1
|
Watcharatanyatip K, Chutipongtanate S, Chokchaichamnankit D, Weeraphan C, Mingkwan K, Luevisadpibul V, Newburg DS, Morrow AL, Svasti J, Srisomsap C. Translational Proteomic Approach for Cholangiocarcinoma Biomarker Discovery, Validation, and Multiplex Assay Development: A Pilot Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185904. [PMID: 36144640 PMCID: PMC9501115 DOI: 10.3390/molecules27185904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
Cholangiocarcinoma (CCA) is a highly lethal disease because most patients are asymptomatic until they progress to advanced stages. Current CCA diagnosis relies on clinical imaging tests and tissue biopsy, while specific CCA biomarkers are still lacking. This study employed a translational proteomic approach for the discovery, validation, and development of a multiplex CCA biomarker assay. In the discovery phase, label-free proteomic quantitation was performed on nine pooled plasma specimens derived from nine CCA patients, nine disease controls (DC), and nine normal individuals. Seven proteins (S100A9, AACT, AFM, and TAOK3 from proteomic analysis, and NGAL, PSMA3, and AMBP from previous literature) were selected as the biomarker candidates. In the validation phase, enzyme-linked immunosorbent assays (ELISAs) were applied to measure the plasma levels of the seven candidate proteins from 63 participants: 26 CCA patients, 17 DC, and 20 normal individuals. Four proteins, S100A9, AACT, NGAL, and PSMA3, were significantly increased in the CCA group. To generate the multiplex biomarker assays, nine machine learning models were trained on the plasma dynamics of all seven candidates (All-7 panel) or the four significant markers (Sig-4 panel) from 45 of the 63 participants (70%). The best-performing models were tested on the unseen values from the remaining 18 (30%) of the 63 participants. Very strong predictive performances for CCA diagnosis were obtained from the All-7 panel using a support vector machine with linear classification (AUC = 0.96; 95% CI 0.88–1.00) and the Sig-4 panel using partial least square analysis (AUC = 0.94; 95% CI 0.82–1.00). This study supports the use of the composite plasma biomarkers measured by clinically compatible ELISAs coupled with machine learning models to identify individuals at risk of CCA. The All-7 and Sig-4 assays for CCA diagnosis should be further validated in an independent prospective blinded clinical study.
Collapse
Affiliation(s)
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Center for Population Health Science and Analytics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence: or (S.C.); (C.S.)
| | | | - Churat Weeraphan
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkla 90110, Thailand
| | - Kanokwan Mingkwan
- Division of Surgery, Sapphasitthiprasong Hospital, Ubon Ratchathani 34000, Thailand
| | - Virat Luevisadpibul
- Division of Information and Technology, Ubonrak Thonburi Hospital, Ubon Ratchathani 34000, Thailand
| | - David S. Newburg
- Center for Population Health Science and Analytics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ardythe L. Morrow
- Center for Population Health Science and Analytics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
- Correspondence: or (S.C.); (C.S.)
| |
Collapse
|
2
|
Sharma J, Rushing BR, Hall MS, Helke KL, McRitchie SL, Krupenko NI, Sumner SJ, Krupenko SA. Sex-Specific Metabolic Effects of Dietary Folate Withdrawal in Wild-Type and Aldh1l1 Knockout Mice. Metabolites 2022; 12:metabo12050454. [PMID: 35629957 PMCID: PMC9143804 DOI: 10.3390/metabo12050454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/03/2022] [Accepted: 05/14/2022] [Indexed: 12/11/2022] Open
Abstract
ALDH1L1 (10-formyltetrahydrofolate dehydrogenase), an enzyme of folate metabolism, is highly expressed in the liver. It regulates the overall flux of folate-bound one-carbon groups by converting 10-formyltetrahydrofolate to tetrahydrofolate and CO2 in a NADP+-dependent reaction. Our previous study revealed that Aldh1l1 knockout (KO) mice have an altered liver metabotype with metabolic symptoms of folate deficiency when fed a standard chow diet containing 2 ppm folic acid. Here we performed untargeted metabolomic analysis of liver and plasma of KO and wild-type (WT) male and female mice fed for 16 weeks either standard or folate-deficient diet. OPLS-DA, a supervised multivariate technique that was applied to 6595 and 10,678 features for the liver and plasma datasets, respectively, indicated that genotype and diet, alone or in combination, gave distinct metabolic profiles in both types of biospecimens. A more detailed analysis of affected metabolic pathways based on most confidently identified metabolites in the liver and plasma (OL1 and OL2a ontology level) indicated that the dietary folate restriction itself does not fully recapitulate the metabolic effect of the KO. Of note, dietary folate withdrawal enhanced the metabolic perturbations linked to the ALDH1L1 loss only for a subset of metabolites. Importantly, both the ALDH1L1 loss and dietary folate deficiency produced sex-specific metabolic effects.
