1
|
Saha U, Kumari P, Ghosh A, Sinha A, Jena S, Kirti A, Gupta A, Choudhury A, Simnani FZ, Nandi A, Sahoo RN, Singh S, Mishra R, Kaushik NK, Singh D, Suar M, Verma SK. Detrimental consequences of micropolymers associated plasticizers on endocrinal disruption. Mater Today Bio 2024; 27:101139. [PMID: 39027679 PMCID: PMC11255117 DOI: 10.1016/j.mtbio.2024.101139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/20/2024] Open
Abstract
The prevalence of polymer usage in everyday activities has emerged as a detriment to both human life and the environment. A large number of studies describe severe impacts of micropolymers (MP) and nanopolymers (NP) on various organ systems, including the endocrine system. Additionally, plasticizers utilized as additives have been identified as endocrine-disrupting chemicals (EDCs). MP/NP, along with associated plasticizers, affect principal signalling pathways of endocrine glands such as the pituitary, thyroid, adrenal, and gonads, thereby disrupting hormone function and metabolic processes crucial for maintaining homeostasis, fertility, neural development, and fetal growth. This review delves into the sources, distribution, and effects of micropolymers, nanopolymers, and associated plasticizers acting as EDCs. Furthermore, it provides a detailed review of the mechanisms underlying endocrine disruption in relation to different types of MP/NP.
Collapse
Affiliation(s)
- Utsa Saha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Puja Kumari
- Department of Biotechnology, Vinoba Bhave University, Hazaribagh, Jharkhand, 825001, India
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 61137, Czech Republic
| | - Aishee Ghosh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Snehashmita Jena
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Abha Gupta
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | | | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Rudra Narayan Sahoo
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Shalini Singh
- Markham College of Commerce, Vinoba Bhave University, Hazaribagh, Jharkhand, 825001, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Ta. Waghodia, Vadodara, Gujarat, 391760, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
2
|
Kim JH, Moon N, Ji E, Moon HB. Effects of postnatal exposure to phthalate, bisphenol a, triclosan, parabens, and per- and poly-fluoroalkyl substances on maternal postpartum depression and infant neurodevelopment: a korean mother-infant pair cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96384-96399. [PMID: 37572253 DOI: 10.1007/s11356-023-29292-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) can promote infant neurodevelopmental impairment and maternal postpartum depression (PPD). However, the associations between lactation exposure to EDCs, maternal PPD, and infant neurodevelopment are unclear. Hence, we investigated these relationships in infants aged 36-42 months. We recruited 221 Korean mothers and analyzed 29 EDCs. The Edinburgh Postnatal Depression Scale (EPDS) was used to assess maternal PPD. Bayley scales of infant development; the Swanson, Nolan, and Pelham rating scale (SNAP); and the Child Behavior Checklist (CBCL) were used to assess neurodevelopment in infants exposed to the top 30% of EDC over three years. Multiple regression analyses were adjusted for maternal age, pre-pregnancy body mass index, education, income, employment, residence, and infant age and sex. The rates of infants with clinically abnormal diagnoses on neurologic developmental tests (Balyey, SNAP, and CBCL scales) ranged from 7.7 to 38.5% in this study, with the motor and hyperactivity/impulsivity areas scoring the highest among 65 boys and girls. Mono-2-ethylhexyl phthalate (MEHP) and mono-isononyl phthalate (MiNP) levels in breast milk significantly correlated with infant inattention and hyperactivity. Perfluorononanoic acid (PFNA) and perfluorooctyl sulfonate (PFOS) levels correlated significantly with motor development of BSID-III and total CBCL score which mean infant might have lower developmental status. EDC concentrations in breast milk were not associated with maternal PPD. Overall, lactational exposure to EDCs during the postpartum period can exert a negative effect on maternal PPD and infant neurodevelopment.
Collapse
Affiliation(s)
- Ju Hee Kim
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Korea.
| | - Nalae Moon
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Korea
| | - Eunsun Ji
- Department of Nursing, Konkuk University Global Campus, Chungju, 27478, Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
3
|
Kessaratikoon T, Theerathanagorn T, Crespy D, D'Elia V. Organocatalytic Polymers from Affordable and Readily Available Building Blocks for the Cycloaddition of CO 2 to Epoxides. J Org Chem 2023; 88:4894-4924. [PMID: 36692489 DOI: 10.1021/acs.joc.2c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The catalytic cycloaddition of CO2 to epoxides to afford cyclic carbonates as useful monomers, intermediates, solvents, and additives is a continuously growing field of investigation as a way to carry out the atom-economic conversion of CO2 to value-added products. Metal-free organocatalytic compounds are attractive systems among various catalysts for such transformations because they are inexpensive, nontoxic, and readily available. Herein, we highlight and discuss key advances in the development of polymer-based organocatalytic materials that match these requirements of affordability and availability by considering their synthetic routes, the monomers, and the supports employed. The discussion is organized according to the number (monofunctional versus bifunctional materials) and type of catalytically active moieties, including both halide-based and halide-free systems. Two general synthetic approaches are identified based on the postsynthetic functionalization of polymeric supports or the copolymerization of monomers bearing catalytically active moieties. After a review of the material syntheses and catalytic activities, the chemical and structural features affecting catalytic performance are discussed. Based on such analysis, some strategies for the future design of affordable and readily available polymer-based organocatalysts with enhanced catalytic activity under mild conditions are considered.
