1
|
Gu H, Pan Z, Jia M, Fang H, Li J, Qi Y, Yang Y, Feng W, Gao X, Ditta A, Khan MKR, Wang W, Cao Y, Wang B. Genome-wide identification and analysis of the cotton ALDH gene family. BMC Genomics 2024; 25:513. [PMID: 38789947 PMCID: PMC11127303 DOI: 10.1186/s12864-024-10388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Aldehyde dehydrogenases (ALDHs) are a family of enzymes that catalyze the oxidation of aldehyde molecules into the corresponding carboxylic acid, regulate the balance of aldehydes and protect plants from the poisoning caused by excessive accumulation of aldehydes; however, this gene family has rarely been studied in cotton. RESULTS In the present study, genome-wide identification was performed, and a total of 114 ALDH family members were found in three cotton species, Gossypium hirsutum, Gossypium arboreum and Gossypium raimondii. The ALDH genes were divided into six subgroups by evolutionary analysis. ALDH genes in the same subgroup showed similar gene structures and conserved motifs, but some genes showed significant differences, which may result in functional differences. Chromosomal location analysis and selective pressure analysis revealed that the ALDH gene family had experienced many fragment duplication events. Cis-acting element analysis revealed that this gene family may be involved in the response to various biotic and abiotic stresses. The RT‒qPCR results showed that the expression levels of some members of this gene family were significantly increased under salt stress conditions. Gohir.A11G040800 and Gohir.D06G046200 were subjected to virus-induced gene silencing (VIGS) experiments, and the sensitivity of the silenced plants to salt stress was significantly greater than that of the negative control plants, suggesting that Gohir.A11G040800 and Gohir.D06G046200 may be involved in the response of cotton to salt stress. CONCLUSIONS In total, 114 ALDH genes were identified in three Gossypium species by a series of bioinformatics analysis. Gene silencing of the ALDH genes of G. hirsutum revealed that ALDH plays an important role in the response of cotton to salt stress.
Collapse
Affiliation(s)
- Haijing Gu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Zongjin Pan
- Jiangsu Coastal Area Institute of Agricultural Sciences/Jiangsu Collaborative Innovation Center for Modern Crop Production, Yancheng, Jiangsu, 224002, China
| | - Mengxue Jia
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Hui Fang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Junyi Li
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yingxiao Qi
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yixuan Yang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
- Nantong Middle School, Nantong, Jiangsu, 226001, China
| | - Wenxiang Feng
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xin Gao
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Allah Ditta
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, 38000, Pakistan
| | - Muhammad K R Khan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, 38000, Pakistan
| | - Wei Wang
- Jiangsu Coastal Area Institute of Agricultural Sciences/Jiangsu Collaborative Innovation Center for Modern Crop Production, Yancheng, Jiangsu, 224002, China.
| | - Yunying Cao
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
2
|
Zafar MM, Razzaq A, Chattha WS, Ali A, Parvaiz A, Amin J, Saleem H, Shoukat A, Elhindi KM, Shakeel A, Ercisli S, Qiao F, Jiang X. Investigation of salt tolerance in cotton germplasm by analyzing agro-physiological traits and ERF genes expression. Sci Rep 2024; 14:11809. [PMID: 38782928 PMCID: PMC11116465 DOI: 10.1038/s41598-024-60778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The development of genotypes that can tolerate high levels of salt is crucial for the efficient use of salt-affected land and for enhancing crop productivity worldwide. Therefore, incorporating salinity tolerance is a critical trait that crops must possess. Salt resistance is a complex character, controlled by multiple genes both physiologically and genetically. To examine the genetic foundation of salt tolerance, we assessed 16 F1 hybrids and their eight parental lines under normal and salt stress (15 dS/m) conditions. Under salt stress conditions significant reduction was observed for plant height (PH), bolls/plant (NBP), boll weight (BW), seed cotton yield (SCY), lint% (LP), fiber length (FL), fiber strength (FS), potassium to sodium ratio (K+/Na+), potassium contents (K+), total soluble proteins (TSP), carotenoids (Car) and chlorophyll contents. Furthermore, the mean values for hydrogen peroxide (H2O2), sodium contents (Na+), catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and fiber fineness (FF) were increased under salt stress. Moderate to high heritability and genetic advancement was observed for NBP, BW, LP, SCY, K+/Na+, SOD, CAT, POD, Car, TSP, FL, and FS. Mean performance and multivariate analysis of 24 cotton genotypes based on various agro-physiological and biochemical parameters suggested that the genotypes FBS-Falcon, Barani-333, JSQ-White Hold, Ghauri, along with crosses FBS-FALCON × JSQ-White Hold, FBG-222 × FBG-333, FBG-222 × Barani-222, and Barani-333 × FBG-333 achieved the maximum values for K+/Na+, K+, TSP, POD, Chlb, CAT, Car, LP, FS, FL, PH, NBP, BW, and SCY under salt stress and declared as salt resistant genotypes. The above-mentioned genotypes also showed relatively higher expression levels of Ghi-ERF-2D.6 and Ghi-ERF-7A.6 at 15 dS/m and proved the role of these ERF genes in salt tolerance in cotton. These findings suggest that these genotypes have the potential for the development of salt-tolerant cotton varieties with desirable fiber quality traits.
Collapse
Affiliation(s)
- Muhammad Mubashar Zafar
- Sanya Institute of Breeding and Multiplication/School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Abdul Razzaq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Waqas Shafqat Chattha
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Arfan Ali
- FB Genetics, Four Brothers Group, Lahore, Pakistan
| | - Aqsa Parvaiz
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan, Pakistan
| | - Javaria Amin
- Department of Agricultural Biotechnology, Erciyes Üniversitesi, Kayseri, Turkey
| | - Huma Saleem
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Abbas Shoukat
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Punjab, Pakistan
| | - Khalid M Elhindi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Amir Shakeel
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Fei Qiao
- Sanya Institute of Breeding and Multiplication/School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Xuefei Jiang
- Sanya Institute of Breeding and Multiplication/School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
| |
Collapse
|
3
|
Qian J, Shan R, Shi Y, Li H, Xue L, Song Y, Zhao T, Zhu S, Chen J, Jiang M. Zinc Oxide Nanoparticles Alleviate Salt Stress in Cotton ( Gossypium hirsutum L.) by Adjusting Na +/K + Ratio and Antioxidative Ability. Life (Basel) 2024; 14:595. [PMID: 38792616 PMCID: PMC11121869 DOI: 10.3390/life14050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Soil salinization poses a threat to the sustainability of agricultural production and has become a global issue. Cotton is an important cash crop and plays an important role in economic development. Salt stress has been harming the yield and quality of many crops, including cotton, for many years. In recent years, soil salinization has been increasing. It is crucial to study the mechanism of cotton salt tolerance and explore diversified materials and methods to alleviate the salt stress of cotton for the development of the cotton industry. Nanoparticles (NPs) are an effective means to alleviate salt stress. In this study, zinc oxide NPs (ZnO NPs) were sprayed on cotton leaves with the aim of investigating the intrinsic mechanism of NPs to alleviate salt stress in cotton. The results show that the foliar spraying of ZnO NPs significantly alleviated the negative effects of salt stress on hydroponic cotton seedlings, including the improvement of above-ground and root dry and fresh weight, leaf area, seedling height, and stem diameter. In addition, ZnO NPs can significantly improve the salt-induced oxidative stress by reducing the levels of MDA, H2O2, and O2- and increasing the activities of major antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Furthermore, RNA-seq showed that the foliar spraying of ZnO NPs could induce the expressions of CNGC, NHX2, AHA3, HAK17, and other genes, and reduce the expression of SKOR, combined with the CBL-CIPK pathway, which alleviated the toxic effect of excessive Na+ and reduced the loss of excessive K+ so that the Na+/K+ ratio was stabilized. In summary, our results indicate that the foliar application of ZnO NPs can alleviate high salt stress in cotton by adjusting the Na+/K+ ratio and regulating antioxidative ability. This provides a new strategy for alleviating the salt stress of cotton and other crops, which is conducive to the development of agriculture.
Collapse
Affiliation(s)
- Jiajie Qian
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; (J.Q.); (R.S.); (Y.S.); (Y.S.); (T.Z.); (S.Z.)
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Ren Shan
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; (J.Q.); (R.S.); (Y.S.); (Y.S.); (T.Z.); (S.Z.)
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Yiqi Shi
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; (J.Q.); (R.S.); (Y.S.); (Y.S.); (T.Z.); (S.Z.)
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Huazu Li
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Longshuo Xue
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Yue Song
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; (J.Q.); (R.S.); (Y.S.); (Y.S.); (T.Z.); (S.Z.)
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Tianlun Zhao
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; (J.Q.); (R.S.); (Y.S.); (Y.S.); (T.Z.); (S.Z.)
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Shuijin Zhu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; (J.Q.); (R.S.); (Y.S.); (Y.S.); (T.Z.); (S.Z.)
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Jinhong Chen
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; (J.Q.); (R.S.); (Y.S.); (Y.S.); (T.Z.); (S.Z.)
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| | - Meng Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; (J.Q.); (R.S.); (Y.S.); (Y.S.); (T.Z.); (S.Z.)
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.L.); (L.X.)
| |
Collapse
|
4
|
Sun Y, Tian Z, Zuo D, Wang Q, Song G. GhUBC10-2 mediates GhGSTU17 degradation to regulate salt tolerance in cotton (Gossypium hirsutum). PLANT, CELL & ENVIRONMENT 2024; 47:1606-1624. [PMID: 38282268 DOI: 10.1111/pce.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Ubiquitin-conjugating enzyme (UBC) is a crucial component of the ubiquitin-proteasome system, which contributes to plant growth and development. While some UBCs have been identified as potential regulators of abiotic stress responses, the underlying mechanisms of this regulation remain poorly understood. Here, we report a cotton (Gossypium hirsutum) UBC gene, GhUBC10-2, which negatively regulates the salt stress response. We found that the gain of function of GhUBC10-2 in both Arabidopsis (Arabidopsis thaliana) and cotton leads to reduced salinity tolerance. Additionally, GhUBC10-2 interacts with glutathione S-transferase (GST) U17 (GhGSTU17), forming a heterodimeric complex that promotes GhGSTU17 degradation. Intriguingly, GhUBC10-2 can be self-polyubiquitinated, suggesting that it possesses E3-independent activity. Our findings provide new insights into the PTM of plant GST-mediated salt response pathways. Furthermore, we found that the WRKY transcription factor GhWRKY13 binds to the GhUBC10-2 promoter and suppresses its expression under salt conditions. Collectively, our study unveils a regulatory module encompassing GhWRKY13-GhUBC10-2-GhGSTU17, which orchestrates the modulation of reactive oxygen species homeostasis to enhance salt tolerance.
Collapse
Affiliation(s)
- Yaru Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zailong Tian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Sugumar T, Shen G, Smith J, Zhang H. Creating Climate-Resilient Crops by Increasing Drought, Heat, and Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1238. [PMID: 38732452 PMCID: PMC11085490 DOI: 10.3390/plants13091238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Over the years, the changes in the agriculture industry have been inevitable, considering the need to feed the growing population. As the world population continues to grow, food security has become challenged. Resources such as arable land and freshwater have become scarce due to quick urbanization in developing countries and anthropologic activities; expanding agricultural production areas is not an option. Environmental and climatic factors such as drought, heat, and salt stresses pose serious threats to food production worldwide. Therefore, the need to utilize the remaining arable land and water effectively and efficiently and to maximize the yield to support the increasing food demand has become crucial. It is essential to develop climate-resilient crops that will outperform traditional crops under any abiotic stress conditions such as heat, drought, and salt, as well as these stresses in any combinations. This review provides a glimpse of how plant breeding in agriculture has evolved to overcome the harsh environmental conditions and what the future would be like.
Collapse
Affiliation(s)
- Tharanya Sugumar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.S.); (J.S.)