Collapse
Affiliation(s)
- Jaspreet Sharma
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
| | - Blake R. Rushing
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
| | - Madeline S. Hall
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristi L. Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Susan L. McRitchie
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
| | - Natalia I. Krupenko
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
| | - Susan J. Sumner
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sergey A. Krupenko
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence:
| |
Collapse
|
3
|
Matricellular proteins in intrahepatic cholangiocarcinoma. Adv Cancer Res 2022; 156:249-281. [DOI: 10.1016/bs.acr.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Kuai L, Luo Y, Qu K, Ru Y, Luo Y, Ding X, Xing M, Liu L, Sun X, Li X, Li B. Transcriptomic Analysis of the Mechanisms for Alleviating Psoriatic Dermatitis Using Taodan Granules in an Imiquimod-Induced Psoriasis-like Mouse Model. Front Pharmacol 2021; 12:632414. [PMID: 33995034 PMCID: PMC8114823 DOI: 10.3389/fphar.2021.632414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/11/2021] [Indexed: 01/04/2023] Open
Abstract
Taodan granules (TDGs) are clinically efficacious for treating psoriasis, buttheir specific mechanisms of action are unclear. In this study, we determined the concentrations of tanshinone IIA and curcumol using high-performance liquid chromatography (HPLC) to establish quality control parameters for assessing the mechanism of TDGs in treating psoriasis. Thereafter, a mouse model of psoriasis was treated with TDGs. TDGs attenuated imiquimod-induced typical erythema, scales, and thickening of the back and ear lesions in the psoriatic mouse model. Furthermore, PCNA and Ki67-positive cells were reduced in the epidermis of psoriatic lesions following TDG treatment. Finally, the sequencing results were verified using a multitude of methods, and the mechanism of action of TDGs against psoriasis was found to be via the upregulation of metabolic signaling pathways such as the Gly-Ser-Thr axis, the downregulation of immune and inflammatory pathways, and the decrease in Rac2 and Arhgdib concentrations. Overall, this study clarified the mechanism of TDG treatment for psoriasis and provided evidence for its clinical application.
Collapse
Affiliation(s)
- Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Keshen Qu
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Ru
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yue Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojie Ding
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Xing
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.,Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xi`an, China
| | - Liu Liu
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoying Sun
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xi`an, China.,Shanghai Dermatology Hospital, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Byrling J, Kristl T, Hu D, Pla I, Sanchez A, Sasor A, Andersson R, Marko-Varga G, Andersson B. Mass spectrometry-based analysis of formalin-fixed, paraffin-embedded distal cholangiocarcinoma identifies stromal thrombospondin-2 as a potential prognostic marker. J Transl Med 2020; 18:343. [PMID: 32887625 PMCID: PMC7487897 DOI: 10.1186/s12967-020-02498-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background Distal cholangiocarcinoma is an aggressive malignancy with a dismal prognosis. Diagnostic and prognostic biomarkers for distal cholangiocarcinoma are lacking. The aim of the present study was to identify differentially expressed proteins between distal cholangiocarcinoma and normal bile duct samples. Methods A workflow utilizing discovery mass spectrometry and verification by parallel reaction monitoring was used to analyze surgically resected formalin-fixed, paraffin-embedded samples from distal cholangiocarcinoma patients and normal bile duct samples. Bioinformatic analysis was used for functional annotation and pathway analysis. Immunohistochemistry was performed to validate the expression of thrombospondin-2 and investigate its association with survival. Results In the discovery study, a total of 3057 proteins were identified. Eighty-seven proteins were found to be differentially expressed (q < 0.05 and fold change ≥ 2 or ≤ 0.5); 31 proteins were upregulated and 56 were downregulated in the distal cholangiocarcinoma samples compared to controls. Bioinformatic analysis revealed an abundance of differentially expressed proteins associated with the tumor reactive stroma. Parallel reaction monitoring verified 28 proteins as upregulated and 18 as downregulated in distal cholangiocarcinoma samples compared to controls. Immunohistochemical validation revealed thrombospondin-2 to be upregulated in distal cholangiocarcinoma epithelial and stromal compartments. In paired lymph node metastases samples, thrombospondin-2 expression was significantly lower; however, stromal thrombospondin-2 expression was still frequent (72%). Stromal thrombospondin-2 was an independent predictor of poor disease-free survival (HR 3.95, 95% CI 1.09–14.3; P = 0.037). Conclusion Several proteins without prior association with distal cholangiocarcinoma biology were identified and verified as differentially expressed between distal cholangiocarcinoma and normal bile duct samples. These proteins can be further evaluated to elucidate their biomarker potential and role in distal cholangiocarcinoma carcinogenesis. Stromal thrombospondin-2 is a potential prognostic marker in distal cholangiocarcinoma.
Collapse
Affiliation(s)
- Johannes Byrling
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden
| | - Theresa Kristl
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Dingyuan Hu
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden
| | - Indira Pla
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Aniel Sanchez
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Agata Sasor
- Department of Clinical Sciences Lund, Pathology, Lund University, and Skåne University Hospital, Lund, Sweden
| | - Roland Andersson
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden
| | - György Marko-Varga
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Bodil Andersson
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW To give a state-of-art knowledge regarding cancer-associated fibroblasts (CAF) in cholangiocarcinoma (CCA) based both on direct evidence and studies on other desmoplastic cancers. High contingency of CAF characterizes CCA, a tumor with a biliary epithelial phenotype that can emerge anywhere in the biliary tree. Current treatments are very limited, the surgical resection being the only effective treatment but restricted to a minority of patients, whereas the remaining patients undergo palliative chemotherapy regimens. In cancer, CAF shape the tumor microenvironment, drive cancer growth and progression, and contribute to drug resistance. All these functions are accomplished through an interplay network between CAF and surrounding cells including tumor and other stromal cells, i.e. immune and endothelial cells. RECENT FINDINGS Several studies have pointed out the existence of CAF sub-populations carrying out several and opposite functions, cancer-promoting or cancer-restraining as shown in pancreatic cancer, another prototypic desmoplastic tumor in which heterogeneity of CAF is well demonstrated. SUMMARY New CAF functions are now emerging in pancreatic and breast cancers like the modulation of immune responses or tumor metabolism, opening new area for treatments.
