1
|
Shan X, Li L, Liu Y, Wang Z, Wei B, Zhang Z. Untargeted metabolomics analysis using UPLC-QTOF/MS and GC-MS to unravel changes in antioxidant activity and compounds of almonds before and after roasting. Food Res Int 2024; 194:114870. [PMID: 39232510 DOI: 10.1016/j.foodres.2024.114870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Almonds are a commonly consumed nut. They possess significantof nutritional and health benefitsand are commonly processed by roasting. This study aimed to investigatthe effects of roasting on the compound composition and antioxidant activity of almonds. Metabolomics analysis, performed via UPLC-QTOF/MS, and fatty acid analysis, conducted via GC-MS, employed, and the results demonstrated a significant increase in antioxidant activity of post-roasting and in vitro digestion, ranging from 1.16 to 3.44 times. Untargeted metabolomics identified a total of 172 compounds, with notable differences observed in organic oxides, fatty acids, and their derivatives. Correlation analysis identified fatty acids as the primary influencers of changes in antioxidant activity following roasting. Taken together, these findings suggest that roasting enhances the antioxidant activity of almonds, primarily due to alterations in fatty acid analogs, thereby providing valuable insights into optimizing almond consumption for health benefits.
Collapse
Affiliation(s)
- Xiao Shan
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang 110122, China
| | - Lin Li
- Developing Pediatric Department of Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Shenyang 110000, China
| | - Yu Liu
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang 110122, China
| | - Ziwei Wang
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang 110122, China
| | - Binbin Wei
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang 110122, China.
| | - Zhongbo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang 110001, China.
| |
Collapse
|
2
|
El-Banna MH, Abdelgawad MH, Eltahawy N, Algeda FR, Elsayed TM. Hematological and neurological impact studies on the exposure to naturally occurring radioactive materials. Appl Radiat Isot 2024; 211:111424. [PMID: 38970986 DOI: 10.1016/j.apradiso.2024.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Naturally Occurring Radioactive Materials (NORM) contribute to everyone's natural background radiation dose. The technologically advanced activities of the gas and oil sectors produce considerable amounts of radioactive materials as industrial by-products or waste products. The goal of the current study is to estimate the danger of long-term liability to Technologically Enhanced Naturally Occurring Radioactive Materials (TE-NORM) on blood indices, neurotransmitters, oxidative stress markers, and β-amyloid in the cerebral cortex of rats' brains. Twenty adult male albino rats were divided into two equal groups (n = 10): control and irradiated. Irradiated rats were exposed to a total dose of 0.016 Gy of TE-NORM as a whole-body chronic exposure over a period of two months. It should be ''The results showed no significant changes in RBC count, Hb concentration, hematocrit percentage (HCT%), and Mean Corpuscular Hemoglobin Concentration (MCHC). However, there was a significant increase in the Mean Corpuscular Volume of RBCs (MCV) and a significant decrease in cell distribution width (RDW%) compared to the control. Alteration in neurotransmitters is noticeable by a significant increase in glutamic acid and significant decreases in serotonin and dopamine. Increased lipid peroxidation, decreased glutathione content, superoxide dismutase, catalase, and glutathione peroxidase activities indicating oxidative stress were accompanied by increased β-amyloid in the cerebral cortex of rats' brains. The findings of the present study showed that chronic radiation liability has some harmful effects, that may predict the risks of future health problems in occupational radiation exposure in the oil industries. Therefore, the control of exposure and application of sample dosimetry is recommended for health and safety.