Collapse
Affiliation(s)
- Tanika Kessaratikoon
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Tharinee Theerathanagorn
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Valerio D'Elia
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| |
Collapse
|
4
|
Network Toxicology Guided Mechanism Study on the Association between Thyroid Function and Exposures to Polychlorinated Biphenyls Mixture. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2394398. [PMID: 36203481 PMCID: PMC9532094 DOI: 10.1155/2022/2394398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 08/03/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent and highly toxic pollutants, which can accumulate in organisms and produce toxic effects, especially damaging the function of thyroid hormones. So far, the molecular mechanism of PCBs mixture and their metabolites interfering with thyroid hormones has not been studied thoroughly except for individual compounds. In this study, PubMed, Web of Science, and STITCH databases were used to search PCBs and their corresponding target proteins. The intersection of PCBs and thyroid hormone dysfunction target proteins was obtained from GeneCards. The “compounds-targets-pathways” network was constructed by Cytoscape software. And KEGG and Go analyses were performed for key targets. Finally, molecular docking was used to verify the binding effect. Four major active components, five key targets, and 10 kernel pathways were successfully screened by constructing the network. Functional enrichment analysis showed that the interference was mediated by cancer, proteoglycans, PI3K-Akt, thyroid hormone, and FoxO signaling pathways. The molecular docking results showed that the binding energies were less than -5 kcal·mol-1. PCBs and their metabolites may act on the key targets of MAPK3, MAPK1, RXRA, PIK3R1, and TP53. The toxic effect of sulfated and methyl sulfone PCBs is greater. The method of screening targets based on the simultaneous action of multiple PCBs can provide a reference for other research. The targets were not found in previous metabolite toxicity studies. It also provides a bridge for the toxic effects and experimental research of PCBs and their metabolites in the future.
Collapse
|
5
|
Kowalik K, Sechman A. In vitro effects of polychlorinated biphenyls and their hydroxylated metabolites on the synthesis and metabolism of iodothyronines in the chicken (Gallus domesticus) thyroid gland. Gen Comp Endocrinol 2022; 318:113989. [PMID: 35151725 DOI: 10.1016/j.ygcen.2022.113989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
To assess the effect of polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) on thyroid hormone [TH: thyroxine (T4) and triiodothyronine (T3)] secretion, the concentrations of iodothyronine deiodinases (DIO1, DIO2, DIO3), and mRNA expression of genes involved in TH synthesis (TSHR, NIS, TPO, TG), metabolism (DIO1, DIO2, DIO3), and transport (OATP1C1, MCT8, MCT10, LAT1), chicken thyroid explants were incubated in medium supplemented with TSH (250 mU/ml), PCB118, PCB153, 4-OH-PCB107, and 3-OH-PCB153 (0.5 × 10-8 M), and TSH together with each PCB and OH-PCB. The results of the in vitro experiment revealed that, except for 4-OH-PCB107, all applied PCBs and OH-PCBs inhibited basal and TSH-stimulated T4 secretion. Moreover, they increased basal and reduced TSH-stimulated T3 secretion. PCBs and OH-PCBs decreased the TSH-stimulated TSHR expression. Following PCB and OH-PCB exposure, significant changes in mRNA expression of NIS, TPO, and TG were observed. PCBs and OH-PCBs affected DIO1 and DIO3 transcript levels and protein abundances of each DIO. Furthermore, PCB-dependent effects on OATP1C1, MCT8, and MCT10 mRNA expression were found. In conclusion, both PCB118 and PCB153 and their OH-PCBs affect TH synthesis and deiodination processes in the chicken thyroid gland and influence TH transport across the thyrocyte membrane. In addition, the effects of PCBs and OH-PCBs depended mainly on the type of PCB congener and the exposure time. These results indicate that not only parental PCBs but also OH-PCBs are hazardous for the thyroid gland and may disrupt its endocrine function. Further studies are necessary to explain a mechanism of PCB and OH-PCB action in the avian thyroid gland.