Collapse
|
7
|
Intuyod K, Armartmuntree N, Jusakul A, Sakonsinsiri C, Thanan R, Pinlaor S. Current omics-based biomarkers for cholangiocarcinoma. Expert Rev Mol Diagn 2019; 19:997-1005. [PMID: 31566016 DOI: 10.1080/14737159.2019.1673162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a malignancy of the biliary tract. CCA generally has a low incidence worldwide but incidence is typically high in Southeast Asian countries, particularly in northeastern Thailand, where small liver-fluke (Opisthorchis viverrini) infection is endemic. CCA has a poor prognosis as most CCA patients present with advanced stages. Poor prognosis and worse outcomes are due to the lack of specific and early-stage CCA biomarkers. Areas covered: In this review, we discuss the use of CCA tissues, serum and bile samples as sources of diagnostic and prognostic markers by using -omics approaches, including genomics, epigenomics, transcriptomics and proteomics. The current state of the discovery of molecular candidates and their potential to be used as diagnostic and prognostic biomarkers for CCA are summarized and discussed. Expert opinion: Various potential molecules have been discovered, some of which have been verified as diagnostic biomarkers for CCA. However, most identified molecules require much further evaluation to help us find markers with high specificity, low cost and ease-of-use in routine diagnostic laboratories.
Collapse
Affiliation(s)
- Kitti Intuyod
- Department of Parasitology, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Napat Armartmuntree
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Faculty of Associated Medical Sciences, Khon Kaen University , Khon Kaen , Thailand
| | - Chadamas Sakonsinsiri
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Raynoo Thanan
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| |
Collapse
|
8
|
Duangkumpha K, Stoll T, Phetcharaburanin J, Yongvanit P, Thanan R, Techasen A, Namwat N, Khuntikeo N, Chamadol N, Roytrakul S, Mulvenna J, Mohamed A, Shah AK, Hill MM, Loilome W. Discovery and Qualification of Serum Protein Biomarker Candidates for Cholangiocarcinoma Diagnosis. J Proteome Res 2019; 18:3305-3316. [DOI: 10.1021/acs.jproteome.9b00242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kassaporn Duangkumpha
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thomas Stoll
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Puangrat Yongvanit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nittaya Chamadol
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Ahmed Mohamed
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Alok K. Shah
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Michelle M. Hill
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
9
|
Loss of ALDH1L1 folate enzyme confers a selective metabolic advantage for tumor progression. Chem Biol Interact 2019; 302:149-155. [PMID: 30794800 DOI: 10.1016/j.cbi.2019.02.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
ALDH1L1 (cytosolic 10-formyltetrahydrofolate dehydrogenase) is the enzyme in folate metabolism commonly downregulated in human cancers. One of the mechanisms of the enzyme downregulation is methylation of the promoter of the ALDH1L1 gene. Recent studies underscored ALDH1L1 as a candidate tumor suppressor and potential marker of aggressive cancers. In agreement with the ALDH1L1 loss in cancer, its re-expression leads to inhibition of proliferation and to apoptosis, but also affects migration and invasion of cancer cells through a specific folate-dependent mechanism involved in invasive phenotype. A growing body of literature evaluated the prognostic value of ALDH1L1 expression for cancer disease, the regulatory role of the enzyme in cellular proliferation, and associated metabolic and signaling cellular responses. Overall, there is a strong indication that the ALDH1L1 silencing provides metabolic advantage for tumor progression at a later stage when unlimited proliferation and enhanced motility become critical processes for the tumor expansion. Whether the ALDH1L1 loss is involved in tumor initiation is still an open question.
Collapse
|
10
|
Krupenko SA, Krupenko NI. ALDH1L1 and ALDH1L2 Folate Regulatory Enzymes in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1032:127-143. [PMID: 30362096 DOI: 10.1007/978-3-319-98788-0_10] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epidemiological studies implicate excess ethanol ingestion as a risk factor for several cancers and support the concept of a synergistic effect of chronic alcohol consumption and folate deficiency on carcinogenesis. Alcohol consumption affects folate-related genes and enzymes including two major folate-metabolizing enzymes, ALDH1L1 and ALDH1L2. ALDH1L1 (cytosolic 10-formyltetrahydrofolate dehydrogenase) is a regulatory enzyme in folate metabolism that controls the overall flux of one-carbon groups in folate-dependent biosynthetic pathways. It is strongly and ubiquitously down-regulated in malignant tumors via promoter methylation, and recent studies underscored this enzyme as a candidate tumor suppressor and potential marker of aggressive cancers. A related enzyme, ALDH1L2, is the mitochondrial homolog of ALDH1L1 encoded by a separate gene. In contrast to its cytosolic counterpart, ALDH1L2 is expressed in malignant tumors and cancer cell lines and was implicated in metastasis regulation. This review discusses the link between folate and cancer, modifying effects of alcohol consumption on folate-associated carcinogenesis, and putative roles of ALDH1L1 and ALDH1L2 in this process.