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Jennifer Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.S.); (J.S.)
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.S.); (J.S.)
| |
Collapse
|
6
|
Luo Z, Tang W, Wang X, Lu H, Li C, Liang J, Kong X. Effects of N application methods on cotton yield and fertilizer N recovery efficiency in salinity fields with drip irrigation under mulch film using 15N tracing technique. FRONTIERS IN PLANT SCIENCE 2024; 15:1394285. [PMID: 38736451 PMCID: PMC11084282 DOI: 10.3389/fpls.2024.1394285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
Introduction Drip irrigation under mulch film promotes a non-uniform salinity distribution in salt fields. The effect of different N application methods on the growth and yield of cotton under drip irrigation under mulch film conditions in eastern coastal saline-alkaline soils in China remain remained unclear. Methods A randomized complete block design was used in the experiment. Three N application methods were assigned: N applied under mulch film (low-salinity area; UM), N applied between mulch films (high-salinity area; BM), and half N applied under mulch film and half between mulch films (HUHB). Results Plant height, photosynthesis, Chl content, boll load, biomass, boll weight and boll density under UM were all significantly higher than those under the other two treatments. The N absorption of UM was higher than in the other two treatments, which might be attributed to the expression of GHNRT1.5 and GHNRT2.1. The net NO3- influx in the roots in UM increased significantly compared with that in BM. The yield and FNRE of UM were 3.9% and 9.1%, respectively, and were 26.52% and 90.36% higher than under HUHB and BM treatments. Discussion UM not only improved cotton yield but also alleviated the pollution of N residue on drip irrigation under mulch film conditions in salt areas.
Collapse
Affiliation(s)
- Zhen Luo
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Wei Tang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xiaowen Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hequan Lu
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Chenyang Li
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Liang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xiangqiang Kong
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
7
|
Verma K, Kumar A, Kumar R, Kumar N, Kumar A, Bhardwaj AK, Verma RC, Sharma P. Host Plant Modulated Physio-Biochemical Process Enhances Adaptive Response of Sandalwood ( Santalum album L.) under Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1162. [PMID: 38674572 PMCID: PMC11054670 DOI: 10.3390/plants13081162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Salinity is one of the most significant abiotic stress that affects the growth and development of high-value tree species, including sandalwood, which can also be managed effectively on saline soils with the help of suitable host species. Therefore, the current investigation was conducted to understand the physiological processes and antioxidant mechanisms in sandalwood along the different salinity gradients to explore the host species that could support sandalwood growth in salt-affected agro-ecosystems. Sandalwood seedlings were grown with ten diverse host species with saline water irrigation gradients (ECiw~3, 6, and 9 dS m-1) and control (ECiw~0.82 dS m-1). Experimental findings indicate a decline in the chlorophyll content (13-33%), relative water content (3-23%), photosynthetic (27-61%) and transpiration rate (23-66%), water and osmotic potential (up to 137%), and ion dynamics (up to 61%) with increasing salinity levels. Conversely, the carotenoid content (23-43%), antioxidant activity (up to 285%), and membrane injury (82-205%) were enhanced with increasing salinity stress. Specifically, among the hosts, Dalbergia sissoo and Melia dubia showed a minimum reduction in chlorophyll content, relative water content, and plant water relation and gas exchange parameters of sandalwood plants. Surprisingly, most of the host tree species maintained K+/Na+ of sandalwood up to moderate water salinity of ECiw~6 dS m-1; however, a further increase in water salinity decreased the K+/Na+ ratio of sandalwood by many-fold. Salinity stress also enhanced the antioxidative enzyme activity, although the maximum increase was noted with host plants M. dubia, followed by D. sissoo and Azadirachta indica. Overall, the investigation concluded that sandalwood with the host D. sissoo can be successfully grown in nurseries using saline irrigation water and, with the host M. dubia, it can be grown using good quality irrigation water.
Collapse
Affiliation(s)
- Kamlesh Verma
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, Haryana, India; (K.V.); (N.K.); (A.K.); (A.K.B.)
- Department of Forestry, CCS Haryana Agricultural University, Hisar 125004, Haryana, India;
| | - Ashwani Kumar
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, Haryana, India; (K.V.); (N.K.); (A.K.); (A.K.B.)
| | - Raj Kumar
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, Haryana, India; (K.V.); (N.K.); (A.K.); (A.K.B.)
| | - Naresh Kumar
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, Haryana, India; (K.V.); (N.K.); (A.K.); (A.K.B.)
| | - Arvind Kumar
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, Haryana, India; (K.V.); (N.K.); (A.K.); (A.K.B.)
| | - Ajay Kumar Bhardwaj
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, Haryana, India; (K.V.); (N.K.); (A.K.); (A.K.B.)
| | - Ramesh Chander Verma
- Department of Forestry, CCS Haryana Agricultural University, Hisar 125004, Haryana, India;
| | - Prashant Sharma
- Department of Silviculture and Agroforestry, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan 173230, Himachal Pradesh, India;
| |
Collapse
|
8
|
Zhang DJ, Tong CL, Wang QS, Bie S. Mycorrhizas Affect Physiological Performance, Antioxidant System, Photosynthesis, Endogenous Hormones, and Water Content in Cotton under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:805. [PMID: 38592780 PMCID: PMC10975513 DOI: 10.3390/plants13060805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Saline-alkali stress seriously endangers the normal growth of cotton (Gossypium hirsutum). Arbuscular mycorrhizal fungi (AMF) could enhance salt tolerance by establishing symbiotic relationships with plants. Based on it, a pot experiment was conducted to simulate a salt environment in which cotton was inoculated with Paraglomus occultum to explore its effects on the saline-alkali tolerance of cotton. Our results showed that salt stress noticeably decreased cotton seedling growth parameters (such as plant height, number of leaves, dry weight, root system architecture, etc.), while AMF exhibited a remarkable effect on promoting growth. It was noteworthy that AMF significantly mitigated the inhibitory effect of salt on cotton seedlings. However, AMF colonization in root and soil hyphal length were collectively descended via salt stress. With regard to osmotic regulating substances, Pro and MDA values in roots were significantly increased when seedlings were exposed to salt stress, while AMF only partially mitigated these reactions. Salt stress increased ROS levels in the roots of cotton seedlings and enhanced antioxidant enzyme activity (SOD, POD, and CAT), while AMF mitigated the increases in ROS levels but further strengthened antioxidant enzyme activity. AMF inoculation increased the photosynthesis parameters of cotton seedling leaves to varying degrees, while salt stress decreased them dramatically. When inoculated with AMF under a salt stress environment, only partial mitigation of these photosynthesis values was observed. Under saline-alkali stress, AMF improved the leaf fluorescence parameters (φPSII, Fv'/Fm', and qP) of cotton seedlings, leaf chlorophyll levels, and root endogenous hormones (IAA and BR); promoted the absorption of water; and maintained nitrogen balance, thus alleviating the damage from salt stress on the growth of cotton plants to some extent. In summary, mycorrhizal cotton seedlings may exhibit mechanisms involving root system architecture, the antioxidant system, photosynthesis, leaf fluorescence, endogenous hormones, water content, and nitrogen balance that increase their resistance to saline-alkali environments. This study provide a theoretical basis for further exploring the application of AMF to enhance the salt tolerance of cotton.
Collapse
Affiliation(s)
- De-Jian Zhang
- Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Yangtze River, Ministry of Agriculture, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, Yangtze University, Jingzhou 434023, China
| | - Cui-Ling Tong
- Jingzhou Institute of Technology, Jingzhou 434020, China
| | - Qiong-Shan Wang
- Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Yangtze River, Ministry of Agriculture, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Shu Bie
- Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Yangtze River, Ministry of Agriculture, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| |
Collapse
|
9
|
Ma Z, Zhu Y, Liu J, Li Y, Zhang J, Wen Y, Song L, Liang Y, Wang Z. Multi-objective optimization of saline water irrigation in arid oasis regions: Integrating water-saving, salinity control, yield enhancement, and CO 2 emission reduction for sustainable cotton production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169672. [PMID: 38159740 DOI: 10.1016/j.scitotenv.2023.169672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Brackish water stands as a promising alternative to mitigate freshwater scarcity in arid regions. However, its application poses potential threats to agricultural sustainability. There is a need to establish a clear understanding of the economic and ecological benefits. We conducted a two-year (2021-2022) field experiment to investigate the effects of four different irrigation water salinity levels on soil electrical conductivity, cotton yield, water use efficiency, CO2 emissions, and carbon sequestration. The salinity levels were designated as CK (0.85 g L-1), S1 (3 g L-1), S2 (5 g L-1), and S3 (8 g L-1). Results indicated that using irrigation water with high salinity (≥5 g L-1) led to the accumulation of salt in the soil, and a decrease in plant biomass and seed cotton yield. Compared to CK, the S3 treatment decreased by 18.72 % and 20.10 % in the respective two years. Interestingly, using brackish water (3 L-1 and 5 g L-1) decreased the rate and cumulative CO2 emissions, and increased the carbon emission efficiency and carbon sequestration by 0.098-0.094 kg kg-1 and 871-1859 kg ha-1 in 2021, 0.098-0.094 kg kg-1 and 617-1995 kg ha-1 in 2022, respectively. To comprehensively evaluate the tradeoff between economic and ecological benefits, we employed the TOPSIS method, and S1 was identified as the optimal irrigation salinity. Through fitting analysis, the most suitable irrigation salinity levels for 2021 and 2022 were determined as 3.52 g L-1 and 3.31 g L-1, respectively. From the perspective of water conservation, salinity management, yield improvement, and reduction of CO2 emissions, it is feasible to utilize brackish water for irrigation purposes, as long as the salinity does not exceed 3.52 g L-1 (first year) and 3.31 g L-1 (second year).
Collapse
Affiliation(s)
- Zhanli Ma
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Yan Zhu
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Jian Liu
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Yanqiang Li
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Jinzhu Zhang
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Yue Wen
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Libing Song
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Yonghui Liang
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Zhenhua Wang
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
10
|
Nóbrega JS, Gomes VR, Soares LADA, de Lima GS, da Silva AAR, Gheyi HR, Torres RAF, da Silva FJL, da Silva TI, da Costa FB, Dantas MV, Bruno RDLA, Nobre RG, Sá FVDS. Hydrogen Peroxide Alleviates Salt Stress Effects on Gas Exchange, Growth, and Production of Naturally Colored Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:390. [PMID: 38337923 PMCID: PMC10857595 DOI: 10.3390/plants13030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cotton is one of the most exploited crops in the world, being one of the most important for the Brazilian Northeast. In this region, the use of irrigation is often necessary to meet the water demand of the crop. Water is often used from underground wells that have a large amount of salt in their constitution, which can compromise the development of crops, so it is vital to adopt strategies that reduce salt stress effects on plants, such as the foliar application of hydrogen peroxide. Thus, the objective of this study was to evaluate the effects of foliar application of hydrogen peroxide on the gas exchange, growth, and production of naturally colored cotton under salt stress in the semi-arid region of Paraíba, Brazil. The experiment was carried out in a randomized block design in a 5 × 5 factorial scheme, with five salinity levels of irrigation water-ECw (0.3, 2.0, 3.7, 5.4 and 7.1 dS m-1)-and five concentrations of hydrogen peroxide-H2O2 (0, 25, 50, 75 and 100 μM), and with three replicates. The naturally colored cotton 'BRS Jade' had its gas exchange, growth, biomass production, and production reduced due to the effects of salt stress, but the plants were able to produce up to the ECw of 3.97 dS m-1. Foliar application of hydrogen peroxide at the estimated concentrations of 56.25 and 37.5 μM reduced the effects of salt stress on the stomatal conductance and CO2 assimilation rate of cotton plants under the estimated ECw levels of 0.73 and 1.58 dS m-1, respectively. In turn, the concentration of 12.5 μM increased water-use efficiency in plants subjected to salinity of 2.43 dS m-1. Absolute and relative growth rates in leaf area increased with foliar application of 100 μM of hydrogen peroxide under ECw of 0.73 and 0.3 dS m-1, respectively. Under conditions of low water salinity (0.3 dS m-1), foliar application of hydrogen peroxide stimulated the biomass formation and production components of cotton.
