. Further, 8.7% (69/805) of the patients possessed a BRCA2 pathogenic variant and 18.4% (148/805) of the patients possessed BRCA2 VUS. Fifty-three specific BRCA1 VUS were found and 20 were further reclassified as benign (n=11), likely benign (n=5), likely pathogenic (n=3), and pathogenic (n=1). The remaining 33 remained classified as VUS. For BRCA2, 55 specific VUS were detected; among these, 14 were reclassified as benign or likely benign, and 2 were reclassified as likely pathogenic. Among the 805 patients, 195 were found to have only VUS and no pathogenic variants (PV), and 41.5% (81/195) were reclassified as benign or likely benign, and 10.3% (20/195) as pathogenic or likely pathogenic variants. Conclusions Approximately 33.3% (36/108) of the specific BRCA1/2 variants analyzed in this study that were initially classified as VUS over a 13-year period were reclassified. Among these, 5.6% (6/108) were reclassified as pathogenic or likely pathogenic variants.
Collapse
Affiliation(s)
- Hyeong In Ha
- Center for Gynecologic Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Jin Sun Ryu
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea
| | - Hyoeun Shim
- Department of Laboratory Medicine, Center for Diagnostic Oncology, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Sun Young Kong
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea.,Department of Laboratory Medicine, Center for Diagnostic Oncology, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Myong Cheol Lim
- Center for Gynecologic Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea.,Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Korea.,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.
| |
Collapse
|
19
|
Abstract
Despite the increased diagnostic yield associated with genomic sequencing (GS), a sizable proportion of patients do not receive a genetic diagnosis at the time of the initial GS analysis. Systematic data reanalysis leads to considerable increases in genetic diagnosis rates yet is time intensive and leads to questions of feasibility. Few policies address whether laboratories have a duty to reanalyse and it is unclear how this impacts clinical practice. To address this, we interviewed 31 genetic health professionals (GHPs) across Europe, Australia and Canada about their experiences with data reanalysis and variant reinterpretation practices after requesting GS for their patients. GHPs described a range of processes required to initiate reanalysis of GS data for their patients and often practices involved a combination of reanalysis initiation methods. The most common mechanism for reanalysis was a patient-initiated model, where they instruct patients to return to the genetic service for clinical reassessment after a period of time or if new information comes to light. Yet several GHPs expressed concerns about patients' inabilities to understand the need to return to trigger reanalysis, or advocate for themselves, which may exacerbate health inequities. Regardless of the reanalysis initiation model that a genetic service adopts, patients' and clinicians' roles and responsibilities need to be clearly outlined so patients do not miss the opportunity to receive ongoing information about their genetic diagnosis. This requires consensus on the delineation of these roles for clinicians and laboratories to ensure clear pathways for reanalysis and reinterpretation to be performed to improve patient care.
Collapse
|
20
|
Kim JH, Park S, Park HS, Park JS, Lee ST, Kim SW, Lee JW, Lee MH, Park SK, Noh WC, Choi DH, Han W, Jung SH. Analysis of BRCA1/2 variants of unknown significance in the prospective Korean Hereditary Breast Cancer study. Sci Rep 2021; 11:8485. [PMID: 33875706 PMCID: PMC8055990 DOI: 10.1038/s41598-021-87792-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/05/2021] [Indexed: 11/12/2022] Open
Abstract
Genetic testing for BRCA1 and BRCA2 is crucial in diagnosing hereditary breast and ovarian cancer syndromes and has increased with the development of multigene panel tests. However, results classified as variants of uncertain significance (VUS) present challenges to clinicians in attempting to choose an appropriate management plans. We reviewed a total of 676 breast cancer patients included in the Korean Hereditary Breast Cancer (KOHBRA) study with a VUS on BRCA mutation tests between November 2007 and April 2013. These results were compared to the ClinVar database. We calculated the incidence and odds ratios for these variants using the Korean Reference Genome Database. A total of 58 and 91 distinct VUS in BRCA1 and BRCA2 were identified in the KOHBRA study (comprising 278 and 453 patients, respectively). A total of 27 variants in the KOHBRA study were not registered in the Single Nucleotide Polymorphism database. Among BRCA1 VUSs, 20 were reclassified as benign or likely benign, four were reclassified as pathogenic or likely pathogenic, and eight remained as VUSs according to the ClinVar database. Of the BRCA2 VUSs, 25 were reclassified as benign or likely benign, two were reclassified as pathogenic or likely pathogenic, and 33 remained as VUS according to the ClinVar database. There were 12 variants with conflicting interpretations of pathogenicity for BRCA1 and 18 for BRCA2. Among them, p.Leu1780Pro showed a particularly high odds ratio. Six pathogenic variants and one conflicting variant identified using ClinVar could be reclassified as pathogenic variants in this study. Using updated ClinVar information and calculating odds ratios can be helpful when reclassifying VUSs in BRCA1/2.