Collapse
Affiliation(s)
- Sergey A Krupenko
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA. .,UNC Nutrition Research Institute, Chapel Hill, NC, USA.
| | - Natalia I Krupenko
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA.,UNC Nutrition Research Institute, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Mino M, Kanno K, Okimoto K, Sugiyama A, Kishikawa N, Kobayashi T, Ono J, Izuhara K, Kobayashi T, Ohigashi T, Ohdan H, Tazuma S. Periostin promotes malignant potential by induction of epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma. Hepatol Commun 2017; 1:1099-1109. [PMID: 29404445 PMCID: PMC5721406 DOI: 10.1002/hep4.1114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/12/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022] Open
Abstract
Periostin, a secreted matricellular protein, has been reported to induce epithelial‐mesenchymal transition (EMT), which increases motility and invasiveness in various epithelial cancer cells. Periostin is also overexpressed in intrahepatic cholangiocarcinoma (ICC) and suggested to be a biomarker for tumor progression and poor prognosis; however, its functional role in ICC is not fully understood. Here, we investigated whether periostin influences malignant potential through the induction of EMT in ICC. Analyses of surgical resected ICC specimens revealed that the gene expression of periostin was significantly higher in ICC tumors than in adjacent nontumor liver tissues and was closely correlated with the expression of mesenchymal markers, including N‐cadherin, vimentin, and fibronectin. However, the expression level of periostin varied in each case. Consistently, the expression of periostin in HuH28 (an undifferentiated ICC cell) was markedly higher than in HuCCT‐1 (a moderately differentiated ICC cell). In addition, high‐level secretion of periostin into culture media was observed in HuH28 but not in HuCCT‐1. To identify the biological significance of periostin in EMT, gene silencing of periostin by small interfering RNA was performed in HuH28 cells. Periostin knockdown in HuH28 cells significantly down‐regulated mesenchymal markers and up‐regulated epithelial markers, suggesting the reversal of EMT, namely mesenchymal‐epithelial transition. Along with these changes, cell proliferation was significantly suppressed by 52%. In addition, cell migration and invasion were significantly suppressed by 62% and 61%, respectively, with reduced gene expression of matrix metalloproteinase 2. Interestingly, chemosensitivity to gemcitabine was also significantly improved by periostin depletion. Conclusion: Periostin plays an important role in the regulation of malignant potential through EMT and is suggested to be a novel target for the treatment of ICC. (Hepatology Communications 2017;1:1099–1109)
Collapse
Affiliation(s)
- Masaaki Mino
- Department of General Internal Medicine Hiroshima University Hospital Hiroshima Japan
| | - Keishi Kanno
- Department of General Internal Medicine Hiroshima University Hospital Hiroshima Japan
| | - Kousuke Okimoto
- Department of General Internal Medicine Hiroshima University Hospital Hiroshima Japan
| | - Akiko Sugiyama
- Department of General Internal Medicine Hiroshima University Hospital Hiroshima Japan
| | - Nobusuke Kishikawa
- Department of General Internal Medicine Hiroshima University Hospital Hiroshima Japan
| | - Tomoki Kobayashi
- Department of General Internal Medicine Hiroshima University Hospital Hiroshima Japan
| | - Junya Ono
- Central Institute Shino-Test Corporation Kanagawa Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Laboratory Medicine Saga Medical School Saga Japan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery Hiroshima University Hospital Hiroshima Japan
| | - Toshikazu Ohigashi
- Department of Pharmaceutical Services Hiroshima University Hospital Hiroshima Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery Hiroshima University Hospital Hiroshima Japan
| | - Susumu Tazuma
- Department of General Internal Medicine Hiroshima University Hospital Hiroshima Japan
| |
Collapse
|
12
|
Vedrenne N, Sarrazy V, Battu S, Bordeau N, Richard L, Billet F, Coronas V, Desmoulière A. Neural Stem Cell Properties of an Astrocyte Subpopulation Sorted by Sedimentation Field-Flow Fractionation. Rejuvenation Res 2016; 19:362-372. [PMID: 26650259 DOI: 10.1089/rej.2015.1776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Astrocytes encompass a heterogeneous cell population. Using sedimentation field-flow fractionation (SdFFF) method, different, almost pure, astrocyte subpopulations were isolated. Cells were collected from cortex of newborn rats and sorted by SdFFF to obtain different fractions, which were subjected to protein analysis and characterized by immunocytofluorescence. The behavior of the cells was analyzed in vitro, under culture conditions used for neural stem cells. These culture conditions were also applied to cells derived from an adult cortical tissue after traumatic brain injury (TBI). Finally, the astrocytic neural stem-like cells were transplanted in damaged sciatic nerve. Protein analysis indicated a high expression of glial fibrillary acidic protein (GFAP) and vimentin in fraction F3-derived cells. These cells formed neurospheres when cultured with epidermal growth factor and large colonies in a collagen-containing semi-solid matrix. Neurospheres expressed GFAP and nestin and were able in addition to generate neurons expressing MAP2 and oligodendrocytes expressing Olig2. When transplanted in a damaged nerve, cells of F3-derived neurospheres colonized the damaged area. Finally, after TBI in adult rats, cells able to form neurospheres containing a subpopulation of astrocytes expressing vimentin were obtained. Using the SdFFF method, an astrocyte subpopulation presenting stem cell properties was isolated from a newborn rat cortex and from an injured adult rat cortex. The specific activation of this astrocyte subpopulation may provide a potential therapeutic approach to restore lost neuronal function in injured or diseased brain.