Collapse
Affiliation(s)
- Mohamed H El-Banna
- Biophysics Branch, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mahmoud H Abdelgawad
- Biophysics Branch, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Noaman Eltahawy
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Fatma R Algeda
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Tamer M Elsayed
- Biophysics Branch, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Gouda B, Sinha SN, Sangaraju R, Huynh T, Patangay S, Venkata Mullapudi S, Mungamuri SK, Patil PB, Periketi MC. Extraction, Phytochemical profile, and neuroprotective activity of Phyllanthus emblica fruit extract against sodium valproate-induced postnatal autism in BALB/c mice. Heliyon 2024; 10:e34992. [PMID: 39157403 PMCID: PMC11327600 DOI: 10.1016/j.heliyon.2024.e34992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
The aim of the present study was to evaluate the effect of the ethyl acetate fraction of amla (EAFA) extract on valproic acid (VPA)-induced postnatal autism in BALB/c mice. Our study revealed that mice treated with VPA on postnatal day 14 (PND14) showed significant abnormal behaviours such as social interaction, social affiliation, anxiety, and motor coordination compared to the control group, while EAFA extract treatment (100 mg/kg) ameliorated these symptoms. Our study highlights the protective effect of EAFA extract on improving behavioural alterations, significantly restoring anti-oxidative enzymes such as GST and GR, and reducing MDA and NO levels. Furthermore, the EAFA-treated group significantly lowered the proinflammatory markers (IL-1β and TNF-α) and the expression of up-regulated 5-HT1D, 5-HT2A, and D2 receptor proteins. Based on histopathological studies, the percentage of neuronal injury in the EAFA-treated group as well as cellular structural changes were reduced using SEM analysis. In conclusion, the present study suggests that treatment with EAFA extract ameliorates VPA-induced autism due to its anti-oxidant and neuroprotective activity.
Collapse
Affiliation(s)
- Balaji Gouda
- Division of Food Safety, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania, Tarnaka, Hyderabad, Telangana- 500007, India
- Department of Pharmacy, University College of Technology, Osmania University, Hyderabad-500027, India
| | - Sukesh Narayan Sinha
- Division of Food Safety, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania, Tarnaka, Hyderabad, Telangana- 500007, India
| | - Rajendra Sangaraju
- Division of Food Safety, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania, Tarnaka, Hyderabad, Telangana- 500007, India
- Head of Biology, Department of Biosciences and Food Technology, STEM College, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| | - Tien Huynh
- Head of Biology, Department of Biosciences and Food Technology, STEM College, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| | - Shashikala Patangay
- Department of Pharmacy, University College of Technology, Osmania University, Hyderabad-500027, India
| | - Surekha Venkata Mullapudi
- Division of Pathology and Microbiology, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania, Tarnaka, Hyderabad, Telangana- 500007, India
| | - Sathish Kumar Mungamuri
- Division of Food Safety, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania, Tarnaka, Hyderabad, Telangana- 500007, India
| | - Pradeep B. Patil
- Animal Facility Division, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania, Tarnaka, Hyderabad, Telangana- 500007, India
| | - Madhusudhana Chary Periketi
- SEM Facility, Cell Biology Division, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania, Tarnaka, Hyderabad, Telangana- 500007, India
| |
Collapse
|
4
|
Bilister Egilmez C, Azak Pazarlar B, Erdogan MA, Erbas O. Neuroprotective effect of dexpanthenol on rotenone-induced Parkinson's disease model in rats. Neurosci Lett 2024; 818:137575. [PMID: 38040406 DOI: 10.1016/j.neulet.2023.137575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Parkinson's disease (PD) is the second most common and progressive neurodegenerative disease. This experimental study was designed to investigate the neuroprotective effects of dexpanthenol on antioxidant and anti-inflammatory processes in a rotenone-induced Parkinson's disease model in rats. Twenty-one male rats were randomly divided into 2 groups. The rotenone group (n = 14) was administered rotenone by intrastriatal injection, and the vehicle group (n = 7) was administered DMSO with the same application route. All animals underwent rotational movement testing with apomorphine injection 10 days later. Those with Parkinson's disease model were randomly divided into 2 groups. While 1 ml/kg of saline was applied to the saline group (n = 7), 500 mg/kg was administered to the dexpanthenol group intraperitoneally for 28 days. After 28 days, all rats were euthanized and brain tissue was removed. While striatal areas were evaluated immunohistochemically, brain MDA, TNF-α, and HVA levels were measured to evaluate their anti-oxidative and anti-inflammatory effects. In the dexpanthenol group, the total count (p < 0.001) and intensity (p < 0.001) of dopaminergic neurons in the striatal areas increased compared to the saline group. It was revealed that MDA (nmol/g) (p < 0.001) and TNF-α (pg/g) (p < 0.001) levels decreased in the dexpanthenol group, while HVA (ng/mg) levels increased (p < 0.01). This study suggests that dexpanthenol may have a neuroprotective effect by reducing neuronal loss, oxidative damage, and neuroinflammation in the striatum in rats.