Collapse
Affiliation(s)
- Jackson Silva Nóbrega
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (J.S.N.); (A.A.R.d.S.); (H.R.G.); (F.J.L.d.S.); (M.V.D.)
| | - Valéria Ribeiro Gomes
- Center for Agricultural Sciences, Federal University of Paraíba, Areia 58397-000, PB, Brazil; (V.R.G.); (R.d.L.A.B.)
| | | | - Geovani Soares de Lima
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (J.S.N.); (A.A.R.d.S.); (H.R.G.); (F.J.L.d.S.); (M.V.D.)
| | - André Alisson Rodrigues da Silva
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (J.S.N.); (A.A.R.d.S.); (H.R.G.); (F.J.L.d.S.); (M.V.D.)
| | - Hans Raj Gheyi
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (J.S.N.); (A.A.R.d.S.); (H.R.G.); (F.J.L.d.S.); (M.V.D.)
| | - Rafaela Aparecida Frazão Torres
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (J.S.N.); (A.A.R.d.S.); (H.R.G.); (F.J.L.d.S.); (M.V.D.)
| | - Fellype Jonathar Lemos da Silva
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (J.S.N.); (A.A.R.d.S.); (H.R.G.); (F.J.L.d.S.); (M.V.D.)
| | - Toshik Iarley da Silva
- Academic Unit of Agrarian Sciences, Federal University of Campina Grande, Pombal 58840-000, PB, Brazil (F.B.d.C.)
| | | | - Maila Vieira Dantas
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (J.S.N.); (A.A.R.d.S.); (H.R.G.); (F.J.L.d.S.); (M.V.D.)
| | | | - Reginaldo Gomes Nobre
- Caraúbas Multidisciplinary Center, Universidade Federal Rural do Semi-Árido, Caraúbas 59780-000, RN, Brazil;
| | | |
Collapse
|
11
|
El Sebai TN, Al-Ashkar NM, Ramadan AA, Abdallah MMS, El-Bassiouny HMS. Ameliorating the adverse effects of salinity on wheat plants using the bio-wastes (pomegranate peel extract and /or compost). BRAZ J BIOL 2023; 83:e275700. [PMID: 38126481 DOI: 10.1590/1519-6984.275700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/22/2023] [Indexed: 12/23/2023] Open
Abstract
Climate changes and the related rise in the frequency of excessive weather proceedings have a strong influence on the physical, chemical, and hydrological processes in soils. Recently the investigators confirmed that the use of biological treatments and resources to overcome abiotic stress is fruitful. Thus, pomegranate peel extract (PPE) because of its high efficacy and/or compost application could improve soil characteristics, soil organic matter and nutrient status. This effect may be referred back to the enhancement in the plant antioxidative defense system against stress conditions. This experiment was done to study the influence of spraying wheat plants with pomegranate peel extract (PPE) with and/or without soil compost added under salt stress on some growth parameters and physiological aspects. Wheat plants were grown in the presence or absence of compost in the soil and foliar sprayed with PPE (600 and 1200 mg L-1) under salt irrigation (3000 and 6000 mg L-1). Growth and yield traits were decreased with salinity stress. High levels of PPE (1200 mg L-1) induced the highest values of osmoprotectants (Total soluble sugars, total soluble protein, proline and free amino acids) in both unstressed or salinity-stressed plants presence or absence compost. Using compost in soil for cultivating wheat plants and PPE spraying treatments increased growth traits photosynthetic pigments and yield components. Moreover, these treatments increased the accumulation of minerals content (N, P, K and Ca) in plants. In general, the results of correlation coefficients showed a significant strong positive relationship among measured yield traits and other tested parameters. The correlation between 1000-grain Wt. and grain Wt./spike (r = 0.94**) was the highest. Meanwhile, a strong negative correlation coefficient between Na% and all yield parameters was recorded. Compost adding to soil and spraying pomegranate peel extract is a successful method for increasing wheat growth, yield and improving the nutritional value of the produced grains under salt stress.
Collapse
Affiliation(s)
- T N El Sebai
- National Research Centre, Agricultural and Biological Research Institute, Agricultural Microbiology Department, Dokki, Giza, Egypt
| | - N M Al-Ashkar
- National Research Centre, Agricultural and Biological Research Institute, Botany Department, Dokki, Giza, Egypt
| | - A A Ramadan
- National Research Centre, Agricultural and Biological Research Institute, Botany Department, Dokki, Giza, Egypt
| | - M M S Abdallah
- National Research Centre, Agricultural and Biological Research Institute, Botany Department, Dokki, Giza, Egypt
| | - H M S El-Bassiouny
- National Research Centre, Agricultural and Biological Research Institute, Botany Department, Dokki, Giza, Egypt
| |
Collapse
|
12
|
Marcelino ADADL, Barbosa DD, Fernandes PD, da Silva FDA, de Albuquerque FA, Dias MDS, da Silva CRC, Dos Santos RC. Gas exchange and osmotic adjustment in cotton cultivars subjected to severe salt stress. BRAZ J BIOL 2023; 83:e274499. [PMID: 38055576 DOI: 10.1590/1519-6984.274499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/04/2023] [Indexed: 12/08/2023] Open
Abstract
Salinity is harmful to crops when the concentration of soluble salts overcomes the salinity threshold of the crop, causing osmotic stress and limitations in plant growth. In this scenario, adopting tolerant cultivars is the most adequate strategy to minimize agricultural losses. However, the inheritance of tolerance depends on the genotype. From this perspective, this study assessed the tolerance to severe salt stress in 11 cotton cultivars based on gas exchange parameters and the free proline content. The cultivars were grown in a greenhouse and subjected to 34 days of saline irrigation (10 dS m-1), starting 45 days after seedling emergence (B1 phase). Plant growth was monitored weekly until the end of the salt stress period. The treatments consisted of a combination of two factors: eleven cultivars associated with two electrical conductivity levels of irrigation water (ECw: 0.3 and 10.0 dS m-1). The experimental design was in randomized blocks in a 11 × 2 factorial arrangement with three replications (66 plots), with the experimental unit consisting of one plant per plot. Salinity impacted plant growth, being reflected on the gas exchange and free proline data of most cultivars. However, BRS 286, FMT 705, BRS 416, and BRS Acácia, and CNPA 7MH withstood the effects of stress and osmotically adjusted to the salt stress conditions, thus minimizing the damage to growth. Those cultivars are the most indicated for improvement programs aiming at tolerance to salt stress based on the results found in this research.
Collapse
Affiliation(s)
- A D A de L Marcelino
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias - CCA, Departamento de Fitotecnia e Ciências Ambientais - DFCA, Areia, PB, Brasil
| | - D D Barbosa
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias - CCA, Departamento de Fitotecnia e Ciências Ambientais - DFCA, Areia, PB, Brasil
| | - P D Fernandes
- Universidade Federal de Campina Grande - UFCG, Centro de Tecnologia e Recursos Naturais - CTRN, Unidade Acadêmica de Engenharia Agrícola - UAEA, Campina Grande, PB, Brasil
| | - F de A da Silva
- Universidade Federal de Campina Grande - UFCG, Centro de Tecnologia e Recursos Naturais - CTRN, Unidade Acadêmica de Engenharia Agrícola - UAEA, Campina Grande, PB, Brasil
| | - F A de Albuquerque
- Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA Algodão, Campina Grande, PB, Brasil
| | - M Dos S Dias
- Universidade Federal de Campina Grande - UFCG, Centro de Tecnologia e Recursos Naturais - CTRN, Unidade Acadêmica de Engenharia Agrícola - UAEA, Campina Grande, PB, Brasil
| | - C R C da Silva
- Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA Algodão, Campina Grande, PB, Brasil
| | - R C Dos Santos
- Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA Algodão, Campina Grande, PB, Brasil
| |
Collapse
|
13
|
Sheri V, Kumar M, Jaconis S, Zhang B. Antioxidant defense in cotton under environmental stresses: Unraveling the crucial role of a universal defense regulator for enhanced cotton sustainability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108141. [PMID: 37926000 DOI: 10.1016/j.plaphy.2023.108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Cotton (Gossypium spp.) is a globally significant crop that provides natural fibers for the textile industry and also an important oil and biopharmaceutical resources. However, the production of cotton faces substantial challenges due to various biotic and abiotic stress factors that can negatively impact cotton growth, yield, and fiber quality. This review offers a comprehensive overview of the effects of biotic stress factors, such as insect pests, bacterial, fungal, and viral pathogens, and nematodes, as well as abiotic stress factors, including extreme hot and cold temperature, drought, toxicity induced by heavy metal and salinity, on the antioxidant systems in cotton. We discuss the crucial antioxidants, such as glutathione, proline, and phenolics, and highlight major antioxidant enzymes, including ascorbate peroxidase (APX), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione reductase (GR), and their roles in cotton's response to these stress factors. Furthermore, we explore the potential mechanisms and the crosstalk between different stress factors signaling pathways. We also examine the implications of stress-induced changes in antioxidant levels and enzyme activities for cotton productivity and breeding strategies. Additionally, we shed light on the unanswered questions, research gaps, and future perspectives in this field, paving the way for further investigations to enhance our understanding of cotton's antioxidant defenses and develop novel strategies for improving cotton stress tolerance and yield stability.
Collapse
Affiliation(s)
- Vijay Sheri
- Department of Biology, East Carolina University, Greenville, 27858, USA
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Susan Jaconis
- Agricultural & Environmental Research Department, Cotton Incorporated, Cary, NC, 27513, USA
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, 27858, USA.
| |
Collapse
|
14
|
Chen Q, Dong H, Li Q, Sun X, Qiao X, Yin H, Xie Z, Qi K, Huang X, Zhang S. PbrChiA: a key chitinase of pear in response to Botryosphaeria dothidea infection by interacting with PbrLYK1b2 and down-regulating ROS accumulation. HORTICULTURE RESEARCH 2023; 10:uhad188. [PMID: 37899950 PMCID: PMC10611555 DOI: 10.1093/hr/uhad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023]
Abstract
Pear ring rot, caused by the pathogenic fungi Botryosphaeria dothidea, seriously affects pear production. While the infection-induced reactive oxygen species (ROS) burst of infected plants limits the proliferation of B. dothidea during the early infection stage, high ROS levels can also contribute to their growth during the later necrotrophic infection stage. Therefore, it is important to understand how plants balance ROS levels and resistance to pathogenic B. dothidea during the later stage. In this study, we identified PbrChiA, a glycosyl hydrolases 18 (GH18) chitinase-encoding gene with high infection-induced expression, through a comparative transcriptome analysis. Artificial substitution, stable overexpression, and virus induced gene silencing (VIGS) experiments demonstrated that PbrChiA can positively regulate pear resistance as a secreted chitinase to break down B. dothidea mycelium in vitro and that overexpression of PbrChiA suppressed infection-induced ROS accumulation. Further analysis revealed that PbrChiA can bind to the ectodomain of PbrLYK1b2, and this interaction suppressed PbrLYK1b2-mediated chitin-induced ROS accumulation. Collectively, we propose that the combination of higher antifungal activity from abundant PbrChiA and lower ROS levels during later necrotrophic infection stage confer resistance of pear against B. dothidea.