Collapse
Affiliation(s)
- Kinga Kowalik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland.
| | - Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| |
Collapse
|
6
|
Bozinovic G, Shea D, Feng Z, Hinton D, Sit T, Oleksiak MF. PAH-pollution effects on sensitive and resistant embryos: Integrating structure and function with gene expression. PLoS One 2021; 16:e0249432. [PMID: 33822796 PMCID: PMC8023486 DOI: 10.1371/journal.pone.0249432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/17/2021] [Indexed: 11/18/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most widespread natural and anthropogenic pollutants, and some PAHs are proven developmental toxicants. We chemically characterized clean and heavily polluted sites and exposed fish embryos to PAH polluted sediment extracts during four critical developmental stages. Embryos were collected from Fundulus heteroclitus populations inhabiting the clean and heavily polluted Superfund estuary. Embryos of parents from the clean sites are sensitive to PAH pollutants while those of parents from the heavily polluted site are resistant. Chemical analysis of embryos suggests PAH accumulation and pollution-induced toxicity among sensitive embryos during development that ultimately kills all sensitive embryos before hatching, while remarkably, the resistant embryos develop normally. The adverse effects on sensitive embryos are manifested as developmental delays, reduced heart rates, and severe heart, liver, and kidney morphological abnormalities. Gene expression analysis of early somitogenesis, heartbeat initiation, late organogenesis, and pre-hatching developmental stages reveals genes whose expression significantly differs between sensitive and resistant embryo populations and helps to explain mechanisms of sensitivity and resistance to polluted environments during vertebrate animal development.
Collapse
Affiliation(s)
- Goran Bozinovic
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- Boz Life Science Research and Teaching Institute, San Diego, California, United States of America
| | - Damian Shea
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, San Diego, California, United States of America
| | - David Hinton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Tim Sit
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Marjorie F. Oleksiak
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
7
|
Kikegawa M, Qin XY, Ito T, Nishikawa H, Nansai H, Sone H. Early Transcriptomic Changes upon Thalidomide Exposure Influence the Later Neuronal Development in Human Embryonic Stem Cell-Derived Spheres. Int J Mol Sci 2020; 21:ijms21155564. [PMID: 32756504 PMCID: PMC7432054 DOI: 10.3390/ijms21155564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 01/14/2023] Open
Abstract
Stress in early life has been linked with the development of late-life neurological disorders. Early developmental age is potentially sensitive to several environmental chemicals such as alcohol, drugs, food contaminants, or air pollutants. The recent advances using three-dimensional neural sphere cultures derived from pluripotent stem cells have provided insights into the etiology of neurological diseases and new therapeutic strategies for assessing chemical safety. In this study, we investigated the neurodevelopmental effects of exposure to thalidomide (TMD); 2,2′,4,4′-tetrabromodiphenyl ether; bisphenol A; and 4-hydroxy-2,2′,3,4′,5,5′,6-heptachlorobiphenyl using a human embryonic stem cell (hESC)-derived sphere model. We exposed each chemical to the spheres and conducted a combinational analysis of global gene expression profiling using microarray at the early stage and morphological examination of neural differentiation at the later stage to understand the molecular events underlying the development of hESC-derived spheres. Among the four chemicals, TMD exposure especially influenced the differentiation of spheres into neuronal cells. Transcriptomic analysis and functional annotation identified specific genes that are TMD-induced and associated with ERK and synaptic signaling pathways. Computational network analysis predicted that TMD induced the expression of DNA-binding protein inhibitor ID2, which plays an important role in neuronal development. These findings provide direct evidence that early transcriptomic changes during differentiation of hESCs upon exposure to TMD influence neuronal development in the later stages.
Collapse
Affiliation(s)
- Mami Kikegawa
- Laboratory of Kampo Pharmacology, Yokohama University of Pharmacy, Yokohama 245-0066, Japan;
| | - Xian-Yang Qin
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan;
| | - Tomohiro Ito
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan; (T.I.); (H.N.)
| | - Hiromi Nishikawa
- Department of Psychiatry and Behavioral Science, Kanazawa University School of Medicine, Kanazawa, Ishikawa 920-0942, Japan;
| | - Hiroko Nansai
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan; (T.I.); (H.N.)
| | - Hideko Sone
- Laboratory of Kampo Pharmacology, Yokohama University of Pharmacy, Yokohama 245-0066, Japan;
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan; (T.I.); (H.N.)