Collapse
Affiliation(s)
- Joo Heung Kim
- Department of Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi, Republic of Korea
| | - Sunggyun Park
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hyung Seok Park
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonseiro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Ji Soo Park
- Hereditary Cancer Clinic, Cancer Prevention Center, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonseiro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Won Kim
- Department of Surgery, Daerim St. Mary's Hospital, Seoul, Republic of Korea
| | - Jong Won Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Hyuk Lee
- Department of Surgery, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Woo-Chul Noh
- Department of Surgery, Korea Institute of Radiological & Medical Science, Korea Cancer Center Hospital, Seoul, Republic of Korea
| | - Doo Ho Choi
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Wonshik Han
- Department of Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Hoo Jung
- Department of Surgery, Chonbuk National University Hospital, Jeonju, Jeollabuk, Republic of Korea
| |
Collapse
|
21
|
Thai patients who fulfilled NCCN criteria for breast/ovarian cancer genetic assessment demonstrated high prevalence of germline mutations in cancer susceptibility genes: implication to Asian population testing. Breast Cancer Res Treat 2021; 188:237-248. [PMID: 33649982 PMCID: PMC8233261 DOI: 10.1007/s10549-021-06152-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/16/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Germline genetic mutation plays a significant role in breast cancer susceptibility. The strength of such predisposition varies among ethnic groups across the globe, and clinical data from Asian population to develop a strategic approach to who should undergo a genetic test are lacking. METHODS We performed a multigene test with next generation sequencing in Thai patients whose clinical history fulfilled NCCN criteria for breast/ovarian cancer genetic assessment, consists of 306 breast cancer patients, 62 ovarian cancer patients, 14 pancreatic cancer patients and 7 prostate cancer patients. Genetic test result and clinical history were then checked with each NCCN criteria to determined detection rate for each indication. RESULTS There were 83 pathogenic/likely pathogenic (P/LP) variants identified in 104 patients, 44 of these P/LP variants were novel. We reported a high rate of germline P/LP variants in breast cancer (24%), ovarian cancer (37%), pancreatic cancer (14%), and prostate cancer (29%). Germline P/LP variants in BRCA1 and BRCA2 accounted for 80% of P/LP variants found in breast cancer and 57% of P/LP variants found in ovarian cancer. The detection rate of patients who fulfilled NCCN 2019 guideline for genetic/familial high-risk assessment of breast and ovarian cancers was 22-40%. CONCLUSION Overall, the data from this study strongly support the consideration of multigene panel test as a diagnostic tool for patients with inherited cancer susceptibility in Thailand and Asian population. Implementation of the NCCN guideline is applicable, some modification may be needed to be more suitable for Asian population.
Collapse
|
22
|
Bonadio RC, Crespo JR, Estevez-Diz MDP. Ovarian cancer risk assessment in the era of next-generation sequencing. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1704. [PMID: 33490216 PMCID: PMC7812181 DOI: 10.21037/atm-20-1582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/20/2020] [Indexed: 12/26/2022]
Abstract
Ovarian cancer is one of the cancers most influenced by hereditary factors. Testing for hereditary susceptibility genes is recommended for every woman with epithelial ovarian cancer (EOC). Pathogenic germline variants in BRCA1 and BRCA2 genes are responsible for a substantial fraction of hereditary ovarian cancer. However, alterations in other genes, such as BRIP1, RAD51C, RAD51D, and mismatch repair genes, also enhance ovarian cancer risk. Other genes may also participate in ovarian carcinogenesis, but their role as ovarian cancer susceptibility genes still needs to be clarified. With several genes involved, the complexity of genetic testing increases. In this context, next-generation sequencing (NGS) allows testing for multiple genes simultaneously, with rapid turn-around time. However, the incorporation of this technology into clinical practice faces some challenges. In this review, we will discuss the ovarian cancer risk assessment in the era of NGS.