Collapse
Affiliation(s)
- Qiming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Huizhen Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Qionghou Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Xun Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Ren W, Chen L. Integrated Transcriptome and Metabolome Analysis of Salinity Tolerance in Response to Foliar Application of β-Alanine in Cotton Seedlings. Genes (Basel) 2023; 14:1825. [PMID: 37761965 PMCID: PMC10531431 DOI: 10.3390/genes14091825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Salinity is amongst the serious abiotic stresses cotton plants face, impairing crop productivity. Foliar application of β-alanine is employed to improve salt tolerance in various crops, but the exact mechanism behind it is not yet completely understood. An advanced line SDS-01 of upland cotton Gossypium hirsutum L. was utilized to determine its salt tolerance. Foliar treatment with the β-alanine solution at different concentrations was applied to the seedlings stressed with 0.8% NaCl solution. On the 10th day of treatment, samples were collected for transcriptome and metabolome analyses. β-alanine solution at a concentration of 25 mM was found to be the best treatment with the lowest mortality rate and highest plant height and above-ground biomass under salt stress. Both differentially expressed genes and accumulated metabolites analyses showed improved tolerance of treated seedlings. The photosynthetic efficiency improved in seedlings due to higher expression of photosynthesis-antenna proteins and activation of hormones signal transduction after treatment with β-alanine. Highly expressed transcription factors observed were MYB, HD-ZIP, ARF, MYC, EREB, DELLA, ABF, H2A, H4, WRKY, and HK involved in the positive regulation of salinity tolerance in β-alanine-treated seedlings. Furthermore, compared to the control, the high accumulation of polyamines, coumarins, organic acids, and phenolic compounds in the β-alanine-treated seedlings helped regulate cellular antioxidant (glutathione and L-Cysteine) production. Hence, to improve salt tolerance and productivity in cotton, foliar application of β-alanine at the seedling stage can be a valuable management practice.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
| | - Li Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
| |
Collapse
|
16
|
Yang L, Wang X, Zhao F, Zhang X, Li W, Huang J, Pei X, Ren X, Liu Y, He K, Zhang F, Ma X, Yang D. Roles of S-Adenosylmethionine and Its Derivatives in Salt Tolerance of Cotton. Int J Mol Sci 2023; 24:ijms24119517. [PMID: 37298464 DOI: 10.3390/ijms24119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Salinity is a major abiotic stress that restricts cotton growth and affects fiber yield and quality. Although studies on salt tolerance have achieved great progress in cotton since the completion of cotton genome sequencing, knowledge about how cotton copes with salt stress is still scant. S-adenosylmethionine (SAM) plays important roles in many organelles with the help of the SAM transporter, and it is also a synthetic precursor for substances such as ethylene (ET), polyamines (PAs), betaine, and lignin, which often accumulate in plants in response to stresses. This review focused on the biosynthesis and signal transduction pathways of ET and PAs. The current progress of ET and PAs in regulating plant growth and development under salt stress has been summarized. Moreover, we verified the function of a cotton SAM transporter and suggested that it can regulate salt stress response in cotton. At last, an improved regulatory pathway of ET and PAs under salt stress in cotton is proposed for the breeding of salt-tolerant varieties.
Collapse
Affiliation(s)
- Li Yang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Fuyong Zhao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Junsen Huang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
17
|
Prakash S, Kumar M, Kumar S, Jaconis S, Parameswari E, Sharma K, Dhumal S, Senapathy M, Deshmukh VP, Dey A, Lorenzo JM, Sheri V, Zhang B. The resilient cotton plant: uncovering the effects of stresses on secondary metabolomics and its underlying molecular mechanisms. Funct Integr Genomics 2023; 23:183. [PMID: 37233833 DOI: 10.1007/s10142-023-01118-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Cotton is an important fiber crop cultivated around the world under diverse climate conditions and generates billions of dollars in annual revenue globally. Biotic and abiotic stresses have caused reduction in yield and productivity of cotton crops. In this review, we comprehensively analyzed and summarized the effect of biotic and abiotic stress on secondary metabolite production in cotton. The development of cotton varieties with improved tolerance against abiotic and biotic stress can play an important role in sustainable cotton production. Under stress conditions, plants develop a variety of defense mechanisms such as initiating signaling functions to upregulate defense responsive genes and accumulation of secondary metabolites. Understanding the impact of stress on secondary metabolite production in cotton is crucial for developing strategies to alleviate the negative effects of stress on crop yield and quality. Further, the potential industrial applications of these secondary metabolites in cotton, such as gossypol, could provide new opportunities for sustainable cotton production and the development of value-added products. Additionally, transgenic and genome-edited cotton cultivars can be developed to provide tolerance to both abiotic and biotic stress in cotton production.
Collapse
Affiliation(s)
- Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
- Department of Biology, East Carolina University, Greenville, 27858, USA
| | - Sunil Kumar
- Indian Institute of Farming Systems Research, Modipuram, 250110, India
| | - Susan Jaconis
- Agricultural & Environmental Research Department, Cotton Incorporated, Cary, NC, 27513, USA
| | - E Parameswari
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, 641 003, Coimbatore, India
| | - Kanika Sharma
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, 416004, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Vishal P Deshmukh
- Bharati Vidyapeeth (Deemed to Be University), Yashwantrao Mohite Institute of Management, Karad, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - José M Lorenzo
- Centro Tecnológico de La Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia N° 4, San Cibrao das Viñas, 32900, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004, Ouren-se, Spain
| | - Vijay Sheri
- Department of Biology, East Carolina University, Greenville, 27858, USA
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, 27858, USA.
| |
Collapse
|
18
|
Anwar Z, Ijaz A, Ditta A, Wang B, Liu F, Khan SMUD, Haidar S, Hassan HM, Khan MKR. Genomic Dynamics and Functional Insights under Salt Stress in Gossypium hirsutum L. Genes (Basel) 2023; 14:1103. [PMID: 37239463 PMCID: PMC10218025 DOI: 10.3390/genes14051103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The changing climate is intensifying salt stress globally. Salt stress is a menace to cotton crop quality and yield. The seedling, germination, and emergence phases are more prone to the effects of salt stress than other stages. Higher levels of salt can lead to delayed flowering, a reduced number of fruiting positions, shedding of fruits, decreased boll weight, and yellowing of fiber, all of which have an adverse effect on the yield and quality of the seed cotton. However, sensitivity toward salt stress is dependent on the salt type, cotton growth phase, and genotype. As the threat of salt stress continues to grow, it is crucial to gain a comprehensive understanding of the mechanisms underlying salt tolerance in plants and to identify potential avenues for enhancing the salt tolerance of cotton. The emergence of marker-assisted selection, in conjunction with next-generation sequencing technologies, has streamlined cotton breeding efforts. This review begins by providing an overview of the causes of salt stress in cotton, as well as the underlying theory of salt tolerance. Subsequently, it summarizes the breeding methods that utilize marker-assisted selection, genomic selection, and techniques for identifying elite salt-tolerant markers in wild species or mutated materials. Finally, novel cotton breeding possibilities based on the approaches stated above are presented and debated.
Collapse
Affiliation(s)
- Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong 226000, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China;
| | - Sana Muhy-Ud-Din Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
| | - Sajjad Haidar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Hafiz Mumtaz Hassan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| |
Collapse
|
19
|
Li J, Nie K, Wang L, Zhao Y, Qu M, Yang D, Guan X. The Molecular Mechanism of GhbHLH121 in Response to Iron Deficiency in Cotton Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:1955. [PMID: 37653872 PMCID: PMC10224022 DOI: 10.3390/plants12101955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Iron deficiency caused by high pH of saline-alkali soil is a major source of abiotic stress affecting plant growth. However, the molecular mechanism underlying the iron deficiency response in cotton (Gossypium hirsutum) is poorly understood. In this study, we investigated the impacts of iron deficiency at the cotton seedling stage and elucidated the corresponding molecular regulation network, which centered on a hub gene GhbHLH121. Iron deficiency induced the expression of genes with roles in the response to iron deficiency, especially GhbHLH121. The suppression of GhbHLH121 with virus-induced gene silence technology reduced seedlings' tolerance to iron deficiency, with low photosynthetic efficiency and severe damage to the structure of the chloroplast. Contrarily, ectopic expression of GhbHLH121 in Arabidopsis enhanced tolerance to iron deficiency. Further analysis of protein/protein interactions revealed that GhbHLH121 can interact with GhbHLH IVc and GhPYE. In addition, GhbHLH121 can directly activate the expression of GhbHLH38, GhFIT, and GhPYE independent of GhbHLH IVc. All told, GhbHLH121 is a positive regulator of the response to iron deficiency in cotton, directly regulating iron uptake as the upstream gene of GhFIT. Our results provide insight into the complex network of the iron deficiency response in cotton.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
| | - Ke Nie
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Luyao Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Yongyan Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
| | - Mingnan Qu
- Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China;
| | - Donglei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Xueying Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
- Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China;
| |
Collapse
|
20
|
Cui C, Feng L, Zhou C, Wan H, Zhou B. Transcriptome Revealed GhPP2C43-A Negatively Regulates Salinity Tolerance in an Introgression Line from a Semi-wild Upland Cotton. PLANT & CELL PHYSIOLOGY 2023:pcad036. [PMID: 37115634 DOI: 10.1093/pcp/pcad036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
Salt damage is one of the major threats to sustainable cotton production owing to the limited arable land in China mainly occupied by the production of staple food crops. Salt-stress tolerant cotton varieties are lacking in production and, the mechanisms underpinning salt-stress tolerance in cotton remain enigmatic. Here, DM37, an intraspecific introgression line from G. hirsutum race yucatanense acc TX-1046 into the G. hirsutum acc TM-1 background, was found to be highly tolerant to salt stress. Its seed germination rate and germination potential were significantly higher than the recipient TM-1 under salt stress. Physiological analysis showed DM37 had higher proline content and Peroxidase activity, as well as lower Na+/K+ ratios at the seedling stage, consistent with higher seedling survival rate after durable salt stress. Furthermore, comparative transcriptome analysis revealed that responsive patterns to salt stress in DM37 were different from TM-1. Weighted Correlation Network Analysis (WGCNA) demonstrated that co-expression modules associated with salt stress in DM37 also differed from TM-1. Out of them, GhPP2C43-A, a phosphatase gene, exhibited negative regulation of salt-stress tolerance verified by VIGS and transgenic Arabidopsis. Gene expression showed GhPP2C43-A in TM-1 was induced by durable salt stress but not in DM37 probably attributing to the variation of cis-element in its promoter, thereby being conferred different salt-stress tolerance. Our result would provide new genes/germplasms from semi-wild cotton in salt-stress tolerant cotton breeding. This study would give us new insights into the mechanisms underpinning the salt-stress tolerance in cotton.
Collapse
Affiliation(s)
- Changjiang Cui
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Liuchun Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Chenhui Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
21
|
Rasool A, Azeem F, Ur-Rahman M, Rizwan M, Hussnain Siddique M, Bay DH, Binothman N, Al Kashgry NAT, Qari SH. Omics-assisted characterization of two-component system genes from Gossypium Raimondii in response to salinity and molecular interaction with abscisic acid. FRONTIERS IN PLANT SCIENCE 2023; 14:1138048. [PMID: 37063177 PMCID: PMC10102465 DOI: 10.3389/fpls.2023.1138048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The two-component system (TCS) genes are involved in a wide range of physiological processes in prokaryotes and eukaryotes. In plants, the TCS elements help in a variety of functions, including cell proliferation, response to abiotic and biotic stresses, leaf senescence, nutritional signaling, and division of chloroplasts. Three different kinds of proteins make up the TCS system in plants. These are known as HKs (histidine kinases), HPs (histidine phosphotransfer), and RRs (response regulators). We investigated the genome of Gossypium raimondii and discovered a total of 59 GrTCS candidates, which include 23 members of the HK family, 8 members of the HP family, and 28 members of the RR family. RR candidates are further classified as type-A (6 members), type-B (11 members), type-C (2 members), and pseudo-RRs (9 members). The GrTCS genes were analyzed in comparison with the TCS components of other plant species such as Arabidopsis thaliana, Cicer arietinum, Sorghum bicolor, Glycine max, and Oryza sativa. This analysis revealed both conservation and changes in their structures. We identified 5 pairs of GrTCS syntenic homologs in the G. raimondii genome. All 59 TCS genes in G. raimondii are located on all thirteen chromosomes. The GrTCS promoter regions have several cis-regulatory elements, which function as switches and respond to a wide variety of abiotic stresses. RNA-seq and real-time qPCR analysis showed that the majority of GrTCS genes are differentially regulated in response to salt and cold stress. 3D structures of GrTCS proteins were predicted to reveal the specific function. GrTCSs were docked with abscisic acid to assess their binding interactions. This research establishes the groundwork for future functional studies of TCS elements in G. raimondii, which will further focus on stress resistance and overall development.