Collapse
Affiliation(s)
- Cansu Bilister Egilmez
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey.
| | - Burcu Azak Pazarlar
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey
| | - Mumin Alper Erdogan
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey
| | - Oytun Erbas
- Faculty of Medicine, Department of Physiology, Bilim University, Istanbul, Turkey
| |
Collapse
|
5
|
Suárez-Carrillo A, Álvarez-Córdoba M, Romero-González A, Talaverón-Rey M, Povea-Cabello S, Cilleros-Holgado P, Piñero-Pérez R, Reche-López D, Gómez-Fernández D, Romero-Domínguez JM, Munuera-Cabeza M, Díaz A, González-Granero S, García-Verdugo JM, Sánchez-Alcázar JA. Antioxidants Prevent Iron Accumulation and Lipid Peroxidation, but Do Not Correct Autophagy Dysfunction or Mitochondrial Bioenergetics in Cellular Models of BPAN. Int J Mol Sci 2023; 24:14576. [PMID: 37834028 PMCID: PMC11340724 DOI: 10.3390/ijms241914576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of rare neurogenetic disorders frequently associated with iron accumulation in the basal nuclei of the brain. Among NBIA subtypes, β-propeller protein-associated neurodegeneration (BPAN) is associated with mutations in the autophagy gene WDR45. The aim of this study was to demonstrate the autophagic defects and secondary pathological consequences in cellular models derived from two patients harboring WDR45 mutations. Both protein and mRNA expression levels of WDR45 were decreased in patient-derived fibroblasts. In addition, the increase of LC3B upon treatments with autophagy inducers or inhibitors was lower in mutant cells compared to control cells, suggesting decreased autophagosome formation and impaired autophagic flux. A transmission electron microscopy (TEM) analysis showed mitochondrial vacuolization associated with the accumulation of lipofuscin-like aggregates containing undegraded material. Autophagy dysregulation was also associated with iron accumulation and lipid peroxidation. In addition, mutant fibroblasts showed altered mitochondrial bioenergetics. Antioxidants such as pantothenate, vitamin E and α-lipoic prevented lipid peroxidation and iron accumulation. However, antioxidants were not able to correct the expression levels of WDR45, neither the autophagy defect nor cell bioenergetics. Our study demonstrated that WDR45 mutations in BPAN cellular models impaired autophagy, iron metabolism and cell bioenergetics. Antioxidants partially improved cell physiopathology; however, autophagy and cell bioenergetics remained affected.
Collapse
Affiliation(s)
- Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - José Manuel Romero-Domínguez
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Antonio Díaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA;
- Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46100 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46100 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| |
Collapse
|
6
|
Kuru Bektaşoğlu P, Koyuncuoğlu T, Özaydın D, Kandemir C, Akakın D, Yüksel M, Gürer B, Çelikoğlu E, Yeğen BÇ. Antioxidant and neuroprotective effects of dexpanthenol in rats induced with traumatic brain injury. Injury 2023; 54:1065-1070. [PMID: 36841697 DOI: 10.1016/j.injury.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/14/2023] [Accepted: 02/10/2023] [Indexed: 02/27/2023]
Abstract
Trauma-induced primary damage is followed by secondary damage, exacerbating traumatic brain injury (TBI). Dexpanthenol has been shown to protect tissues against oxidative damage in various inflammation models. This study aimed to investigate possible antioxidant and neuroprotective effects of dexpanthenol in TBI. Wistar albino male rats were randomly assigned to control (n = 16), trauma (n = 16) and dexpanthenol (500 mg/kg; n = 14) groups. TBI was induced under anesthesia by dropping a 300 g weight from 70-cm height onto the skulls of the rats. Twenty-four hours after the trauma, the rats were decapitated and myeloperoxidase (MPO) levels, luminol- and lucigenin-enhanced chemiluminescence (CL), malondialdehyde (MDA) levels, superoxide dismutase (SOD) levels, and catalase (CAT) and caspase-3 activities were measured in brain tissues. Following transcardiac paraformaldehyde perfusion, histopathological damage was graded on hematoxylin-eosin-stained brain tissues. In the trauma group, MPO level, caspase-3 activity and luminol-lucigenin CL levels were elevated (p < 0.05-0.001) when compared to controls; meanwhile in the dexpanthenol group these increases were not seen (p < 0.05-0.001) and MDA levels were decreased (p < 0.05). Decreased SOD and CAT activities (p < 0.01) in the vehicle-treated TBI group were increased above control levels in the dexpanthenol group (p < 0.05-0.001). in the dexpanthenol group there was relatively less neuronal damage observed microscopically in the cortices after TBI. Dexpanthenol reduced oxidative damage, suppressed apoptosis by stimulating antioxidant systems and alleviated brain damage caused by TBI. Further experimental and clinical investigations are needed to confirm that dexpanthenol can be administered in the early stages of TBI.