Collapse
Affiliation(s)
- Renata Colombo Bonadio
- Instituto do Cancer do Estado de São Paulo, Faculdade de Medicina do Estado de Sao Paulo, Sao Paulo, Brazil
- Instituto D’Or de Ensino e Pesquisa, Oncologia D’Or, Sao Paulo, Brazil
| | - Jéssica Rojas Crespo
- Instituto do Cancer do Estado de São Paulo, Faculdade de Medicina do Estado de Sao Paulo, Sao Paulo, Brazil
| | - Maria Del Pilar Estevez-Diz
- Instituto do Cancer do Estado de São Paulo, Faculdade de Medicina do Estado de Sao Paulo, Sao Paulo, Brazil
- Instituto D’Or de Ensino e Pesquisa, Oncologia D’Or, Sao Paulo, Brazil
| |
Collapse
|
23
|
Huskey ALW, Goebel K, Lloveras-Fuentes C, McNeely I, Merner ND. Whole genome sequencing for the investigation of canine mammary tumor inheritance - an initial assessment of high-risk breast cancer genes reveal BRCA2 and STK11 variants potentially associated with risk in purebred dogs. Canine Med Genet 2020. [PMCID: PMC7491476 DOI: 10.1186/s40575-020-00084-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Although, in general, cancer is considered a multifactorial disease, clustering of particular cancers in pedigrees suggests a genetic predisposition and could explain why some dog breeds appear to have an increased risk of certain cancers. To our knowledge, there have been no published reports of whole genome sequencing to investigate inherited canine mammary tumor (CMT) risk, and with little known about CMT genetic susceptibility, we carried out whole genome sequencing on 14 purebred dogs diagnosed with mammary tumors from four breed-specific pedigrees. Following sequencing, each dog’s data was processed through a bioinformatics pipeline. This initial report highlights variants in orthologs of human breast cancer susceptibility genes. Results The overall whole genome and exome coverage averages were 26.0X and 25.6X, respectively, with 96.1% of the genome and 96.7% of the exome covered at least 10X. Of the average 7.9 million variants per dog, initial analyses involved surveying variants in orthologs of human breast cancer susceptibility genes, BRCA1, BRCA2, CDH1, PTEN, STK11, and TP53, and identified 19 unique coding variants that were validated through PCR and Sanger sequencing. Statistical analyses identified variants in BRCA2 and STK11 that appear to be associated with CMT, and breed-specific analyses revealed the breeds at the highest risk. Several additional BRCA2 variants showed trends toward significance, but have conflicting interpretations of pathogenicity, and correspond to variants of unknown significance in humans, which require further investigation. Variants in other genes were noted but did not appear to be associated with disease. Conclusions Whole genome sequencing proves to be an effective method to elucidate risk of CMT. Risk variants in orthologs of human breast cancer susceptibility genes have been identified. Ultimately, these whole genome sequencing efforts have provided a plethora of data that can also be assessed for novel discovery and have the potential to lead to breakthroughs in canine and human research through comparative analyses.
Collapse
|
24
|
Li D, Shi Y, Li A, Cao D, Su H, Yang H, Zhi Q, Yang Y, Lan Z, Zhou T, You X, Hu G. Retrospective reinterpretation and reclassification of BRCA1/2 variants from Chinese population. Breast Cancer 2020; 27:1158-1167. [PMID: 32566972 DOI: 10.1007/s12282-020-01119-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The accurate interpretation of BRCA1/2 variants becomes increasingly important in breast cancer and other related cancers including ovarian cancer, prostate cancer, pancreatic cancer and so forth. In the past decades, especially before year 2015, limitations of techniques and lack of databases and guidelines have led to possible misinterpretation of the clinical significance of sequence variants of BRCA1/2. A published study reported reclassification of some BRCA1/2 variants previously classified as variants of uncertain significance (VUS) to likely pathogenic in breast or ovarian cancer patients from Korea. However, little is known about the situation in Chinese population. METHODS We retrospectively retrieved 109 publications studying about BRCA1/2 variants of Chinese population from the year 1999 to year 2019 (March). After excluding publications of meta-analysis and publications with missing data, 72 publications were eventually retained for subsequent analysis. In total, 1,351 BRCA variants (673 BRCA1 variants and 678 BRCA2 variants) derived from 42,430 Chinese cancer patients were standardized and reinterpreted using ACMG/AMP 2015 guidelines and China Expert Consensus on BRCA variant interpretation by genetic counselors. RESULTS Among the 1,351 BRCA variants, the majority of interpretation (91.7%, 1,239/1,351) remained the same as previously published. However, there were 112 (8.3%, 112/1,351) variants (64 BRCA1, 48 BRCA2) reclassified with different categories. CONCLUSIONS Our results demonstrated that clinical significance of not only VUS, but also pathogenic/likely pathogenic variants varied from time to time in the Chinese population. Precise reinterpretation of BRCA1/2 variants is of crucial importance to genetic counseling or clinical decision-making for risk individuals or patients.