Collapse
Affiliation(s)
- Asima Rasool
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mahmood Ur-Rahman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Hussnain Siddique
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Daniyah Habiballah Bay
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | | | - Sameer H. Qari
- Department of Biology, A1-Jumum University College, Umm A1-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
22
|
Yang H, Yang Q, Zhang D, Wang J, Cao T, Bozorov TA, Cheng L, Zhang D. Transcriptome Reveals the Molecular Mechanism of the ScALDH21 Gene from the Desert Moss Syntrichia caninervis Conferring Resistance to Salt Stress in Cotton. Int J Mol Sci 2023; 24:5822. [PMID: 36982895 PMCID: PMC10053822 DOI: 10.3390/ijms24065822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
The desert moss Syntrichia caninervis has proven to be an excellent plant material for mining resistance genes. The aldehyde dehydrogenase 21 (ScALDH21) gene from S. caninervis has been shown to confer tolerance to salt and drought, but it is unclear how the transgene ScALDH21 regulates tolerance to abiotic stresses in cotton. In the present work, we studied the physiological and transcriptome analyses of non-transgenic (NT) and transgenic ScALDH21 cotton (L96) at 0 day, 2 days, and 5 days after salt stress. Through intergroup comparisons and a weighted correlation network analysis (WGCNA), we found that there were significant differences between NT and L96 cotton in the plant hormone, Ca2+, and mitogen-activated protein kinase (MAPK) signaling pathways as well as for photosynthesis and carbohydrate metabolism. Overexpression of ScALDH21 significantly increased the expression of stress-related genes in L96 compared to NT cotton under both normal growth and salt stress conditions. These data suggest that the ScALDH21 transgene can scavenge more reactive oxygen species (ROS) in vivo relative to NT cotton and improve cotton resistance to salt stress by increasing the expression of stress-responsive genes, responding quickly to stress stimuli, enhancing photosynthesis and improving carbohydrate metabolism. Therefore, ScALDH21 is a promising candidate gene to improve resistance to salt stress, and the application of this gene in cotton provides new insights into molecular plant breeding.
Collapse
Affiliation(s)
- Honglan Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Qilin Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Zhang
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Jiancheng Wang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Ting Cao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tohir A. Bozorov
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Yukori-Yuz, 111226, Kibray District, Uzbekistan
| | - Lihua Cheng
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
23
|
Ju F, Sun L, Xiong C, Wang Z, Yu H, Pang J, Bai H, Zhao W, Zhou Z, Chen B. Weighted gene co-expression network analysis revealed the key pathways and hub genes of potassium regulating cotton root adaptation to salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1132877. [PMID: 36938049 PMCID: PMC10014550 DOI: 10.3389/fpls.2023.1132877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Soil salinization is one of the main abiotic stresses affecting cotton yield and planting area. Potassium application has been proven to be an important strategy to reduce salt damage in agricultural production. However, the mechanism of potassium regulating the salt adaptability of cotton has not been fully elucidated. In the present research, the appropriate potassium application rate for alleviating salt damage of cotton based on different K+/Na+ ratios we screened, and a gene co-expression network based on weighted gene co-expression network analysis (WGCNA) using the transcriptome data sets treated with CK (0 mM NaCl), S (150 mM NaCl), and SK8 (150 mM NaCl + 9.38 mM K2SO4) was constructed. In this study, four key modules that are highly related to potassium regulation of cotton salt tolerance were identified, and the mitogen-activated protein kinase (MAPK) signaling pathway, tricarboxylic acid (TCA) cycle and glutathione metabolism pathway were identified as the key biological processes and metabolic pathways for potassium to improve cotton root salt adaptability. In addition, 21 hub genes and 120 key candidate genes were identified in this study, suggesting that they may play an important role in the enhancement of salt adaptability of cotton by potassium. The key modules, key biological pathways and hub genes discovered in this study will provide a new understanding of the molecular mechanism of potassium enhancing salinity adaptability in cotton, and lay a theoretical foundation for the improvement and innovation of high-quality cotton germplasm.
Collapse
Affiliation(s)
- Feiyan Ju
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Liyuan Sun
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Cai Xiong
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Zhuo Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Huilian Yu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Jiali Pang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Hua Bai
- School of Agricultural Sciences, Northwest Missouri State University, Maryville, MO, United States
| | - Wengqing Zhao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Binglin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| |
Collapse
|
24
|
Zia-Ur-Rehman M, Anayatullah S, Irfan E, Hussain SM, Rizwan M, Sohail MI, Jafir M, Ahmad T, Usman M, Alharby HF. Nanoparticles assisted regulation of oxidative stress and antioxidant enzyme system in plants under salt stress: A review. CHEMOSPHERE 2023; 314:137649. [PMID: 36587917 DOI: 10.1016/j.chemosphere.2022.137649] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The global biomass production from agricultural farmlands is facing severe constraints from abiotic stresses like soil salinization. Salinity-mediated stress triggered the overproduction of reactive oxygen species (ROS) that may result in oxidative burst in cell organelles and cause cell death in plants. ROS production is regulated by the redox homeostasis that helps in the readjustment of the cellular redox and energy state in plants. All these cellular redox related functions may play a decisive role in adaptation and acclimation to salinity stress in plants. The use of nanotechnology like nanoparticles (NPs) in plant physiology has become the new area of interest as they have potential to trigger the various enzymatic and non-enzymatic antioxidant capabilities of plants under varying salinity levels. Moreover, NPs application under salinity is also being favored due to their unique characteristics compared to traditional phytohormones, amino acids, nutrients, and organic osmolytes. Therefore, this article emphasized the core response of plants to acclimate the challenges of salt stress through auxiliary functions of ROS, antioxidant defense system and redox homeostasis. Furthermore, the role of different types of NPs mediated changes in biochemical, proteomic, and genetic expressions of plants under salt stress have been discussed. This article also discussed the potential limitations of NPs adoption in crop production especially under environmental stresses.
Collapse
Affiliation(s)
- Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan.
| | - Sidra Anayatullah
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan
| | - Effa Irfan
- Institute of Biochemistry & Biotechnology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Syed Makhdoom Hussain
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Muhammad Irfan Sohail
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan; Department of Environmental Sciences, Faculty of Life Sciences, University of Okara, 56300, Pakistan
| | - Muhammad Jafir
- Department of Entomology, University of Agriculture Faisalabad Pakistan, 38040, Pakistan
| | - Tanveer Ahmad
- Department of Horticulture, MNS University of Agriculture Multan, 60000, Pakistan
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
25
|
Ren W, Chen L, Xie ZM, Peng X. Combined transcriptome and metabolome analysis revealed pathways involved in improved salt tolerance of Gossypium hirsutum L. seedlings in response to exogenous melatonin application. BMC PLANT BIOLOGY 2022; 22:552. [PMID: 36451095 PMCID: PMC9710056 DOI: 10.1186/s12870-022-03930-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Salinization is major abiotic stress limiting cotton production. Melatonin (MT) has been implicated in salt stress tolerance in multiple crops including upland cotton. Here, we explored the transcriptomic and metabolomic response of a salt-tolerant self-bred high-yielding cotton line SDS-01, which was exogenously sprayed with four MT concentrations (50, 100, 200, and 500 μM). RESULTS Here we found that MT improves plant biomass and growth under salt stress. The combined transcriptome sequencing and metabolome profiling approach revealed that photosynthetic efficiency is improved by increasing the expressions of chlorophyll metabolism and antenna proteins in MT-treated seedlings. Additionally, linoleic acid and flavonoid biosynthesis were improved after MT treatment. The Na+/K+ homeostasis-related genes were increasingly expressed in salt-stressed seedlings treated with MT as compared to the ones experiencing only salt stress. Melatonin treatment activated a cascade of plant-hormone signal transduction and reactive oxygen scavenging genes to alleviate the detrimental effects of salt stress. The global metabolome profile revealed an increased accumulation of flavonoids, organic acids, amino acids and derivatives, saccharides, and phenolic acids in MT-treated seedlings. Interestingly, N, N'-Diferuloylputrescine a known antioxidative compound was highly accumulated after MT treatment. CONCLUSION Collectively, our study concludes that MT is a salt stress regulator in upland cotton and alleviates salt-stress effects by modulating the expressions of photosynthesis (and related pathways), flavonoid, ROS scavenging, hormone signaling, linoleic acid metabolism, and ion homeostasis-related genes.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
- China Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, 831505 Xinjiang China
| | - Li Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
- China Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, 831505 Xinjiang China
| | - Zong ming Xie
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang China
| | - Xiaofeng Peng
- Agricultural Science Research Institute of the third division of Xinjiang production and Construction Corps, Tumushuke, 843800 Xinjiang China
| |
Collapse
|
26
|
Guo X, Ullah A, Siuta D, Kukfisz B, Iqbal S. Role of WRKY Transcription Factors in Regulation of Abiotic Stress Responses in Cotton. Life (Basel) 2022; 12:life12091410. [PMID: 36143446 PMCID: PMC9504182 DOI: 10.3390/life12091410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental factors are the major constraints in sustainable agriculture. WRKY proteins are a large family of transcription factors (TFs) that regulate various developmental processes and stress responses in plants, including cotton. On the basis of Gossypium raimondii genome sequencing, WRKY TFs have been identified in cotton and characterized for their functions in abiotic stress responses. WRKY members of cotton play a significant role in the regulation of abiotic stresses, i.e., drought, salt, and extreme temperatures. These TFs either activate or repress various signaling pathways such as abscisic acid, jasmonic acid, salicylic acid, mitogen-activated protein kinases (MAPK), and the scavenging of reactive oxygen species. WRKY-associated genes in cotton have been genetically engineered in Arabidopsis, Nicotiana, and Gossypium successfully, which subsequently enhanced tolerance in corresponding plants against abiotic stresses. Although a few review reports are available for WRKY TFs, there is no critical report available on the WRKY TFs of cotton. Hereby, the role of cotton WRKY TFs in environmental stress responses is studied to enhance the understanding of abiotic stress response and further improve in cotton plants.
Collapse
Affiliation(s)
- Xiaoqiang Guo
- College of Life Science and Technology, Longdong University, Qingyang 745000, China
- Correspondence: (X.G.); (A.U.)
| | - Abid Ullah
- Department of Botany, Post Graduate College Dargai, Malakand 23060, Khyber Pakhtunkhwa, Pakistan
- Correspondence: (X.G.); (A.U.)
| | - Dorota Siuta
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska Str. 213, 90-924 Lodz, Poland
| | - Bożena Kukfisz
- Faculty of Security Engineering and Civil Protection, The Main School of Fire Service, 01-629 Warsaw, Poland
| | - Shehzad Iqbal
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
27
|
Ren W, Chen L, Wang Q, Ren Y. Transcriptome and Metabolome Analysis of Upland Cotton ( Gossypium hirsutum) Seed Pretreatment with MgSO 4 in Response to Salinity Stress. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060921. [PMID: 35743952 PMCID: PMC9227556 DOI: 10.3390/life12060921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Upland cotton (Gossypium hirsutum) is a salt-tolerant crop that can withstand high salinity levels without showing signs of harm to the plant. However, the plant is more prone to salinity stress at the germination stage and a poor germination as well as poor crop stand lead to a weak productivity. It is possible to obtain a comprehensive picture of the cotton seedling germination and establishment against salt stress by examining dynamic changes in the transcriptomic and metabolomic profiles. The reported study employed a pretreatment of cotton seeds by soaking them in 0.2% Magnesium Sulphate (MgSO4) solution at room temperature for 4, 8, and 12 h. The analysis of variance based on the studied traits emergence rate, above and underground plant parts' fresh weight measured, displayed significant differences of the three treatments compared with the control. A total of 28,801 and 264 differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were discovered to code for biological processes such as response to salt stress, cellular response to salt stress, abscisic acid receptor PYR/PYL, regulation of seed growth and germination, and auxin-activated signaling pathways. A large amount of ethylene-responsive transcription factors (ERF) was identified (1235) as differentially expressed, followed by bHLH (252), WRKY (96), MYB (202), GATA (81), RABA (64), DIVARICATA (28), and MADs-box (26) in treated seedling samples. Functional enrichment analysis revealed the significant roles in the hormones and signal transduction, carbohydrates metabolism, and biosynthesis of amino acids, promoting salt stress tolerance. Our results indicated positive effects of MgSO4 at 4 h treatment on seedling germination and growth, seemingly by activating certain growth-regulating enzymes (auxins, gibberellins, jasmonates, abscisic acid, and salicylic acid) and metabolites (phenolic acids, flavonoids, and akaloids). Such pretreatment of MgSO4 on seeds would be beneficial in future cotton management under saline conditions to enhance good crop stand and productivity.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (W.R.); (Q.W.)