- Environmental Health and Prevention Research Unit, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
- Correspondence:
| |
Collapse
|
8
|
A Halogen Bonding Perspective on Iodothyronine Deiodinase Activity. Molecules 2020; 25:molecules25061328. [PMID: 32183289 PMCID: PMC7144113 DOI: 10.3390/molecules25061328] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/25/2022] Open
Abstract
Iodothyronine deiodinases (Dios) are involved in the regioselective removal of iodine from thyroid hormones (THs). Deiodination is essential to maintain TH homeostasis, and disruption can have detrimental effects. Halogen bonding (XB) to the selenium of the selenocysteine (Sec) residue in the Dio active site has been proposed to contribute to the mechanism for iodine removal. Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are known disruptors of various pathways of the endocrine system. Experimental evidence shows PBDEs and their hydroxylated metabolites (OH-BDEs) can inhibit Dio, while data regarding PCB inhibition are limited. These xenobiotics could inhibit Dio activity by competitively binding to the active site Sec through XB to prevent deiodination. XB interactions calculated using density functional theory (DFT) of THs, PBDEs, and PCBs to a methyl selenolate (MeSe−) arrange XB strengths in the order THs > PBDEs > PCBs in agreement with known XB trends. THs have the lowest energy C–X*-type unoccupied orbitals and overlap with the Se lp donor leads to high donor-acceptor energies and the greatest activation of the C–X bond. The higher energy C–Br* and C–Cl* orbitals similarly result in weaker donor-acceptor complexes and less activation of the C–X bond. Comparison of the I···Se interactions for the TH group suggest that a threshold XB strength may be required for dehalogenation. Only highly brominated PBDEs have binding energies in the same range as THs, suggesting that these compounds may inhibit Dio and undergo debromination. While these small models provide insight on the I···Se XB interaction itself, interactions with other active site residues are governed by regioselective preferences observed in Dios.
Collapse
|
9
|
Forte IM, Indovina P, Costa A, Iannuzzi CA, Costanzo L, Marfella A, Montagnaro S, Botti G, Bucci E, Giordano A. Blood screening for heavy metals and organic pollutants in cancer patients exposed to toxic waste in southern Italy: A pilot study. J Cell Physiol 2019; 235:5213-5222. [DOI: 10.1002/jcp.29399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/11/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Iris Maria Forte
- Cell Biology and Biotherapy UnitIstituto Nazionale Tumori‐IRCCS‐Fondazione G. Pascale, I‐80131Napoli Italy
| | - Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and TechnologyTemple UniversityPhiladelphia Pennsylvania PA 19122 USA
| | - Aurora Costa
- Cell Biology and Biotherapy UnitIstituto Nazionale Tumori‐IRCCS‐Fondazione G. Pascale, I‐80131Napoli Italy
| | | | - Luigi Costanzo
- ASL Napoli 2 Nord, Via Lupoli, FrattamaggioreNaples Italy
| | - Antonio Marfella
- SS Farmacologia clinica e Farmacoeconomia‐Istituto Nazionale Tumori‐IRCCS‐Fondazione G. Pascale, I‐80131Napoli Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal ProductionsUniversity of Naples “Federico II,”Napoli Italy
| | - Gerardo Botti
- Scientific DirectionIstituto Nazionale Tumori‐IRCCS‐Fondazione G. Pascale, I‐80131Napoli Italy
| | - Enrico Bucci
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and TechnologyTemple UniversityPhiladelphia Pennsylvania PA 19122 USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and TechnologyTemple UniversityPhiladelphia Pennsylvania PA 19122 USA
- Department of Medical BiotechnologiesUniversity of Siena Italy
| |
Collapse
|
10
|
Berghuis SA, Roze E. Prenatal exposure to PCBs and neurological and sexual/pubertal development from birth to adolescence. Curr Probl Pediatr Adolesc Health Care 2019; 49:133-159. [PMID: 31147261 DOI: 10.1016/j.cppeds.2019.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several chemical compounds are resistant to degradation and end up in the food chain. One group of these chemicals is polychlorinated biphenyls (PCBs) which are used as flame retardants and plasticizers. Although PCBs were banned several decades ago, PCBs are still found in environmental media, including in the body of humans. PCBs are transferred from mother to fetus via the placenta during pregnancy. Considering that the prenatal period is a sensitive period during which essential developmental processes take place, exposure to environmental chemicals might have considerable and permanent consequences for outcomes in later life. The aim of this review is to provide an update on the latest insights on the effects of prenatal exposure to PCBs on neurological, sexual and pubertal development in children. We give an overview of recent literature, and discuss it in the light of the findings in a unique Dutch birth cohort, with data on both neurological and pubertal development into adolescence. The findings in the studies included in this review, together with the findings in the Dutch cohort, demonstrate that prenatal exposure to PCBs can interfere with normal child development, not only during the perinatal period, but up to and including adolescence. Higher prenatal exposure to PCBs was found to be both negatively and positively associated with neurodevelopmental outcomes. Regarding pubertal development, higher prenatal PCB exposure was found to be associated with more advanced pubertal development, also in the Dutch cohort, whereas other studies also found delayed pubertal development. These findings raise concern regarding the effects of man-made chemical compounds on child development. They further contribute to the awareness of how environmental chemical compounds can interfere with child development and negatively influence healthy ageing.