Collapse
Affiliation(s)
- Nicolas Vedrenne
- 1 EA 6309 "Myelin maintenance and peripheral neuropathies," University of Limoges , Limoges, France
| | - Vincent Sarrazy
- 1 EA 6309 "Myelin maintenance and peripheral neuropathies," University of Limoges , Limoges, France
| | - Serge Battu
- 2 EA 3842 "Cell homeostasis and pathologies," University of Limoges , Limoges, France
| | - Nelly Bordeau
- 1 EA 6309 "Myelin maintenance and peripheral neuropathies," University of Limoges , Limoges, France
| | - Laurence Richard
- 1 EA 6309 "Myelin maintenance and peripheral neuropathies," University of Limoges , Limoges, France .,3 Department of Neurology, CHU of Limoges , Limoges, France
| | - Fabrice Billet
- 1 EA 6309 "Myelin maintenance and peripheral neuropathies," University of Limoges , Limoges, France
| | - Valérie Coronas
- 4 CNRS ERL 7368, "Signalisation et transports ioniques membranaires," University of Poitiers , Poitiers, France
| | - Alexis Desmoulière
- 1 EA 6309 "Myelin maintenance and peripheral neuropathies," University of Limoges , Limoges, France
| |
Collapse
|
13
|
Darby IA, Zakuan N, Billet F, Desmoulière A. The myofibroblast, a key cell in normal and pathological tissue repair. Cell Mol Life Sci 2016; 73:1145-57. [PMID: 26681260 PMCID: PMC11108523 DOI: 10.1007/s00018-015-2110-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023]
Abstract
Myofibroblasts are characterized by their expression of α-smooth muscle actin, their enhanced contractility when compared to normal fibroblasts and their increased synthetic activity of extracellular matrix proteins. Myofibroblasts play an important role in normal tissue repair processes, particularly in the skin where they were first described. During normal tissue repair, they appear transiently and are then lost via apoptosis. However, the chronic presence and continued activity of myofibroblasts characterize many fibrotic pathologies, in the skin and internal organs including the liver, kidney and lung. More recently, it has become clear that myofibroblasts also play a role in many types of cancer as stromal or cancer-associated myofibroblast. The fact that myofibroblasts are now known to be key players in many pathologies makes understanding their functions, origin and the regulation of their differentiation important to enable them to be regulated in normal physiology and targeted in fibrosis, scarring and cancer.
Collapse
Affiliation(s)
- Ian A Darby
- School of Medical Sciences, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia.
| | - Noraina Zakuan
- School of Medical Sciences, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Fabrice Billet
- Department of Physiology, Faculty of Pharmacy, University of Limoges, 2 rue du Dr. Marcland, 87025, Limoges Cedex, France
- EA 6309 Myelin Maintenance and Peripheral Neuropathies, University of Limoges, 87000, Limoges, France
| | - Alexis Desmoulière
- Department of Physiology, Faculty of Pharmacy, University of Limoges, 2 rue du Dr. Marcland, 87025, Limoges Cedex, France.
- EA 6309 Myelin Maintenance and Peripheral Neuropathies, University of Limoges, 87000, Limoges, France.
| |
Collapse
|
14
|
An Omics Perspective on Molecular Biomarkers for Diagnosis, Prognosis, and Therapeutics of Cholangiocarcinoma. Int J Genomics 2015; 2015:179528. [PMID: 26421274 PMCID: PMC4572471 DOI: 10.1155/2015/179528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/09/2015] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive biliary tract malignancy arising from the epithelial bile duct. The lack of early diagnostic biomarkers as well as therapeutic measures results in severe outcomes and poor prognosis. Thus, effective early diagnostic, prognostic, and therapeutic biomarkers are required to improve the prognosis and prolong survival rates in CCA patients. Recent advancement in omics technologies combined with the integrative experimental and clinical validations has provided an insight into the underlying mechanism of CCA initiation and progression as well as clues towards novel biomarkers. This work highlights the discovery and validation of molecular markers in CCA identified through omics approaches. The possible roles of these molecules in various cellular pathways, which render CCA carcinogenesis and progression, will also be discussed. This paper can serve as a reference point for further investigations to yield deeper understanding in the complex feature of this disease, potentially leading to better approaches for diagnosis, prognosis, and therapeutics.
Collapse
|
15
|
Lepreux S, Desmoulière A. Human liver myofibroblasts during development and diseases with a focus on portal (myo)fibroblasts. Front Physiol 2015; 6:173. [PMID: 26157391 PMCID: PMC4477071 DOI: 10.3389/fphys.2015.00173] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/21/2015] [Indexed: 12/11/2022] Open
Abstract
Myofibroblasts are stromal cells mainly involved in tissue repair. These cells present contractile properties and play a major role in extracellular matrix deposition and remodeling. In liver, myofibroblasts are found in two critical situations. First, during fetal liver development, especially in portal tracts, myofibroblasts surround vessels and bile ducts during their maturation. After complete development of the liver, myofibroblasts disappear and are replaced in portal tracts by portal fibroblasts. Second, during liver injury, myofibroblasts re-appear principally deriving from the activation of local stromal cells such as portal fibroblasts and hepatic stellate cells or can sometimes emerge by an epithelial-mesenchymal transition process. After acute injury, myofibroblasts play also a major role during liver regeneration. While myofibroblastic precursor cells are well known, the spectrum of activation and the fate of myofibroblasts during disease evolution are not fully understood. Some data are in accordance with a possible deactivation, at least partial, or a disappearance by apoptosis. Despite these shadows, liver is definitively a pertinent model showing that myofibroblasts are pivotal cells for extracellular matrix control during morphogenesis, repair and fibrous scarring.