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
| | - Li Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (W.R.); (Q.W.)
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
- Correspondence:
| | - Qian Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (W.R.); (Q.W.)
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
| | - Yanping Ren
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China;
| |
Collapse
|
28
|
Liu H, Du X, Zhang J, Li J, Chen S, Duanmu H, Li H. Quantitative redox proteomics revealed molecular mechanisms of salt tolerance in the roots of sugar beet monomeric addition line M14. BOTANICAL STUDIES 2022; 63:5. [PMID: 35247135 PMCID: PMC8898211 DOI: 10.1186/s40529-022-00337-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/23/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Salt stress is often associated with excessive production of reactive oxygen species (ROS). Oxidative stress caused by the accumulation of ROS is a major factor that negatively affects crop growth and yield. Root is the primary organ that senses and transmits the salt stress signal to the whole plant. How oxidative stress affect redox sensitive proteins in the roots is not known. RESULTS In this study, the redox proteome of sugar beet M14 roots under salt stress was investigated. Using iTRAQ reporters, we determined that salt stress caused significant changes in the abundance of many proteins (2305 at 20 min salt stress and 2663 at 10 min salt stress). Using iodoTMT reporters, a total of 95 redox proteins were determined to be responsive to salt stress after normalizing again total protein level changes. Notably, most of the differential redox proteins were involved in metabolism, ROS homeostasis, and stress and defense, while a small number play a role in transport, biosynthesis, signal transduction, transcription and photosynthesis. Transcription levels of 14 genes encoding the identified redox proteins were analyzed using qRT-PCR. All the genes were induced by salt stress at the transcriptional level. CONCLUSIONS Based on the redox proteomics results, we construct a map of the regulatory network of M14 root redox proteins in response to salt stress. This study further refines the molecular mechanism of salt resistance at the level of protein redox regulation.
Collapse
Affiliation(s)
- He Liu
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Xiaoxue Du
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Jialin Zhang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Jinna Li
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
| | - Huizi Duanmu
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China.
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| | - Haiying Li
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China.
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
29
|
Srivastava V, Chowdhary AA, Verma PK, Mehrotra S, Mishra S. Hydrogen sulfide-mediated mitigation and its integrated signaling crosstalk during salinity stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13633. [PMID: 35060139 DOI: 10.1111/ppl.13633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Environmental stresses negatively affect plant development and significantly influence global agricultural productivity. The growth suppression due to soil salinity involves osmotic stress, which is accompanied by ion toxicity, nutritional imbalance, and oxidative stress. The amelioration of salinity stress is one of the fundamental goals to be achieved to ensure food security and better meet the issues related to global hunger. The application of exogenous chemicals is the imperative and efficient choice to alleviate stress in the agricultural field. Among them, hydrogen sulfide (H2 S, a gasotransmitter) is known for its efficient role in stress mitigation, including salinity stress, along with other biological features related to growth and development in plants. H2 S plays a role in improving photosynthesis and ROS homeostasis, and interacts with other signaling components in a cascade fashion. The current review gives a comprehensive view of the participation of H2 S in salinity stress alleviation in plants. Further, its crosstalk with other stress ameliorating signaling component or supplement (e.g., NO, H2 O2 , melatonin) is also covered and discussed. Finally, we discuss the possible prospects to meet with success in agricultural fields.
Collapse
Affiliation(s)
- Vikas Srivastava
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Aksar Ali Chowdhary
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shakti Mehrotra
- Department of Biotechnology, Institute of Engineering and Technology, Lucknow, Uttar Pradesh, India
| | - Sonal Mishra
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| |
Collapse
|
30
|
Azeem F, Zameer R, Rehman Rashid MA, Rasul I, Ul-Allah S, Siddique MH, Fiaz S, Raza A, Younas A, Rasool A, Ali MA, Anwar S, Siddiqui MH. Genome-wide analysis of potassium transport genes in Gossypium raimondii suggest a role of GrHAK/KUP/KT8, GrAKT2.1 and GrAKT1.1 in response to abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:110-122. [PMID: 34864561 DOI: 10.1016/j.plaphy.2021.11.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Potassium (K+) is an important macro-nutrient for plants, which comprises almost 10% of plant's dry mass. It plays a crucial role in the growth of plants as well as other important processes related to metabolism and stress tolerance. Plants have a complex and well-organized potassium distribution system (channels and transporters). Cotton is the most important economic crop, which is the primary source of natural fiber. Soil deficiency in K+ can negatively affect yield and fiber quality of cotton. However, potassium transport system in cotton is poorly studied. Current study identified 43 Potassium Transport System (PTS) genes in Gossypium raimondii genome. Based on conserved domains, transmembrane domains, and motif structures, these genes were classified as K+ transporters (2 HKTs, 7 KEAs, and 16 KUP/HAK/KTs) and K+ channels (11 Shakers and 7 TPKs/KCO). The phylogenetic comparison of GrPTS genes from Arabidopsis thaliana, Glycine max, Oryza sativa, Medicago truncatula and Cicer arietinum revealed variations in PTS gene conservation. Evolutionary analysis predicted that most GrPTS genes were segmentally duplicated. Gene structure analysis showed that the intron/exon organization of these genes was conserved in specific-family. Chromosomal localization demonstrated a random distribution of PTS genes across all the thirteen chromosomes except chromosome six. Many stress responsive cis-regulatory elements were predicted in promoter regions of GrPTS genes. The RNA-seq data analysis followed by qRT-PCR validation demonstrated that PTS genes potentially work in groups against environmental factors. Moreover, a transporter gene (GrHAK/KUP/KT8) and two channel genes (GrAKT2.1 and GrAKT1.1) are important candidate genes for plant stress response. These results provide useful information for further functional characterization of PTS genes with the breeding aim of stress-resistant cultivars.
Collapse
Affiliation(s)
- Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Govt. College University, Faisalabad, Pakistan
| | - Roshan Zameer
- Department of Bioinformatics and Biotechnology, Govt. College University, Faisalabad, Pakistan
| | | | - Ijaz Rasul
- Department of Bioinformatics and Biotechnology, Govt. College University, Faisalabad, Pakistan
| | - Sami Ul-Allah
- College of Agriculture, Bahauddin Zakariya University, Bahadur Sub-Campus, Layyah, Pakistan
| | | | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, 22620, Haripir, Pakistan.
| | - Ali Raza
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, 350002, China
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Asima Rasool
- Department of Bioinformatics and Biotechnology, Govt. College University, Faisalabad, Pakistan
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Sultana Anwar
- Department of Agronomy, University of Florida, Gainesville, USA
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Kamburova VS, Ubaydullaeva KA, Shermatov SE, Buriev ZT, Charishnikova OS, Nebesnaya KS, Sukocheva OA. Influence of RNA interference of phytochrome A1 gene on activity of antioxidant system in cotton. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2022. [DOI: 10.1016/j.pmpp.2021.101751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Mishra P, Mishra J, Arora NK. Plant growth promoting bacteria for combating salinity stress in plants - Recent developments and prospects: A review. Microbiol Res 2021; 252:126861. [PMID: 34521049 DOI: 10.1016/j.micres.2021.126861] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/16/2023]
Abstract
Soil salinity has emerged as a great threat to the agricultural ecosystems throughout the globe. Many continents of the globe are affected by salinity and crop productivity is severely affected. Anthropogenic activities leading to the degradation of agricultural land have also accelerated the rate of salinization in arid and semi-arid regions. Several approaches are being evaluated for remediating saline soil and restoring their productivity. Amongst these, utilization of plant growth promoting bacteria (PGPB) has been marked as a promising tool. This greener approach is suitable for simultaneous reclamation of saline soil and improving the productivity. Salt-tolerant PGPB utilize numerous mechanisms that affect physiological, biochemical, and molecular responses in plants to cope with salt stress. These mechanisms include osmotic adjustment by ion homeostasis and osmolyte accumulation, protection from free radicals by the formation of free radicals scavenging enzymes, oxidative stress responses and maintenance of growth parameters by the synthesis of phytohormones and other metabolites. As salt-tolerant PGPB elicit better plant survival under salinity, they are the potential candidates for enhancing agricultural productivity. The present review focuses on the various mechanisms used by PGPB to improve plant health under salinity. Recent developments and prospects to facilitate better understanding on the functioning of PGPB for ameliorating salt stress in plants are emphasized.
Collapse
Affiliation(s)
- Priya Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| | - Jitendra Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| | - Naveen Kumar Arora
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| |
Collapse
|
33
|
Gan T, Lin Z, Bao L, Hui T, Cui X, Huang Y, Wang H, Su C, Jiao F, Zhang M, Qian Y. Comparative Proteomic Analysis of Tolerant and Sensitive Varieties Reveals That Phenylpropanoid Biosynthesis Contributes to Salt Tolerance in Mulberry. Int J Mol Sci 2021; 22:9402. [PMID: 34502318 PMCID: PMC8431035 DOI: 10.3390/ijms22179402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Mulberry, an important woody tree, has strong tolerance to environmental stresses, including salinity, drought, and heavy metal stress. However, the current research on mulberry resistance focuses mainly on the selection of resistant resources and the determination of physiological indicators. In order to clarify the molecular mechanism of salt tolerance in mulberry, the physiological changes and proteomic profiles were comprehensively analyzed in salt-tolerant (Jisang3) and salt-sensitive (Guisangyou12) mulberry varieties. After salt treatment, the malondialdehyde (MDA) content and proline content were significantly increased compared to control, and the MDA and proline content in G12 was significantly lower than in Jisang3 under salt stress. The calcium content was significantly reduced in the salt-sensitive mulberry varieties Guisangyou12 (G12), while sodium content was significantly increased in both mulberry varieties. Although the Jisang3 is salt-tolerant, salt stress caused more reductions of photosynthetic rate in Jisang3 than Guisangyou12. Using tandem mass tags (TMT)-based proteomics, the changes of mulberry proteome levels were analyzed in salt-tolerant and salt-sensitive mulberry varieties under salt stress. Combined with GO and KEGG databases, the differentially expressed proteins were significantly enriched in the GO terms of amino acid transport and metabolism and posttranslational modification, protein turnover up-classified in Guisangyou12 while down-classified in Jisang3. Through the comparison of proteomic level, we identified the phenylpropanoid biosynthesis may play an important role in salt tolerance of mulberry. We clarified the molecular mechanism of mulberry salt tolerance, which is of great significance for the selection of excellent candidate genes for saline-alkali soil management and mulberry stress resistance genetic engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (T.G.); (Z.L.); (L.B.); (T.H.); (X.C.); (Y.H.); (H.W.); (C.S.); (F.J.)