Collapse
Affiliation(s)
| | - Türkan Koyuncuoğlu
- Biruni University Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Dilan Özaydın
- University of Health Sciences, Kartal Dr. Lutfi Kırdar Education and Research Hospital, Department of Neurosurgery, Istanbul, Turkey
| | - Cansu Kandemir
- Marmara University School of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | - Dilek Akakın
- Marmara University School of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | - Meral Yüksel
- Marmara University Vocational School of Health-Related Services, Department of Medical Laboratory, Istanbul, Turkey
| | - Bora Gürer
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Erhan Çelikoğlu
- University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Marmara University School of Medicine, Department of Physiology, Istanbul, Turkey
| |
Collapse
|
7
|
Ma SP, Ma WP, Yin SN, Chen XY, Ma XQ, Wei BH, Lu JG, Liu HB. Antiperspirant effects and mechanism investigation of Mulisan decoction in rats based on plasma metabolomics. PHARMACEUTICAL BIOLOGY 2022; 60:1055-1062. [PMID: 35634726 PMCID: PMC9154783 DOI: 10.1080/13880209.2022.2074465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Mulisan decoction (MLS) is a classic formula of traditional Chinese medicine for treating hyperhidrosis. The mechanism remains unclear. OBJECTIVE To investigate the antiperspirant effect and underlying mechanisms of MLS. MATERIALS AND METHODS Fifty rats were divided into control, model, and three doses of MLS intervention groups (n = 10). Rats except for control group were induced diseases features of the applicable scope of MLS via i.p. reserpine (0.5 mg/kg/d) for 10 days. From day 11, MLS groups were administrated orally MLS at 0.6, 3, and 15 g/kg once a day for 14 days, respectively. After the last administration, sweating was induced in all rats via s.c. pilocarpine (25 mg/kg), the right hind foot of rats was stained, and sweat point numbers were observed. Rat serum was collected to detect IL-2, IL-6, IFN-γ, and TNF-α. Rat plasma was collected for endogenous metabolite analysis via UPLC-QE-Focus-MS. RESULTS Rats treated with MLS presented a significant decrease in sweat point numbers (13.5%), increase in body weight (13.2%), and promotion in the balance of Th1/Th2 cytokine ratio via increasing IL-2 (38.3%), IFN-γ (20.1%), and TNF-α (22.0%) and decreasing IL-6 (24.7%) compared with the model group (p < 0.05). Plasma metabolomics disclosed 15 potential biomarkers related to model rats, of which two could be significantly reversed by MLS (p < 0.05). The involved pathways were pantothenate and CoA biosynthesis, and porphyrin metabolism. CONCLUSIONS MLS demonstrated a good antiperspirant effect and metabolism improvement. These findings inspire more clinical study validation on immune improvement and antiperspirant effect.