Collapse
Affiliation(s)
- Sébastien Lepreux
- Department of Pathology, University Hospital of Bordeaux Bordeaux, France
| | - Alexis Desmoulière
- Department of Physiology, Faculty of Pharmacy, University of Limoges Limoges, France
| |
Collapse
|
16
|
Honsawek S, Udomsinprasert W, Vejchapipat P, Chongsrisawat V, Phavichitr N, Poovorawan Y. Elevated serum periostin is associated with liver stiffness and clinical outcome in biliary atresia. Biomarkers 2015; 20:157-61. [PMID: 25980529 DOI: 10.3109/1354750x.2015.1045032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To analyze serum periostin and liver stiffness in postoperative biliary atresia (BA). METHODS A total of 60 BA patients and 14 controls were enrolled. Serum periostin levels were analyzed by ELISA. Liver stiffness measurement was determined by transient elastography. RESULTS Biliary atresia patients had significantly higher periostin and liver stiffness values than controls. Serum periostin levels were remarkably increased in BA patients with jaundice compared to those without jaundice. Moreover, serum periostin was correlated with liver stiffness. CONCLUSIONS Serum periostin was associated with liver stiffness in BA. Thus, serum periostin has potential as a parameter reflecting the severity in BA.
Collapse
|
17
|
Periostin in intrahepatic cholangiocarcinoma: pathobiological insights and clinical implications. Exp Mol Pathol 2014; 97:515-24. [PMID: 25446840 DOI: 10.1016/j.yexmp.2014.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/24/2014] [Indexed: 12/31/2022]
Abstract
Periostin is a modular glycoprotein frequently observed to be a major constituent of the extracellular milieu of mass-forming intrahepatic cholangiocarcinoma and other desmoplastic malignant tumors. In intrahepatic cholangiocarcinoma, as well as in desmoplastic pancreatic ductal adenocarcinoma, periostin is overexpressed and hypersecreted in large part, if not exclusively, by cancer-associated fibroblasts within the tumor stroma. Through its interaction with specific components of the extracellular tumor matrix, particularly collagen type I and tenascin-C, and with cell surface receptors, notably integrins leading to activation of the Akt and FAK signaling pathways, this TGF-β family-inducible matricellular protein appears to be functioning as a key extracellular matrix molecule regulating such critically important and diverse malignant tumor behaviors as tumor fibrogenesis and desmoplasia, invasive malignant cell growth, chemoresistance, and metastatic colonization. This review will discuss current evidence and basic molecular mechanisms implicating periostin as a mediator of intrahepatic cholangiocarcinoma invasive growth. In addition, its significance as a potential prognostic biomarker for intrahepatic cholangiocarcinoma patients, as well as future possibilities and challenges as a molecular target for cholangiocarcinoma therapy and/or prevention, will be critically evaluated.
Collapse
|
18
|
Padden J, Megger DA, Bracht T, Reis H, Ahrens M, Kohl M, Eisenacher M, Schlaak JF, Canbay AE, Weber F, Hoffmann AC, Kuhlmann K, Meyer HE, Baba HA, Sitek B. Identification of novel biomarker candidates for the immunohistochemical diagnosis of cholangiocellular carcinoma. Mol Cell Proteomics 2014; 13:2661-72. [PMID: 25034945 PMCID: PMC4188994 DOI: 10.1074/mcp.m113.034942] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was the identification of novel biomarker candidates for the diagnosis of cholangiocellular carcinoma (CCC) and its immunohistochemical differentiation from benign liver and bile duct cells. CCC is a primary cancer that arises from the epithelial cells of bile ducts and is characterized by high mortality rates due to its late clinical presentation and limited treatment options. Tumorous tissue and adjacent non-tumorous liver tissue from eight CCC patients were analyzed by means of two-dimensional differential in-gel electrophoresis and mass-spectrometry-based label-free proteomics. After data analysis and statistical evaluation of the proteins found to be differentially regulated between the two experimental groups (fold change ≥ 1.5; p value ≤ 0.05), 14 candidate proteins were chosen for determination of the cell-type-specific expression profile via immunohistochemistry in a cohort of 14 patients. This confirmed the significant up-regulation of serpin H1, 14-3-3 protein sigma, and stress-induced phosphoprotein 1 in tumorous cholangiocytes relative to normal hepatocytes and non-tumorous cholangiocytes, whereas some proteins were detectable specifically in hepatocytes. Because stress-induced phosphoprotein 1 exhibited both sensitivity and specificity of 100%, an immunohistochemical verification examining tissue sections of 60 CCC patients was performed. This resulted in a specificity of 98% and a sensitivity of 64%. We therefore conclude that this protein should be considered as a potential diagnostic biomarker for CCC in an immunohistochemical application, possibly in combination with other candidates from this study in the form of a biomarker panel. This could improve the differential diagnosis of CCC and benign bile duct diseases, as well as metastatic malignancies in the liver.