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (T.G.); (Z.L.); (L.B.); (T.H.); (X.C.); (Y.H.); (H.W.); (C.S.); (F.J.)
| |
Collapse
|
34
|
Sharif R, Raza A, Chen P, Li Y, El-Ballat EM, Rauf A, Hano C, El-Esawi MA. HD-ZIP Gene Family: Potential Roles in Improving Plant Growth and Regulating Stress-Responsive Mechanisms in Plants. Genes (Basel) 2021; 12:genes12081256. [PMID: 34440430 PMCID: PMC8394574 DOI: 10.3390/genes12081256] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Exploring the molecular foundation of the gene-regulatory systems underlying agronomic parameters or/and plant responses to both abiotic and biotic stresses is crucial for crop improvement. Thus, transcription factors, which alone or in combination directly regulated the targeted gene expression levels, are appropriate players for enlightening agronomic parameters through genetic engineering. In this regard, homeodomain leucine zipper (HD-ZIP) genes family concerned with enlightening plant growth and tolerance to environmental stresses are considered key players for crop improvement. This gene family containing HD and LZ domain belongs to the homeobox superfamily. It is further classified into four subfamilies, namely HD-ZIP I, HD-ZIP II, HD-ZIP III, and HD-ZIP IV. The first HD domain-containing gene was discovered in maize cells almost three decades ago. Since then, with advanced technologies, these genes were functionally characterized for their distinct roles in overall plant growth and development under adverse environmental conditions. This review summarized the different functions of HD-ZIP genes in plant growth and physiological-related activities from germination to fruit development. Additionally, the HD-ZIP genes also respond to various abiotic and biotic environmental stimuli by regulating defense response of plants. This review, therefore, highlighted the various significant aspects of this important gene family based on the recent findings. The practical application of HD-ZIP biomolecules in developing bioengineered plants will not only mitigate the negative effects of environmental stresses but also increase the overall production of crop plants.
Collapse
Affiliation(s)
- Rahat Sharif
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China;
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ali Raza
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agriculture Science (CAAS), Wuhan 430062, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling 712100, China;
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China
- Correspondence: (Y.L.); (M.A.E.-E.)
| | - Enas M. El-Ballat
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23430, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Université d’Orléans, 28000 Chartres, France;
| | - Mohamed A. El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
- Correspondence: (Y.L.); (M.A.E.-E.)
| |
Collapse
|
35
|
Sun J, Li S, Guo H, Hou Z. Ion homeostasis and Na+ transport-related gene expression in two cotton (Gossypium hirsutum L.) varieties under saline, alkaline and saline-alkaline stresses. PLoS One 2021; 16:e0256000. [PMID: 34375358 PMCID: PMC8354432 DOI: 10.1371/journal.pone.0256000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
The sensitivity of cotton to salt stress depends on the genotypes and salt types. Understanding the mechanism of ion homeostasis under different salt stresses is necessary to improve cotton performance under saline conditions. A pot experiment using three salt stresses saline stress (NaCl+Na2SO4), alkaline stress (Na2CO3+NaHCO3), and saline-alkaline stress (NaCl+Na2SO4+Na2CO3+NaHCO3) and two cotton varieties (salt-tolerant variety L24 and salt-sensitive variety G1) was conducted. The growth, ion concentrations, and Na+ transport-related gene expression in the cotton varieties were determined. The inhibitory effects of saline-alkaline stress on cotton growth were greater than that of either saline stress or alkaline stress alone. The root/shoot ratio under alkaline stress was significantly lower than that under saline stress. The salt-tolerant cotton variety had lower Na and higher K concentrations in the leaves, stems and roots than the salt-sensitive variety under different salt stresses. For the salt-sensitive cotton variety, saline stress significantly inhibited the absorption of P and the transport of P, K, and Mg, while alkaline stress and saline-alkaline stress significantly inhibited the uptake and transport of P, K, Ca, Mg, and Zn. Most of the elements in the salt-tolerant variety accumulated in the leaves and stems under different salt stresses. This indicated that the salt-tolerant variety had a stronger ion transport capacity than the salt-sensitive variety under saline conditions. Under alkaline stress and salt-alkaline stress, the relative expression levels of the genes GhSOS1, GhNHX1 and GhAKT1 in the salt-tolerant variety were significantly higher than that in the salt-sensitive variety. These results suggest that this salt-tolerant variety of cotton has an internal mechanism to maintain ionic homeostasis.
Collapse
Affiliation(s)
- Jialin Sun
- Department of Resources and Environmental Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China
| | - Shuangnan Li
- Department of Resources and Environmental Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China
| | - Huijuan Guo
- Department of Resources and Environmental Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China
| | - Zhenan Hou
- Department of Resources and Environmental Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China
| |
Collapse
|
36
|
Myo T, Wei F, Zhang H, Hao J, Zhang B, Liu Z, Cao G, Tian B, Shi G. Genome-wide identification of the BASS gene family in four Gossypium species and functional characterization of GhBASSs against salt stress. Sci Rep 2021; 11:11342. [PMID: 34059742 PMCID: PMC8166867 DOI: 10.1038/s41598-021-90740-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Bile acid sodium symporter (BASS) family proteins encode a class of sodium/solute symporters. Even though the sodium transporting property of BASSs in mammals was well studied, their sodium transportability and functional roles in plant salt tolerance remained largely unknown. Here, BASS family members from 4 cotton species, as well as 30 other species were identified. Then, they were designated as members of BASS1 to BASS5 subfamilies according to their sequence similarity and phylogenetic relationships. There were 8, 11, 16 and 18 putative BASS genes in four cotton species. While whole-genome duplications (WGD) and segmental duplications rendered the expansion of the BASS gene family in cotton, BASS gene losses occurred in the tetraploid cotton during the evolution from diploids to allotetraploids. Concerning functional characterizations, the transcript profiling of GhBASSs revealed that they not only preferred tissue-specific expression but also were differently induced by various stressors and phytohormones. Gene silencing and overexpression experiments showed that GhBASS1 and GhBASS3 positively regulated, whereas GhBASS2, GhBASS4 and GhBASS5 negatively regulated plant salt tolerance. Taken together, BASS family genes have evolved before the divergence from the common ancestor of prokaryotes and eukaryotes, and GhBASSs are plastidial sodium-dependent metabolite co-transporters that can influence plant salt tolerance.
Collapse
Affiliation(s)
- Thwin Myo
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Fang Wei
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Honghao Zhang
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Jianfeng Hao
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Bin Zhang
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Zhixian Liu
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Gangqiang Cao
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Baoming Tian
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Gongyao Shi
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| |
Collapse
|
37
|
Zhu L, Dou L, Shang H, Li H, Yu J, Xiao G. GhPIPLC2D promotes cotton fiber elongation by enhancing ethylene biosynthesis. iScience 2021; 24:102199. [PMID: 33718844 PMCID: PMC7921840 DOI: 10.1016/j.isci.2021.102199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022] Open
Abstract
Inositol-1,4,5-trisphosphate (IP3) is an important second messenger and one of the products of phosphoinositide-specific phospholipase C (PIPLC)-mediated phosphatidylinositol (4,5) bisphosphate (PIP2) hydrolysis. However, the function of IP3 in cotton is unknown. Here, we characterized the function of GhPIPLC2D in cotton fiber elongation. GhPIPLC2D was preferentially expressed in elongating fibers. Suppression of GhPIPLC2D transcripts resulted in shorter fibers and decreased IP3 accumulation and ethylene biosynthesis. Exogenous application of linolenic acid (C18:3) and phosphatidylinositol (PI), the precursor of IP3, improved IP3 and myo-inositol-1,2,3,4,5,6-hexakisphosphate (IP6) accumulation, as well as ethylene biosynthesis. Moreover, fiber length in GhPIPLC2D-silenced plant was reduced after exogenous application of IP6 and ethylene. These results indicate that GhPIPLC2D positively regulates fiber elongation and IP3 promotes fiber elongation by enhancing ethylene biosynthesis. Our study broadens our understanding of the function of IP3 in cotton fiber elongation and highlights the possibility of cultivating better cotton varieties by manipulating GhPIPLC2D in the future. GhPIPLC2D positively regulates cotton fiber elongation GhPIPLC2D cleaves PIP2 into IP3, which could be phosphorylated to IP6 IP6 enhances fiber elongation via improving ethylene biosynthesis
Collapse
Affiliation(s)
- Liping Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lingling Dou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
38
|
Munawar W, Hameed A, Khan MKR. Differential Morphophysiological and Biochemical Responses of Cotton Genotypes Under Various Salinity Stress Levels During Early Growth Stage. FRONTIERS IN PLANT SCIENCE 2021; 12:622309. [PMID: 33777064 PMCID: PMC7990906 DOI: 10.3389/fpls.2021.622309] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/11/2021] [Indexed: 05/08/2023]
Abstract
Cotton is a primary agriculture product important for fiber use in textiles and the second major oil seed crop. Cotton is considered as moderately tolerant to salt stress with salinity threshold of 7.7 dS/m at seedling stage. Salinity causes reduction in the growth of seedlings and cotton production that limits fiber quality and cotton yield. In this study, initially, 22 cotton genotypes were screened for relative salt tolerance using germination test in Petri plates (growth chamber). Selected 11 genotypes were further tested in pot experiment (sand) with 0, 15, and 20 dS/m NaCl treatments under glass house conditions. At four-leaves stage, different morphological and physiological traits were measured for all genotypes while biochemical analysis was performed on selected seven highly tolerant and sensitive genotypes. NaCl treatment significantly reduced plant biomass in two genotypes IR-NIBGE-13 and BS-2018, while NIAB-135, NIAB-512, and GH-HADI had least difference in fresh weight between the control and NaCl-treated plants. Photosynthetic rate was maintained in all the genotypes with the exception of SITARA-16. In two sensitive genotypes (IR-NIBGE-13 and 6071/16), Na+ ion accumulated more in leaves as compared to K+ ion under stress conditions, and an increase in Na+/K+ ratio was also observed. The lesser accumulation of malondialdehyde (MDA) content and higher activity of enzymatic antioxidants such as superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) in stressed plants of NIAB-135, NIAB-512, and FH-152 indicated that these genotypes had adaption capacity for salinity stress in comparison with sensitive genotypes, i.e., IR-NIBGE-13 and 6071/16. The observed salt tolerance was corelated with plant biomass maintenance (morphological), photosynthetic rate, and ionic homeostasis (K+/Na+ ratio, physiological) and biochemical stress marker regulations. After a series of experiments, it was concluded that NIAB-135, NIAB-512, and FH-152 could be utilized in breeding programs aimed at improving salinity tolerance in cotton and can expand cotton cultivation in saline area.
Collapse
Affiliation(s)
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | | |
Collapse
|
39
|
Bensidhoum L, Nabti EH. Role of Cystoseira mediterranea extracts (Sauv.) in the Alleviation of salt stress adverse effect and enhancement of some Hordeum vulgare L. (barley) growth parameters. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-03992-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractCystoseira mediterranea (Sauv.) extract was tested for its ability to restore barley (Hordeum vulgare) growth under salt stress (350 mM NaCl), shoot growth; membrane integrity; lipid peroxidation and hydrogen peroxide determination were performed. In normal conditions, the obtained data revealed the ability of the extract to stimulate most of barley growth parameters. However, it showed significant effect on most of barley growth parameters (plant height, fresh and dry weight of shoots and roots) and chlorophyll content, under salt stress. The measurement of stress parameters (membrane integrity, lipid peroxidation and hydrogen peroxide) revealed significant effect of C. mediterranea extract on reducing the deleterious impact of salt stress on barley seedlings.