Collapse
Affiliation(s)
- Shan-Peng Ma
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wei-Ping Ma
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shi-Ning Yin
- Qingdao Institute for Food and Drug Control, Qingdao, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese Medicine, Qingdao, China
| | - Xiang-Yue Chen
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiao-Qing Ma
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Bao-Hong Wei
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jing-Guang Lu
- Qingdao Institute for Food and Drug Control, Qingdao, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese Medicine, Qingdao, China
| | - Hong-Bing Liu
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese Medicine, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Carneiro TJ, Vojtek M, Gonçalves-Monteiro S, Batista de Carvalho ALM, Marques MPM, Diniz C, Gil AM. Effect of Pd 2Spermine on Mice Brain-Liver Axis Metabolism Assessed by NMR Metabolomics. Int J Mol Sci 2022; 23:13773. [PMID: 36430252 PMCID: PMC9693583 DOI: 10.3390/ijms232213773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Cisplatin (cDDP)-based chemotherapy is often limited by severe deleterious effects (nephrotoxicity, hepatotoxicity and neurotoxicity). The polynuclear palladium(II) compound Pd2Spermine (Pd2Spm) has emerged as a potential alternative drug, with favorable pharmacokinetic/pharmacodynamic properties. This paper reports on a Nuclear Magnetic Resonance metabolomics study to (i) characterize the response of mice brain and liver to Pd2Spm, compared to cDDP, and (ii) correlate brain-liver metabolic variations. Multivariate and correlation analysis of the spectra of polar and lipophilic brain and liver extracts from an MDA-MB-231 cell-derived mouse model revealed a stronger impact of Pd2Spm on brain metabolome, compared to cDDP. This was expressed by changes in amino acids, inosine, cholate, pantothenate, fatty acids, phospholipids, among other compounds. Liver was less affected than brain, with cDDP inducing more metabolite changes. Results suggest that neither drug induces neuronal damage or inflammation, and that Pd2Spm seems to lead to enhanced brain anti-inflammatory and antioxidant mechanisms, regulation of brain bioactive metabolite pools and adaptability of cell membrane characteristics. The cDDP appears to induce higher extension of liver damage and an enhanced need for liver regeneration processes. This work demonstrates the usefulness of untargeted metabolomics in evaluating drug impact on multiple organs, while confirming Pd2Spm as a promising replacement of cDDP.
Collapse
Affiliation(s)
- Tatiana J. Carneiro
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Martin Vojtek
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | | | - Maria Paula M. Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Ana M. Gil
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
The impact of gamma-radiation on the cerebral- and cerebellar- cortex of male rats’ brain. Brain Res Bull 2022; 186:136-142. [DOI: 10.1016/j.brainresbull.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/24/2022] [Accepted: 05/25/2022] [Indexed: 01/22/2023]
|
10
|
Erdogan MA, Yigitturk G, Erbas O, Taskıran D. Neuroprotective effects of dexpanthenol on streptozotocin-induced neuronal damage in rats. Drug Chem Toxicol 2021; 45:2160-2168. [PMID: 33874839 DOI: 10.1080/01480545.2021.1914464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIM Although the most common age-related neurodegenerative disease defined by memory loss is Alzheimer's disease (AD), only symptomatic therapies are present. A complex pathway for the AD pathogenesis that includes an increase in inflammation has recently been suggested. Since in previous animal experiments dexpanthenol has anti-inflammatory and neuroprotective activities, effects and role of dexpanthenol in an intracerebroventricular (ICV)-streptozotocin (STZ) induced sporadic-AD(memory impairment) animal model have been examined. DESIGN AND METHODS In total, 18 adult sprague-dawley rats were classified into 3 groups; control (n = 6), STZ + Saline (n = 6) and STZ + Dexpanthenol (n = 6). Twelve AD-induced rats through STZ-injection (3 mg/kg) into both lateral ventricles via stereotaxy were separated into two groups five days after STZ administration: one of these groups was treated with dexpanthenol (1000 mg/kg/day, i.p.) for 3 weeks and the other with saline. A passive avoidance learning (PAL) test was used after treatment, followed by brain tissue extraction in all subjects. Brain levels of tumor necrosis factor-alpha (TNF-α) and choline acetyl transferase (ChAT) were measured and Cresyl violet staining was used to count neurons in cornu ammonis-1 (CA1) and cornu ammonis-3 (CA3). RESULTS It was observed that ICV-STZ significantly shortened PAL latency, increased levels of TNF-α in brain, decreased activity of ChAT in brain, and number of hippocampal neurons. However, dexpanthenol significantly reduced all of those STZ-induced harmful effects. CONCLUSION Dexpanthenol significantly prevented the memory deficit induced by ICV-STZ through mitigating neuronal loss in hippocampus, cholinergic deficiency and neuroinflammation in rats. These findings suggest that dexpanthenol may be beneficial for treating memory impairment.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Department of Physiology, Faculty of Medicine, Izmir Kâtip Çelebi University, Izmir, Turkey