Collapse
Affiliation(s)
- Sietske Annette Berghuis
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, 9713 GZ, Groningen, the Netherlands.
| | - Elise Roze
- Division of Neonatology, Department of Pediatrics, Wilhelmina Children's Hospital, University of Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
11
|
Colter BT, Garber HF, Fleming SM, Fowler JP, Harding GD, Hooven MK, Howes AA, Infante SK, Lang AL, MacDougall MC, Stegman M, Taylor KR, Curran CP. Ahr and Cyp1a2 genotypes both affect susceptibility to motor deficits following gestational and lactational exposure to polychlorinated biphenyls. Neurotoxicology 2019; 65:125-134. [PMID: 29409959 DOI: 10.1016/j.neuro.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 02/04/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants known to cause adverse health effects and linked to neurological deficits in both human and animal studies. Children born to exposed mothers are at highest risk of learning and memory and motor deficits. We developed a mouse model that mimics human variation in the aryl hydrocarbon receptor and cytochrome P450 1A2 (CYP1A2) to determine if genetic variation increases susceptibility to developmental PCB exposure. In our previous studies, we found that high-affinity AhrbCyp1a2(-/-) and poor-affinity AhrdCyp1a2(-/-) knockout mice were most susceptible to learning and memory deficits following developmental PCB exposure compared with AhrbCyp1a2(+/+) wild type mice (C57BL/6J strain). Our follow-up studies focused on motor deficits, because human studies have identified PCBs as a potential risk factor for Parkinson's disease. Dams were treated with an environmentally relevant PCB mixture at gestational day 10 and postnatal day 5. We used a motor battery that included tests of nigrostriatal function as well as cerebellar function, because PCBs deplete thyroid hormone, which is essential to normal cerebellar development. There was a significant effect of PCB treatment in the rotarod test with impaired performance in all three genotypes, but decreased motor learning as well in the two Cyp1a2(-/-) knockout lines. Interestingly, we found a main effect of genotype with corn oil-treated control Cyp1a2(-/-) mice performing significantly worse than Cyp1a2(+/+) wild type mice. In contrast, we found that PCB-treated high-affinity Ahrb mice were most susceptible to disruption of nigrostriatal function with the greatest deficits in AhrbCyp1a2(-/-) mice. We conclude that differences in AHR affinity combined with the absence of CYP1A2 protein affect susceptibility to motor deficits following developmental PCB exposure.
Collapse
Affiliation(s)
- Breann T Colter
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Helen Frances Garber
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Sheila M Fleming
- Department of Psychology and Neurology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jocelyn Phillips Fowler
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Gregory D Harding
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Molly Kromme Hooven
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Amy Ashworth Howes
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Smitha Krishnan Infante
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Anna L Lang
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | | | - Melinda Stegman
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Kelsey Rae Taylor
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Christine Perdan Curran
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA.
| |
Collapse
|
12
|
Effects of environmental pollutants on calcium release and uptake by rat cortical microsomes. Neurotoxicology 2018; 69:266-277. [DOI: 10.1016/j.neuro.2018.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
|
13
|
|
14
|
Stubleski J, Kukucka P, Salihovic S, Lind PM, Lind L, Kärrman A. A method for analysis of marker persistent organic pollutants in low-volume plasma and serum samples using 96-well plate solid phase extraction. J Chromatogr A 2018; 1546:18-27. [DOI: 10.1016/j.chroma.2018.02.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 11/28/2022]
|
15
|
Gutleb AC, Cambier S, Serchi T. Impact of Endocrine Disruptors on the Thyroid Hormone System. Horm Res Paediatr 2018; 86:271-278. [PMID: 26771660 DOI: 10.1159/000443501] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/14/2015] [Indexed: 11/19/2022] Open
Abstract
The thyroid hormone (TH) system plays a central role in central physiological processes of many species, including mammals and humans, ranging from growth and cell differentiation, energy metabolism, thermoregulation and phasing of hibernation or annual movements of migratory species, metamorphosis from larvae to adult forms, brain development, reproduction, or the cardiovascular system. Several chemicals are known to be TH-disrupting compounds (THDCs) and have been shown to interact with virtually all elements of TH homeostasis such as feedback mechanisms with the hypothalamus-pituitary axis, TH synthesis, TH storage and release from the thyroid gland, transport protein binding and TH distribution in tissues and organs, cellular TH uptake, intracellular TH metabolism, and TH receptor binding. Therefore, chemicals interfering with the TH homeostasis have the potential to interact with many of these important processes, and especially early-life stage exposure results in permanent alterations of tissue organization and homeostatic regulation of adaptive processes. This is not only of theoretical importance as the reported plasma concentrations of THDCs in human plasma fall well within the range of reported in vitro effect concentrations, and this is of even higher importance as the developing fetus and young children are in a sensitive developmental stage.