Collapse
Affiliation(s)
- Dan Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Yujian Shi
- Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Ang Li
- Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Huijun Su
- Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Haiqi Yang
- Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Qihuan Zhi
- Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Yuchen Yang
- Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Zhaoji Lan
- Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | | | - Xiaobin You
- Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Guifang Hu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
25
|
Zhang J, Yao Y, He H, Shen J. Clinical Interpretation of Sequence Variants. CURRENT PROTOCOLS IN HUMAN GENETICS 2020; 106:e98. [PMID: 32176464 PMCID: PMC7431429 DOI: 10.1002/cphg.98] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clinical interpretation of DNA sequence variants is a critical step in reporting clinical genetic testing results. Application of next-generation sequencing technology in molecular genetic testing has facilitated diagnoses of genetic disorders in clinical practice. However, the large number of DNA sequence variants detected in clinical specimens, many of which have never been seen before, make clinical interpretation challenging. Recommendations by the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) have been widely adopted by clinical laboratories around the world to guide clinical interpretation of sequence variants. The ClinGen Sequence Variant Interpretation Working Group and various disease-specific variant curation expert panels have also developed specifications for the ACMG/AMP recommendations. Despite these efforts to standardize variant interpretation in clinical practice, different laboratories may subjectively use professional judgment to determine which criteria are applicable when classifying a variant. In addition, clinicians and researchers who are not familiar with the variant interpretation process may have difficulty understanding clinical genetic reports and communicating the clinical significance of genetic testing results. Here we provide a step-by-step protocol for clinical interpretation of sequence variants, including practical examples. By following this protocol, clinical laboratory geneticists can interpret the clinical significance of sequence variants according to the ACMG/AMP recommendations and ClinGen framework. Furthermore, this article will help clinicians and researchers to understand variant classification in clinical genetic testing reports and evaluate the quality of the reports. © 2020 by John Wiley & Sons, Inc. Basic Protocol: Interpreting the clinical significance of sequence variants Support Protocol: Reevaluating the clinical significance of sequence variants.
Collapse
Affiliation(s)
- Junyu Zhang
- Department of Reproductive Genetics, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yanyi Yao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Haixian He
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Jun Shen
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Schienda J, Stopfer J. Cancer Genetic Counseling-Current Practice and Future Challenges. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036541. [PMID: 31548230 DOI: 10.1101/cshperspect.a036541] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer genetic counseling practice is rapidly evolving, with services being provided in increasingly novel ways. Pretest counseling for cancer patients may be abbreviated from traditional models to cover the elements of informed consent in the broadest of strokes. Genetic testing may be ordered by a cancer genetics professional, oncology provider, or primary care provider. Increasingly, direct-to-consumer testing options are available and utilized by consumers anxious to take control of their genetic health. Finally, genetic information is being used to inform oncology care, from surgical decision-making to selection of chemotherapeutic agent. This review provides an overview of the current and evolving practice of cancer genetic counseling as well as opportunities and challenges for a wide variety of indications in both the adult and pediatric setting.