Collapse
Affiliation(s)
- Juliet Padden
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany;
| | - Dominik A Megger
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thilo Bracht
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Henning Reis
- ¶Institut für Pathologie, Universitätsklinikum Essen, Universität Duisburg-Essen, 45141 Essen, Germany
| | - Maike Ahrens
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Michael Kohl
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Martin Eisenacher
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Jörg F Schlaak
- ‖Klinik für Gastroenterologie und Hepatologie, Universitätsklinikum Essen, 45141 Essen, Universität Duisburg-Essen, 45141 Essen, Germany
| | - Ali E Canbay
- ‖Klinik für Gastroenterologie und Hepatologie, Universitätsklinikum Essen, 45141 Essen, Universität Duisburg-Essen, 45141 Essen, Germany
| | - Frank Weber
- **Klinik für Allgemeinchirurgie, Viszeral- und Transplantationschirurgie, Universitätsklinikum Essen, Universität Duisburg-Essen, 45141 Essen, Germany
| | - Andreas-Claudius Hoffmann
- ‡‡Innere Klinik (Tumorforschung), Westdeutsches Tumorzentrum, Universitätsklinikum Essen, Universität Duisburg-Essen, 45141 Essen, Germany
| | - Katja Kuhlmann
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Helmut E Meyer
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany; §§Leibniz Institute for Analytical Sciences - ISAS, 44139 Dortmund, Germany
| | - Hideo A Baba
- ¶Institut für Pathologie, Universitätsklinikum Essen, Universität Duisburg-Essen, 45141 Essen, Germany
| | - Barbara Sitek
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany;
| |
Collapse
|
19
|
Silsirivanit A, Sawanyawisuth K, Riggins GJ, Wongkham C. Cancer biomarker discovery for cholangiocarcinoma: the high-throughput approaches. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2014; 21:388-96. [PMID: 24616382 DOI: 10.1002/jhbp.68] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cholangiocarcinoma (CCA) is difficult to diagnose at an early stage and most tumors are detected at late stage where surgery or other therapy is ineffective. Many advanced techniques are applied to diagnose CCA; however, most are expensive and have varying degrees of accuracy. A less invasive and simpler procedure such as serum markers would be of substantial clinical benefit for diagnosis, monitoring, and predicting outcome for CCA patients. Recent advances in "Omics" technologies offer remarkable opportunities for establishment of biomarker-related to diseases. In this review, the potential biomarkers obtained from proteomics and glycomic studies are evaluated. Several protein markers were discovered from patient specimen, using two dimensional-differential gel electrophoresis couple with liquid chromatography tandem mass spectrometry (2D-DIGE/LC-MS-MS), matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS), surface enhanced laser desorption/ionization (SELDI)-TOF-MS and capillary electrophoresis (CE)-MS, etc. Newly reported CCA-associated glyco-biomarkers were identified using lectin-assisted, monoclonal antibody-assisted or specific-target strategies. The combination between carbohydrate binding-lectin and core protein-binding mAb significantly increased the values for detection of the glyco-biomarkers for CCA. Searching for specific and sensitive molecular markers to be used for population screening is worth being evaluated. This could lead to earlier diagnosis and improve outcome. Further investigation of those biomarker functions is also of value in order to better understand the tumor biology and use them as targets for future therapeutic agents.
Collapse
Affiliation(s)
- Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Road, Khon Kaen, 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | |
Collapse
|
20
|
Khongmanee A, Lirdprapamongkol K, Tit-oon P, Chokchaichamnankit D, Svasti J, Srisomsap C. Proteomic analysis reveals important role of 14-3-3σ in anoikis resistance of cholangiocarcinoma cells. Proteomics 2013; 13:3157-66. [DOI: 10.1002/pmic.201300219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/26/2013] [Accepted: 08/12/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Amnart Khongmanee
- Applied Biological Sciences Program; Chulabhorn Graduate Institute; Bangkok Thailand
| | | | - Phanthakarn Tit-oon
- Applied Biological Sciences Program; Chulabhorn Graduate Institute; Bangkok Thailand
| | | | - Jisnuson Svasti
- Applied Biological Sciences Program; Chulabhorn Graduate Institute; Bangkok Thailand
- Laboratory of Biochemistry; Chulabhorn Research Institute; Bangkok Thailand
| | | |
Collapse
|
21
|
Utispan K, Sonongbua J, Thuwajit P, Chau-In S, Pairojkul C, Wongkham S, Thuwajit C. Periostin activates integrin α5β1 through a PI3K/AKT‑dependent pathway in invasion of cholangiocarcinoma. Int J Oncol 2012; 41:1110-8. [PMID: 22735632 DOI: 10.3892/ijo.2012.1530] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/06/2012] [Indexed: 12/30/2022] Open
Abstract
Periostin (PN) is mainly produced from stromal fibroblasts in cholangiocarcinoma (CCA) and shows strong impact in cancer promotion. This work aimed to investigate the mechanism that PN uses to drive CCA invasion. It was found that ITGα5β1 and α6β4 showed high expression in non-tumorigenic biliary epithelial cells and in almost all CCA cell lines. PN had preferential binding to CCA cells via ITGα5β1 and blocking this receptor by either neutralizing antibody or siITGα5 could attenuate PN-induced invasion. After PN-ITGα5β1 binding, intracellular pAKT was upregulated whereas there was no change in pERK. Moreover, PN could not activate AKT in condition of treatment with a PI3K inhibitor. These data provide evidence that PN-activated invasion of CCA cells is through the ITGα5β1/PI3K/AKT pathway. Strategies aimed to inhibit this pathway may, thus, provide therapeutic benefits.