Collapse
Affiliation(s)
- Arno C Gutleb
- Environmental Health Group, Life Cycle Sustainability and Risk Assessment (LiSRA) Unit, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg
| | | | | |
Collapse
|
16
|
Fujiwara Y, Miyazaki W, Koibuchi N, Katoh T. The Effects of Low-Dose Bisphenol A and Bisphenol F on Neural Differentiation of a Fetal Brain-Derived Neural Progenitor Cell Line. Front Endocrinol (Lausanne) 2018; 9:24. [PMID: 29479338 PMCID: PMC5811521 DOI: 10.3389/fendo.2018.00024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/19/2018] [Indexed: 12/29/2022] Open
Abstract
Environmental chemicals are known to disrupt the endocrine system in humans and to have adverse effects on several organs including the developing brain. Recent studies indicate that exposure to environmental chemicals during gestation can interfere with neuronal differentiation, subsequently affecting normal brain development in newborns. Xenoestrogen, bisphenol A (BPA), which is widely used in plastic products, is one such chemical. Adverse effects of exposure to BPA during pre- and postnatal periods include the disruption of brain function. However, the effect of BPA on neural differentiation remains unclear. In this study, we explored the effects of BPA or bisphenol F (BPF), an alternative compound for BPA, on neural differentiation using ReNcell, a human fetus-derived neural progenitor cell line. Maintenance in growth factor-free medium initiated the differentiation of ReNcell to neuronal cells including neurons, astrocytes, and oligodendrocytes. We exposed the cells to BPA or BPF for 3 days from the period of initiation and performed real-time PCR for neural markers such as β III-tubulin and glial fibrillary acidic protein (GFAP), and Olig2. The β III-tubulin mRNA level decreased in response to BPA, but not BPF, exposure. We also observed that the number of β III-tubulin-positive cells in the BPA-exposed group was less than that of the control group. On the other hand, there were no changes in the MAP2 mRNA level. These results indicate that BPA disrupts neural differentiation in human-derived neural progenitor cells, potentially disrupting brain development.
Collapse
Affiliation(s)
- Yuki Fujiwara
- Department of Public Health, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Wataru Miyazaki
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, Maebashi, Japan
- *Correspondence: Noriyuki Koibuchi,
| | - Takahiko Katoh
- Department of Public Health, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
17
|
Vancamp P, Darras VM. Dissecting the role of regulators of thyroid hormone availability in early brain development: Merits and potential of the chicken embryo model. Mol Cell Endocrinol 2017; 459:71-78. [PMID: 28153797 DOI: 10.1016/j.mce.2017.01.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
Thyroid hormones (THs) are important mediators of vertebrate central nervous system (CNS) development, thereby regulating the expression of a wide variety of genes by binding to nuclear TH receptors. TH transporters and deiodinases are both needed to ensure appropriate intracellular TH availability, but the precise function of each of these regulators and their coaction during brain development is only partially understood. Rodent knockout models already provided some crucial insights, but their in utero development severely hampers research regarding the role of TH regulators during early embryonic stages. The establishment of novel gain- and loss-of-function techniques has boosted the position of externally developing non-mammalian vertebrates as research models in developmental endocrinology. Here, we elaborate on the chicken as a model organism to elucidate the function of TH regulators during embryonic CNS development. The fast-developing, relatively big and accessible embryo allows easy experimental manipulation, especially at early stages of brain development. Recent data on the characterisation and spatiotemporal expression pattern of different TH regulators in embryonic chicken CNS have provided the necessary background to dissect the function of each of them in more detail. We highlight some recent advances and important strategies to investigate the role of TH transporters and deiodinases in various CNS structures like the brain barriers, the cerebellum, the retina and the hypothalamus. Exploiting the advantages of this non-classical model can greatly contribute to complete our understanding of the regulation of TH bioavailability throughout embryonic CNS development.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium.
| |
Collapse
|
18
|
Klinefelter K, Hooven MK, Bates C, Colter BT, Dailey A, Infante SK, Kania-Korwel I, Lehmler HJ, López-Juárez A, Ludwig CP, Curran CP. Genetic differences in the aryl hydrocarbon receptor and CYP1A2 affect sensitivity to developmental polychlorinated biphenyl exposure in mice: relevance to studies of human neurological disorders. Mamm Genome 2017; 29:112-127. [PMID: 29197979 DOI: 10.1007/s00335-017-9728-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/28/2017] [Indexed: 01/28/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that remain a human health concern with newly discovered sources of contamination and ongoing bioaccumulation and biomagnification. Children exposed during early brain development are at highest risk of neurological deficits, but highly exposed adults reportedly have an increased risk of Parkinson's disease. Our previous studies found allelic differences in the aryl hydrocarbon receptor and cytochrome P450 1A2 (CYP1A2) affect sensitivity to developmental PCB exposure, resulting in cognitive deficits and motor dysfunction. High-affinity Ahr b Cyp1a2(-/-) mice were most sensitive compared with poor-affinity Ahr d Cyp1a2(-/-) and wild-type Ahr b Cyp1a2(+/+) mice. Our follow-up studies assessed biochemical, histological, and gene expression changes to identify the brain regions and pathways affected. We also measured PCB and metabolite levels in tissues to determine if genotype altered toxicokinetics. We found evidence of AHR-mediated toxicity with reduced thymus and spleen weights and significantly reduced thyroxine at P14 in PCB-exposed pups. In the brain, the greatest changes were seen in the cerebellum where a foliation defect was over-represented in Cyp1a2(-/-) mice. In contrast, we found no difference in tyrosine hydroxylase immunostaining in the striatum. Gene expression patterns varied across the three genotypes, but there was clear evidence of AHR activation. Distribution of parent PCB congeners also varied by genotype with strikingly high levels of PCB 77 in poor-affinity Ahr d Cyp1a2(-/-) while Ahr b Cyp1a2(+/+) mice effectively sequestered coplanar PCBs in the liver. Together, our data suggest that the AHR pathway plays a role in developmental PCB neurotoxicity, but we found little evidence that developmental exposure is a risk factor for Parkinson's disease.