Collapse
Affiliation(s)
- Jaclyn Schienda
- Division of Cancer Genetics and Prevention, Dana Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Jill Stopfer
- Division of Cancer Genetics and Prevention, Dana Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
27
|
Consolidated BRCA1/2 Variant Interpretation by MH BRCA Correlates with Predicted PARP Inhibitor Efficacy Association by MH Guide. Int J Mol Sci 2020; 21:ijms21113895. [PMID: 32486089 PMCID: PMC7312854 DOI: 10.3390/ijms21113895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022] Open
Abstract
BRCA1/2 variants are prognostic biomarkers for hereditary breast and/or ovarian cancer (HBOC) syndrome and predictive biomarkers for PARP inhibition. In this study, we benchmarked the classification of BRCA1/2 variants from patients with HBOC-related cancer using MH BRCA, a novel computational technology that combines the ACMG guidelines with expert-curated variant annotations. Evaluation of BRCA1/2 variants (n = 1040) taken from four HBOC studies showed strong concordance within the pathogenic (98.1%) subset. Comparison of MH BRCA’s ACMG classification to ClinVar submitter content from ENIGMA, the international consortium of investigators on the clinical significance of BRCA1/2 variants, the ARUP laboratories, a clinical testing lab of the University of UTAH, and the German Cancer Consortium showed 99.98% concordance (4975 out of 4976 variants) in the pathogenic subset. In our patient cohort, refinement of patients with variants of unknown significance reduced the uncertainty of cancer-predisposing syndromes by 64.7% and identified three cases with potential family risk to HBOC due to a likely pathogenic variant BRCA1 p.V1653L (NM_007294.3:c.4957G > T; rs80357261). To assess whether classification results predict PARP inhibitor efficacy, contextualization with functional impact information on DNA repair activity were performed, using MH Guide. We found a strong correlation between treatment efficacy association and MH BRCA classifications. Importantly, low efficacy to PARP inhibition was predicted in 3.95% of pathogenic variants from four examined HBOC studies and our patient cohort, indicating the clinical relevance of the consolidated variant interpretation.
Collapse
|
28
|
High-throughput functional evaluation of BRCA2 variants of unknown significance. Nat Commun 2020; 11:2573. [PMID: 32444794 PMCID: PMC7244490 DOI: 10.1038/s41467-020-16141-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous nontruncating missense variants of the BRCA2 gene have been identified, but there is a lack of convincing evidence, such as familial data, demonstrating their clinical relevance and they thus remain unactionable. To assess the pathogenicity of variants of unknown significance (VUSs) within BRCA2, here we develop a method, the MANO-B method, for high-throughput functional evaluation utilizing BRCA2-deficient cells and poly (ADP-ribose) polymerase (PARP) inhibitors. The estimated sensitivity and specificity of this assay compared to those of the International Agency for Research on Cancer classification system is 95% and 95% (95% confidence intervals: 77–100% and 82–99%), respectively. We classify the functional impact of 186 BRCA2 VUSs with our computational pipeline, resulting in the classification of 126 variants as normal/likely normal, 23 as intermediate, and 37 as abnormal/likely abnormal. We further describe a simplified, on-demand annotation system that could be used as a companion diagnostic for PARP inhibitors in patients with unknown BRCA2 VUSs. Many germline variants are found in the BRCA2 gene, some of which pre-dispose women to breast and ovarian cancer. Here, the authors develop a method to determine the functional significance of BRCA2 variants and show that it is comparable to the IARC system of classifying variants.
Collapse
|
29
|
Boussios S, Mikropoulos C, Samartzis E, Karihtala P, Moschetta M, Sheriff M, Karathanasi A, Sadauskaite A, Rassy E, Pavlidis N. Wise Management of Ovarian Cancer: On the Cutting Edge. J Pers Med 2020; 10:E41. [PMID: 32455595 PMCID: PMC7354604 DOI: 10.3390/jpm10020041] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer mortality among women. Two-thirds of patients present at advanced stage at diagnosis, and the estimated 5 year survival rate is 20-40%. This heterogeneous group of malignancies has distinguishable etiology and molecular biology. Initially, single-gene sequencing was performed to identify germline DNA variations associated with EOC. However, hereditary EOC syndrome can be explained by germline pathogenic variants (gPVs) in several genes. In this regard, next-generation sequencing (NGS) changed clinical diagnostic testing, allowing assessment of multiple genes simultaneously in a faster and cheaper manner than sequential single gene analysis. As we move into the era of personalized medicine, there is evidence that poly (ADP-ribose) polymerase (PARP) inhibitors exploit homologous recombination (HR) deficiency, especially in breast cancer gene 1 and 2 (BRCA1/2) mutation carriers. Furthermore, extensive preclinical data supported the development of aurora kinase (AURK) inhibitors in specific tumor types, including EOC. Their efficacy may be optimized in combination with chemotherapeutic or other molecular agents. The efficacy of metformin in ovarian cancer prevention is under investigation. Certain mutations, such as ARID1A mutations, and alterations in the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway, which are specific in ovarian clear cell carcinoma (OCCC) and endometrioid ovarian carcinoma (EnOC), may offer additional therapeutic targets in these clinical entities. Malignant ovarian germ cell tumors (MOGCTs) are rare and randomized trials are extremely challenging for the improvement of the existing management and development of novel strategies. This review attempts to offer an overview of the main aspects of ovarian cancer, catapulted from the molecular mechanisms to therapeutic considerations.