| | - Gurkan Yigitturk
- Department of Histology, Faculty of Medicine, Mugla University, Mugla, Turkey
| | - Oytun Erbas
- Department of Physiology, Faculty of Medicine, Bilim University, Istanbul, Turkey
| | - Dilek Taskıran
- Department of Physiology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
11
|
Role of Diosmin in protection against the oxidative stress induced damage by gamma-radiation in Wistar albino rats. Regul Toxicol Pharmacol 2020; 113:104622. [DOI: 10.1016/j.yrtph.2020.104622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/02/2020] [Accepted: 02/18/2020] [Indexed: 01/04/2023]
|
12
|
Moretti R, Peinkhofer C. B Vitamins and Fatty Acids: What Do They Share with Small Vessel Disease-Related Dementia? Int J Mol Sci 2019; 20:E5797. [PMID: 31752183 PMCID: PMC6888477 DOI: 10.3390/ijms20225797] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Many studies have been written on vitamin supplementation, fatty acid, and dementia, but results are still under debate, and no definite conclusion has yet been drawn. Nevertheless, a significant amount of lab evidence confirms that vitamins of the B group are tightly related to gene control for endothelium protection, act as antioxidants, play a co-enzymatic role in the most critical biochemical reactions inside the brain, and cooperate with many other elements, such as choline, for the synthesis of polyunsaturated phosphatidylcholine, through S-adenosyl-methionine (SAM) methyl donation. B-vitamins have anti-inflammatory properties and act in protective roles against neurodegenerative mechanisms, for example, through modulation of the glutamate currents and a reduction of the calcium currents. In addition, they also have extraordinary antioxidant properties. However, laboratory data are far from clinical practice. Many studies have tried to apply these results in everyday clinical activity, but results have been discouraging and far from a possible resolution of the associated mysteries, like those represented by Alzheimer's disease (AD) or small vessel disease dementia. Above all, two significant problems emerge from the research: No consensus exists on general diagnostic criteria-MCI or AD? Which diagnostic criteria should be applied for small vessel disease-related dementia? In addition, no general schema exists for determining a possible correct time of implementation to have effective results. Here we present an up-to-date review of the literature on such topics, shedding some light on the possible interaction of vitamins and phosphatidylcholine, and their role in brain metabolism and catabolism. Further studies should take into account all of these questions, with well-designed and world-homogeneous trials.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | | |
Collapse
|
13
|
Shedid SM, Abdel-Magied N, Saada HN. Role of betaine in liver injury induced by the exposure to ionizing radiation. ENVIRONMENTAL TOXICOLOGY 2019; 34:123-130. [PMID: 30311401 DOI: 10.1002/tox.22664] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
Oxidative stress, apoptosis, and fibrosis may play a major role in the development of radiation-induced liver damage. Betaine, a native compound widely present in beetroot, was reported to possess hepato-protective properties. The objective of this study was to investigate the influence of betaine on radiation-induced liver damage. Animals were exposed to 9 Gy applied in 3 doses of 3 Gy/wk. Betaine (400 mg/kg/d), was orally supplemented to rats after the first radiation dose, and daily during the irradiation period. Animals were sacrificed 1 day after the last dose of radiation. The results showed that irradiation has induced oxidative stress in the liver denoted by a significant elevation in malondialdehyde, protein carbonyl, and 8-hydroxy-2-deoxyguanosine with a significant reduction in catalase activity and glutathione (GSH) content. The activity of the detoxification enzyme cytochrome P450 (CYP450) increased while GSH transferase (GSH-T) decreased. The activity of the apoptotic marker caspase-3 increased concomitant with increased hyaluronic acid, hydroxyproline, laminin (LN), and collagen IV. These alterations were associated with a significant increase of gamma-glutamyl transferase, alkaline phosphatase and alanine and aspartate aminotransferase markers of liver dysfunction. Betaine treatment has significantly attenuated oxidative stress, decreased the activity of CYP450, enhanced GSH-T, reduced the activity of caspase-3, and the level of fibrotic markers concomitant with a significant improvement of liver function. In conclusion, betaine through its antioxidant activity and by enhancing liver detoxification and reducing apoptosis may alleviate the progression of liver fibrosis and exert a beneficial impact on radiation-induced liver damage.
Collapse
Affiliation(s)
- Shereen M Shedid
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| | - Nadia Abdel-Magied
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| | - Helen N Saada
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| |
Collapse
|