Collapse
Affiliation(s)
- Kusumawadee Utispan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | |
Collapse
|
22
|
Micallef L, Vedrenne N, Billet F, Coulomb B, Darby IA, Desmoulière A. The myofibroblast, multiple origins for major roles in normal and pathological tissue repair. FIBROGENESIS & TISSUE REPAIR 2012; 5:S5. [PMID: 23259712 PMCID: PMC3368789 DOI: 10.1186/1755-1536-5-s1-s5] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Myofibroblasts differentiate, invade and repair injured tissues by secreting and organizing the extracellular matrix and by developing contractile forces. When tissues are damaged, tissue homeostasis must be re-established, and repair mechanisms have to rapidly provide harmonious mechanical tissue organization, a process essentially supported by (myo)fibroblasts. Under physiological conditions, the secretory and contractile activities of myofibroblasts are terminated when the repair is complete (scar formation) but the functionality of the tissue is only rarely perfectly restored. At the end of the normal repair process, myofibroblasts disappear by apoptosis but in pathological situations, myofibroblasts likely remain leading to excessive scarring. Myofibroblasts originate from different precursor cells, the major contribution being from local recruitment of connective tissue fibroblasts. However, local mesenchymal stem cells, bone marrow-derived mesenchymal stem cells and cells derived from an epithelial-mesenchymal transition process, may represent alternative sources of myofibroblasts when local fibroblasts are not able to satisfy the requirement for these cells during repair. These diverse cell types probably contribute to the appearance of myofibroblast subpopulations which show specific biological properties and which are important to understand in order to develop new therapeutic strategies for treatment of fibrotic and scarring diseases.
Collapse
Affiliation(s)
- Ludovic Micallef
- Facultés de Médecine et de Pharmacie, Université de Limoges, EA 6309 "Maintenance Myélinique et Neuropathies Périphériques", FR 3503, Limoges F-87025, France
| | - Nicolas Vedrenne
- Facultés de Médecine et de Pharmacie, Université de Limoges, EA 6309 "Maintenance Myélinique et Neuropathies Périphériques", FR 3503, Limoges F-87025, France
| | - Fabrice Billet
- Facultés de Médecine et de Pharmacie, Université de Limoges, EA 6309 "Maintenance Myélinique et Neuropathies Périphériques", FR 3503, Limoges F-87025, France
| | - Bernard Coulomb
- Inserm U970, Réparation Artérielle, PARCC-HEGP, Université Paris Descartes, Paris, F-75015, France
| | - Ian A Darby
- Cancer and Tissue Repair Laboratory, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Alexis Desmoulière
- Facultés de Médecine et de Pharmacie, Université de Limoges, EA 6309 "Maintenance Myélinique et Neuropathies Périphériques", FR 3503, Limoges F-87025, France
| |
Collapse
|
23
|
Otranto M, Sarrazy V, Bonté F, Hinz B, Gabbiani G, Desmoulière A. The role of the myofibroblast in tumor stroma remodeling. Cell Adh Migr 2012; 6:203-19. [PMID: 22568985 PMCID: PMC3427235 DOI: 10.4161/cam.20377] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Since its first description in wound granulation tissue, the myofibroblast has been recognized to be a key actor in the epithelial-mesenchymal cross-talk that plays a crucial role in many physiological and pathological situations, such as regulation of prostate development, ventilation-perfusion in lung alveoli or organ fibrosis. The presence of myofibroblasts in the stroma reaction to epithelial tumors is well established and many data are accumulating which suggest that the stroma compartment is an active participant in tumor onset and/or evolution. In this review we summarize the evidence in favor of this concept, the main mechanisms that regulate myofibroblast differentiation and function, as well as the biophysical and biochemical factors possibly involved in epithelial-stroma interactions, using liver carcinoma as main model, in view of achieving a better understanding of tumor progression mechanisms and of tools directed toward stroma as eventual therapeutic target.
Collapse
Affiliation(s)
- Marcela Otranto
- Department of Physiology, Faculty of Pharmacy, University of Limoges, Limoges, France
| | | | | | | | | | | |
Collapse
|
24
|
Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J, De Wever O, Mareel M, Gabbiani G. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1340-55. [PMID: 22387320 DOI: 10.1016/j.ajpath.2012.02.004] [Citation(s) in RCA: 954] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2012] [Indexed: 02/07/2023]
Abstract
The discovery of the myofibroblast has opened new perspectives for the comprehension of the biological mechanisms involved in wound healing and fibrotic diseases. In recent years, many advances have been made in understanding important aspects of myofibroblast basic biological characteristics. This review summarizes such advances in several fields, such as the following: i) force production by the myofibroblast and mechanisms of connective tissue remodeling; ii) factors controlling the expression of α-smooth muscle actin, the most used marker of myofibroblastic phenotype and, more important, involved in force generation by the myofibroblast; and iii) factors affecting genesis of the myofibroblast and its differentiation from precursor cells, in particular epigenetic factors, such as DNA methylation, microRNAs, and histone modification. We also review the origin and the specific features of the myofibroblast in diverse fibrotic lesions, such as systemic sclerosis; kidney, liver, and lung fibrosis; and the stromal reaction to certain epithelial tumors. Finally, we summarize the emerging strategies for influencing myofibroblast behavior in vitro and in vivo, with the ultimate goal of an effective therapeutic approach for myofibroblast-dependent diseases.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|