Collapse
Affiliation(s)
- Stergios Boussios
- Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK; (M.S.); (A.K.); (A.S.)
- AELIA Organization, 9th Km Thessaloniki—Thermi, 57001 Thessaloniki, Greece
| | - Christos Mikropoulos
- St Luke’s Cancer Center, Royal Surrey County Hospital, Egerton Rd, Guildford GU2 7XX, UK;
| | - Eleftherios Samartzis
- Division of Gynecology, University Hospital Zurich, Frauenklinikstrasse 10, CH-8091 Zürich, Switzerland;
| | - Peeter Karihtala
- Department of Oncology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, P.O. Box 100, FI-00029 Helsinki, Finland;
| | - Michele Moschetta
- Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge CB2 0QQ, UK;
| | - Matin Sheriff
- Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK; (M.S.); (A.K.); (A.S.)
| | - Afroditi Karathanasi
- Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK; (M.S.); (A.K.); (A.S.)
| | - Agne Sadauskaite
- Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK; (M.S.); (A.K.); (A.S.)
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institut, 94805 Villejuif, France;
- Department of Hematology-Oncology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut 166830, Lebanon
| | - Nicholas Pavlidis
- Medical School, University of Ioannina, Stavros Niarchou Avenue, 45110 Ioannina, Greece;
| |
Collapse
|
30
|
Hoshino A, Nishimura A, Naruto T, Okano T, Matsumoto K, Okamoto K, Shintaku H, Tokoro S, Okamoto H, Wada T, Takagi M, Imai K, Kanegane H, Morio T. High-throughput analysis revealed the unique immunoglobulin gene rearrangements in plasmacytoma-like post-transplant lymphoproliferative disorder. Br J Haematol 2020; 189:e164-e168. [PMID: 32191347 DOI: 10.1111/bjh.16583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Akihiro Hoshino
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Nishimura
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuya Naruto
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuaki Matsumoto
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keisuke Okamoto
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Shintaku
- Division of Pathology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Shown Tokoro
- Department of Dermatology, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Okamoto
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
31
|
Yim GW, Suh DH, Kim JW, Kim SC, Kim YT. The 34th Annual Meeting of the Korean Society of Gynecologic Oncology 2019: meeting report. J Gynecol Oncol 2020; 30:e91. [PMID: 31140217 PMCID: PMC6543115 DOI: 10.3802/jgo.2019.30.e91] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 02/02/2023] Open
Abstract
The 34th Annual Meeting of Korean Society of Gynecologic Oncology (KSGO) was held in Busan, Korea from 26 to 27 April. Around 460 Korean and international clinicians gathered in Busan to share and discuss their latest work and key issues of gynecologic oncologic research and treatment. The scope of this meeting included recent clinical trials and updates in gynecologic oncology, advances in ovarian cancer treatment, targeted therapy and immunotherapy in gynecologic cancer, management of hereditary gynecologic cancer, and newly revised staging of cervical cancer. As expected, the ongoing debate regarding the recent clinical trial on minimally invasive surgery for early-stage cervical cancer was addressed throughout the congress and the initial outline of the KSGO position statement was open for discussion. The meeting was an opportunity for all participants to come together and explore scientific insights of gynecologic cancer.