Collapse
|
40
|
Li Y, Feng Z, Wei H, Cheng S, Hao P, Yu S, Wang H. Silencing of GhKEA4 and GhKEA12 Revealed Their Potential Functions Under Salt and Potassium Stresses in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:789775. [PMID: 34950173 PMCID: PMC8689187 DOI: 10.3389/fpls.2021.789775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/09/2021] [Indexed: 05/10/2023]
Abstract
The K+ efflux antiporter (KEA) mediates intracellular K+ and H+ homeostasis to improve salt tolerance in plants. However, the knowledge of KEA gene family in cotton is largely absent. In the present study, 8, 8, 15, and 16 putative KEA genes were identified in Gossypium arboreum, G. raimondii, G. hirsutum, and G. barbadense, respectively. These KEA genes were classified into three subfamilies, and members from the same subfamilies showed similar motif compositions and gene structure characteristics. Some hormone response elements and stress response elements were identified in the upstream 2000 bp sequence of GhKEAs. Transcriptome data showed that most of the GhKEAs were highly expressed in roots and stems. The quantificational real-time polymerase chain reaction (qRT-PCR) results showed that most of the GhKEAs responded to low potassium, salt and drought stresses. Virus-induced gene silencing (VIGS) experiments demonstrated that under salt stress, after silencing genes GhKEA4 and GhKEA12, the chlorophyll content, proline content, soluble sugar content, peroxidase (POD) activity and catalase (CAT) activity were significantly decreased, and the Na+/K+ ratio was extremely significantly increased in leaves, leading to greater salt sensitivity. Under high potassium stress, cotton plants silenced for the GhKEA4 could still maintain a more stable Na+ and K+ balance, and the activity of transporting potassium ions from roots into leaves was reduced silenced for GhKEA12. Under low potassium stress, silencing the GhKEA4 increased the activity of transporting potassium ions to shoots, and silencing the GhKEA12 increased the ability of absorbing potassium ions, but accumulated more Na+ in leaves. These results provided a basis for further studies on the biological roles of KEA genes in cotton development and adaptation to stress conditions.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhen Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuaishuai Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pengbo Hao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Shuxun Yu,
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Hantao Wang,
| |
Collapse
|
41
|
Remote Sensing and Modelling Based Framework for Valuing Irrigation System Efficiency and Steering Indicators of Consumptive Water Use in an Irrigated Region. SUSTAINABILITY 2020. [DOI: 10.3390/su12229535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water crises are becoming severe in recent times, further fueled by population increase and climate change. They result in complex and unsustainable water management. Spatial estimation of consumptive water use is vital for performance assessment of the irrigation system using Remote Sensing (RS). For this study, its estimation is done using the Soil Energy Balance Algorithm for Land (SEBAL) approach. Performance indicators including equity, adequacy, and reliability were worked out at various spatiotemporal scales. Moreover, optimization and sustainable use of water resources are not possible without knowing the factors mainly influencing consumptive water use of major crops. For that purpose, random forest regression modelling was employed using various sets of factors for site-specific, proximity, and cropping system. The results show that the system is underperforming both for Kharif (i.e., summer) and Rabi (i.e., winter) seasons. Performance indicators highlight poor water distribution in the system, a shortage of water supply, and unreliability. The results are relatively good for Rabi as compared to Kharif, with an overall poor situation for both seasons. Factors importance varies for different crops. Overall, distance from canal, road density, canal density, and farm approachability are the most important factors for explaining consumptive water use. Auditing of consumptive water use shows the potential for resource optimization through on-farm water management by the targeted approach. The results are based on the present situation without considering future changes in canal water supply and consumptive water use under climate change.
Collapse
|
42
|
He S, Hao Y, Zhang Q, Zhang P, Ji F, Cheng H, Lv D, Sun Y, Hao F, Miao C. Histone Deacetylase Inhibitor SAHA Improves High Salinity Tolerance Associated with Hyperacetylation-Enhancing Expression of Ion Homeostasis-Related Genes in Cotton. Int J Mol Sci 2020; 21:E7105. [PMID: 32993126 PMCID: PMC7582796 DOI: 10.3390/ijms21197105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/01/2023] Open
Abstract
Histone acetylation plays an important role in regulation of chromatin structure and gene expression in terms of responding to abiotic stresses. Histone acetylation is modulated by histone deacetylases (HDACs) and histone acetyltransferases. Recently, the effectiveness of HDAC inhibitors (HDACis) for conferring plant salt tolerance has been reported. However, the role of HDACis in cotton has not been elucidated. In the present study, we assessed the effects of the HDACi suberoylanilide hydroxamic acid (SAHA) during high salinity stress in cotton. We demonstrated that 10 μM SAHA pretreatment could rescue of cotton from 250 mM NaCl stress, accompanied with reduced Na+ accumulation and a strong expression of the ion homeostasis-related genes. Western blotting and immunostaining results revealed that SAHA pretreatment could induce global hyperacetylation of histone H3 at lysine 9 (H3K9) and histone H4 at lysine 5 (H4K5) under 250 mM NaCl stress, indicating that SAHA could act as the HDACi in cotton. Chromatin immunoprecipitation and chromatin accessibility coupled with real time quantitative PCR analyses showed that the upregulation of the ion homeostasis-related genes was associated with the elevated acetylation levels of H3K9 and H4K5 and increased chromatin accessibility on the promoter regions of these genes. Our results could provide a theoretical basis for analyzing the mechanism of HDACi application on salt tolerance in plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chen Miao
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China; (S.H.); (Y.H.); (Q.Z.); (P.Z.); (F.J.); (H.C.); (D.L.); (Y.S.); (F.H.)
| |
Collapse
|
43
|
Li J, Cui J, Cheng D, Dai C, Liu T, Wang C, Luo C. iTRAQ protein profile analysis of sugar beet under salt stress: different coping mechanisms in leaves and roots. BMC PLANT BIOLOGY 2020; 20:347. [PMID: 32698773 PMCID: PMC7376716 DOI: 10.1186/s12870-020-02552-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/15/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Salinity is one of the most serious threats to world agriculture. An important sugar-yielding crop sugar beet, which shows some tolerance to salt via a mechanism that is poorly understood. Proteomics data can provide important clues that can contribute to finally understand this mechanism. RESULTS Differentially abundant proteins (DAPs) in sugar beet under salt stress treatment were identified in leaves (70 DAPs) and roots (76 DAPs). Functions of these DAPs were predicted, and included metabolism and cellular, environmental information and genetic information processing. We hypothesize that these processes work in concert to maintain cellular homeostasis. Some DAPs are closely related to salt resistance, such as choline monooxygenase, betaine aldehyde dehydrogenase, glutathione S-transferase (GST) and F-type H+-transporting ATPase. The expression pattern of ten DAPs encoding genes was consistent with the iTRAQ data. CONCLUSIONS During sugar beet adaptation to salt stress, leaves and roots cope using distinct mechanisms of molecular metabolism regulation. This study provides significant insights into the molecular mechanism underlying the response of higher plants to salt stress, and identified some candidate proteins involved in salt stress countermeasures.
Collapse
Affiliation(s)
- Junliang Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jie Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Dayou Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Cuihong Dai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Tianjiao Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Congyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chengfei Luo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
44
|
Su X, Zhu G, Song X, Xu H, Li W, Ning X, Chen Q, Guo W. Genome-wide association analysis reveals loci and candidate genes involved in fiber quality traits in sea island cotton (Gossypium barbadense). BMC PLANT BIOLOGY 2020; 20:289. [PMID: 32571222 PMCID: PMC7310526 DOI: 10.1186/s12870-020-02502-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/17/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Sea island cotton (Gossypium barbadense) has markedly superior high quality fibers, which plays an important role in the textile industry and acts as a donor for upland cotton (G. hirsutum) fiber quality improvement. The genetic characteristics analysis and the identification of key genes will be helpful to understand the mechanism of fiber development and breeding utilization in sea island cotton. RESULTS In this study, 279 sea island cotton accessions were collected from different origins for genotyping and phenotyping fiber quality traits. A set of 6303 high quality single nucleotide polymorphisms (SNPs) were obtained by high-density CottonSNP80K array. The population characteristics showed that the sea island cotton accessions had wide genetic diversity and were clustered into three groups, with Group1 closely related to Menoufi, an original sea island cotton landrace, and Group2 and Group3 related to widely introduced accessions from Egypt, USA and Former Soviet Union. Further, we used 249 accessions and evaluated five fiber quality traits under normal and salt environments over 2 years. Except for fiber uniformity (FU), fiber length (FL) and fiber elongation (FE) were significantly decreased in salt conditions, while fiber strength (FS) and fiber micronaire (MIC) were increased. Based on 6303 SNPs and genome-wide association study (GWAS) analysis, a total of 34 stable quantitative trait loci (QTLs) were identified for the five fiber quality traits with 25 detected simultaneously under normal and salt environments. Gene Ontology (GO) analysis indicated that candidate genes in the 25 overlapped QTLs were enriched mostly in "cellular and biological process". In addition, "xylem development" and "response to hormone" pathways were also found. Haplotype analyses found that GB_A03G0335 encoding an E3 ubiquitin-protein ligase in QTL TM6004 had SNP variation (A/C) in gene region, was significantly correlated with FL, FS, FU, and FE, implying a crucial role in fiber quality. CONCLUSIONS The present study provides a foundation for genetic diversity of sea island cotton accessions and will contribute to fiber quality improvement in breeding practice.
Collapse
Affiliation(s)
- Xiujuan Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Haijiang Xu
- Institute of Industrial Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091 China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Xinzhu Ning
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000 China
| | - Quanjia Chen
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
45
|
Sikder RK, Wang X, Zhang H, Gui H, Dong Q, Jin D, Song M. Nitrogen Enhances Salt Tolerance by Modulating the Antioxidant Defense System and Osmoregulation Substance Content in Gossypium hirsutum. PLANTS (BASEL, SWITZERLAND) 2020; 9:E450. [PMID: 32260233 PMCID: PMC7238023 DOI: 10.3390/plants9040450] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/29/2020] [Accepted: 03/29/2020] [Indexed: 02/03/2023]
Abstract
Increasing soil salinity suppresses both productivity and fiber quality of cotton, thus, an appropriate management approach needs to be developed to lessen the detrimental effect of salinity stress. This study assessed two cotton genotypes with different salt sensitivities to investigate the possible role of nitrogen supplementation at the seedling stage. Salt stress induced by sodium chloride (NaCl, 200 mmol·L-1) decreased the growth traits and dry mass production of both genotypes. Nitrogen supplementation increased the plant water status, photosynthetic pigment synthesis, and gas exchange attributes. Addition of nitrogen to the saline media significantly decreased the generation of lethal oxidative stress biomarkers such as hydrogen peroxide, lipid peroxidation, and electrolyte leakage ratio. The activity of the antioxidant defense system was upregulated in both saline and non-saline growth media as a result of nitrogen application. Furthermore, nitrogen supplementation enhanced the accumulation of osmolytes, such as soluble sugars, soluble proteins, and free amino acids. This established the beneficial role of nitrogen by retaining additional osmolality to uphold the relative water content and protect the photosynthetic apparatus, particularly in the salt-sensitive genotype. In summary, nitrogen application may represent a potential strategy to overcome the salinity-mediated impairment of cotton to some extent.
Collapse
Affiliation(s)
- Ripon Kumar Sikder
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; (R.K.S.); (X.W.); (H.Z.); (H.G.); (Q.D.); (D.J.)
| | - Xiangru Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; (R.K.S.); (X.W.); (H.Z.); (H.G.); (Q.D.); (D.J.)
| | - Hengheng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; (R.K.S.); (X.W.); (H.Z.); (H.G.); (Q.D.); (D.J.)
| | - Huiping Gui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; (R.K.S.); (X.W.); (H.Z.); (H.G.); (Q.D.); (D.J.)
| | - Qiang Dong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; (R.K.S.); (X.W.); (H.Z.); (H.G.); (Q.D.); (D.J.)
| | - Dingsha Jin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; (R.K.S.); (X.W.); (H.Z.); (H.G.); (Q.D.); (D.J.)
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; (R.K.S.); (X.W.); (H.Z.); (H.G.); (Q.D.); (D.J.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|