Collapse
Affiliation(s)
- Kelsey Klinefelter
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Molly Kromme Hooven
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Chloe Bates
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Breann T Colter
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Alexandra Dailey
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Smitha Krishnan Infante
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Izabela Kania-Korwel
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Alejandro López-Juárez
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Clare Pickering Ludwig
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Christine Perdan Curran
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA.
| |
Collapse
|
19
|
Haijima A, Lesmana R, Shimokawa N, Amano I, Takatsuru Y, Koibuchi N. Differential neurotoxic effects of in utero and lactational exposure to hydroxylated polychlorinated biphenyl (OH-PCB 106) on spontaneous locomotor activity and motor coordination in young adult male mice. J Toxicol Sci 2017; 42:407-416. [PMID: 28717099 DOI: 10.2131/jts.42.407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We investigated whether in utero or lactational exposure to 4-hydroxy-2',3,3',4',5'-pentachlorobiphenyl (OH-PCB 106) affects spontaneous locomotor activity and motor coordination in young adult male mice. For in utero exposure, pregnant C57BL/6J mice received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from gestational day 10 to 18. For lactational exposure, the different groups of dams received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from postpartum day 3 to 13. At 6-7 weeks of age, the spontaneous locomotor activities of male offspring were evaluated for a 24-hr continuous session in a home cage and in an open field for 30-min. Motor coordination function on an accelerating rotarod was also measured. Mice exposed prenatally to OH-PCB 106 showed increased spontaneous locomotor activities during the dark phase in the home cage and during the first 10-min in the open field compared with control mice. Mice exposed lactationally to OH-PCB 106, however, did not show a time-dependent decrease in locomotor activity in the open field. Instead, their locomotor activity increased significantly during the second 10-min block. In addition, mice exposed lactationally to OH-PCB 106 displayed impairments in motor coordination in the rotarod test. These results suggest that perinatal exposure to OH-PCB 106 affects motor behaviors in young adult male mice. Depending on the period of exposure, OH-PCB 106 may have different effects on neurobehavioral development.
Collapse
Affiliation(s)
- Asahi Haijima
- Center for Medical Education, Gunma University Graduate School of Medicine.,Department of Integrative Physiology, Gunma University Graduate School of Medicine
| | - Ronny Lesmana
- Department of Integrative Physiology, Gunma University Graduate School of Medicine.,Department of Physiology, Universitas Padjadjaran, Indonesia
| | - Noriaki Shimokawa
- Department of Integrative Physiology, Gunma University Graduate School of Medicine.,Department of Nutrition, Takasaki University of Health and Welfare
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine
| | - Yusuke Takatsuru
- Department of Integrative Physiology, Gunma University Graduate School of Medicine
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine
| |
Collapse
|
20
|
Fu D, Bridle A, Leef M, Gagnon MM, Hassell KL, Nowak BF. Using a multi-biomarker approach to assess the effects of pollution on sand flathead (Platycephalus bassensis) from Port Phillip Bay, Victoria, Australia. MARINE POLLUTION BULLETIN 2017; 119:211-219. [PMID: 28392090 DOI: 10.1016/j.marpolbul.2017.03.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 03/05/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Hepatic gene expression and liver histology were examined in sand flathead (Platycephalus bassensis) from six locations in Port Phillip Bay, Victoria, Australia. Four sets of genes including thyroid-related genes (D1, D2, TTR, TRα and TRβ), metal metabolism-related genes (MT, MTF1, TF, Ferritin and FPN1), apoptosis-related genes (Diablo/SMAC1, Diablo/SMAC2 and CYP1A) and an endoplasmic reticulum stress biomarker gene (GRP78) were examined in female flathead using qRT-PCR. TRβ and Diablo/SMAC1 gene expression was significantly up-regulated in fish from all polluted sites compared to those from a reference site. The transcripts of TRα and FPN1 were significantly higher in flathead from Corio Bay, while the hepatic mRNA of TTR and GRP78 were significantly lower in those fish. Positive correlations were observed between Diablo/SMAC1 and CYP1A, D2 and TRβ, TRα and TRβ. This study demonstrates that application of pathway-based biomarker genes and histopathology can provide comprehensive information on the impact of environmental pollutants on fish.