Collapse
Affiliation(s)
- Ga Won Yim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Cheol Kim
- Department of Obstetrics and Gynecology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Young Tae Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
32
|
Health Disparities in Germline Genetic Testing for Cancer Susceptibility. CURRENT BREAST CANCER REPORTS 2020. [DOI: 10.1007/s12609-020-00354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Park HS, Ryu JM, Park JS, Im SA, Jung SY, Kim EK, Park WC, Min JW, Lee J, You JY, Lee JE, Kim SW. Clinicopathological Features of Patients with the BRCA1 c.5339T>C (p.Leu1780Pro) Variant. Cancer Res Treat 2020; 52:680-688. [PMID: 32019279 PMCID: PMC7373877 DOI: 10.4143/crt.2019.351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/27/2020] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Recent studies revealed the BRCA1 c.5339T>C, p.Leu1780Pro variant (L1780P) is highly suggested as a likely pathogenic. The aim of this study was to evaluate clinicopathologic features of L1780P with breast cancer (BC) using multicenter data from Korea to reinforce the evidence as a pathogenic mutation and to compare L1780P and other BRCA1/2mutations using Korean Hereditary Breast Cancer (KOHBRA) study data. Materials and Methods The data of 54 BC patients with L1780P variant from 10 institutions were collected and the clinicopathologic characteristics of the patients were reviewed. The hereditary breast and/or ovarian cancer-related characteristics of the L1780P variant were compared to those of BC patients in the KOHBRA study. RESULTS The median age of all patients was 38 years, and 75.9% of cases showed triple-negative breast cancer. Comparison of cases with L1780P to carriers from the KOHBRA study revealed that the L1780P patients group was more likely to have family history (FHx) of ovarian cancer (OC) (24.1% vs. 19.6% vs. 11.2%, p < 0.001 and p=0.001) and a personal history of OC (16.7% vs. 2.9% vs. 1.3%, p=0.003 and p=0.001) without significant difference in FHx of BC and bilateral BC. The cumulative risk of contralateral BC at 10 years after diagnosis was 31.9%, while the cumulative risk of OC at 50 years of age was 20.0%. Patients with L1780P showed similar features with BRCA1 carriers and showed higher penetrance of OC than patients with other BRCA1 mutations. CONCLUSION L1780P should be considered as a pathogenic mutation. Risk-reducing salpingo-oophorectomy is highly recommended for women with L1780P.
Collapse
Affiliation(s)
- Hyung Seok Park
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jai Min Ryu
- Department of Surgery, Samsung Comprehensive Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Soo Park
- Cancer Prevention Center, Yonsei Cancer Center, Seoul, Korea
| | - Seock-Ah Im
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - So-Youn Jung
- Center for Breast Cancer, National Cancer Center, Goyang, Korea
| | - Eun-Kyu Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Breast Care Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Woo-Chan Park
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jun Won Min
- Department of Surgery, Dankook University College of Medicine, Cheonan, Korea
| | - Jeeyeon Lee
- Department of Surgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ji Young You
- Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jeong Eon Lee
- Department of Surgery, Samsung Comprehensive Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung-Won Kim
- Department of Surgery, Breast Care Center, Daerim St. Mary's Hospital, Seoul, Korea
| |
Collapse
|
34
|
Faucett WA, Peay H, Coughlin CR. Genetic Testing: Consent and Result Disclosure for Primary Care Providers. Med Clin North Am 2019; 103:967-976. [PMID: 31582007 PMCID: PMC6779337 DOI: 10.1016/j.mcna.2019.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Historically, both pretest and posttest genetic counseling has been standard of care for genetic testing. This model should be adapted for primary care providers (PCPs) willing to learn critical information about the test and key concepts that patients need to make an informed testing decision. It is helpful for PCPs to discuss a few initial patients with a genetic counselor to prepare for the key concepts of pretest and posttest counseling. This article provides guidance about the recommended level of involvement of PCPs based on the test indication, test complexity, disorder management, and the potential for psychosocial sequela.
Collapse
Affiliation(s)
- W Andrew Faucett
- Office of the Chief Scientific Officer, Geisinger, MC 30-42, 100 North Academy Avenue, Danville, PA 17822, USA.
| | - Holly Peay
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, 3040 East Institute Drive, Research Triangle Park, NC 27709, USA
| | - Curtis R Coughlin
- Department of Pediatrics, Section of Genetics, University of Colorado Anschutz Medical Campus, East 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|