Collapse
Affiliation(s)
- Dingkun Fu
- Institute for Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia
| | - Andrew Bridle
- Institute for Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia
| | - Melanie Leef
- Institute for Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia
| | - Marthe Monique Gagnon
- Department of Environment & Agriculture, Curtin University, Bentley 6102, Western Australia, Australia
| | - Kathryn L Hassell
- Centre for Aquatic Pollution Identification and Management (CAPIM), The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Barbara F Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia.
| |
Collapse
|
21
|
Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism. Int J Genomics 2017; 2017:7526592. [PMID: 28567415 PMCID: PMC5439185 DOI: 10.1155/2017/7526592] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/02/2017] [Indexed: 01/07/2023] Open
Abstract
The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD) hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates), persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment.
Collapse
|
22
|
Manibusan MK, Touart LW. A comprehensive review of regulatory test methods for endocrine adverse health effects. Crit Rev Toxicol 2017; 47:433-481. [PMID: 28617201 DOI: 10.1080/10408444.2016.1272095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Development of new endocrine disruption-relevant test methods has been the subject of intensive research efforts for the past several decades, prompted in part by mandates in the 1996 Food Quality Protection Act (FQPA). While scientific understanding and test methods have advanced, questions remain on whether current scientific methods are capable of adequately addressing the complexities of the endocrine system for regulatory health and ecological risk assessments. The specific objective of this article is to perform a comprehensive, detailed evaluation of the adequacy of current test methods to inform regulatory risk assessments of whether a substance has the potential to perturb endocrine-related pathways resulting in human adverse effects. To that end, approximately 42 existing test guidelines (TGs) were considered in the evaluation of coverage for endocrine-related adverse effects. In addition to evaluations of whether test methods are adequate to capture endocrine-related effects, considerations of further enhancements to current test methods, along with the need to develop novel test methods to address existing test method gaps are described. From this specific evaluation, up to 35 test methods are capable of informing whether a chemical substance perturbs known endocrine related biological pathways. Based on these findings, it can be concluded that current validated test methods are adequate to discern substances that may perturb the endocrine system, resulting in an adverse health effect. Together, these test methods predominantly form the core data requirements of a typical food-use pesticide registration submission. It is recognized, however, that the current state of science is rapidly advancing and there is a need to update current test methods to include added enhancements to ensure continued coverage and public health and environmental protection.
Collapse
Affiliation(s)
| | - L W Touart
- b Equiparent Consulting , Woodbridge , VA , USA
| |
Collapse
|
23
|
Yao X, Chen X, Zhang Y, Li Y, Wang Y, Zheng Z, Qin Z, Zhang Q. Optimization of the T3-induced Xenopus metamorphosis assay for detecting thyroid hormone signaling disruption of chemicals. J Environ Sci (China) 2017; 52:314-324. [PMID: 28254053 DOI: 10.1016/j.jes.2016.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/14/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
T3-induced Xenopus metamorphosis is an ideal model for detecting thyroid hormone (TH) signaling disruption of chemicals. To optimize the T3-induced Xenopus assay and improve its sensitivity and reproducibility, we intend to develop quantitatively morphological endpoints and choose appropriate concentrations and exposure durations for T3 induction. Xenopus laevis at stage 52 were exposed to series of concentrations of T3 (0.31-2.5nmol/L) for 6days. By comparing morphological changes induced by T3, we propose head area, mouth width, unilateral brain width/brain length, and hindlimb length/snout-vent length as quantitative parameters for characterizing T3-induced morphological changes, with body weight as a parameter for indicating integrated changes. By analyzing time-response curves, we found that following 4-day exposure, T3-induced grossly morphological changes displayed linear concentration-response curves, with moderate morphological changes resulting from 1.25nmol/L T3 exposure. When using grossly morphological endpoints to detect TH signaling disruption, we propose 4days as exposure duration of T3, with concentrations close to 1.25nmol/L as induction concentrations. However, it is appropriate to examine morphological and molecular changes of the intestine on day 2 due to their early response to T3. The quantitative endpoints and T3 induction concentrations and durations we determined would improve the sensitivity and the reproducibility of the T3-induced Xenopus metamorphosis assay.
Collapse
Affiliation(s)
- Xiaofang Yao
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiaoying Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinfeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zongming Zheng
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qingdong Zhang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
24
|
Soechitram SD, Berghuis SA, Visser TJ, Sauer PJJ. Polychlorinated biphenyl exposure and deiodinase activity in young infants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1117-1124. [PMID: 27710904 DOI: 10.1016/j.scitotenv.2016.09.098] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/22/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Several studies have shown effects of polychlorinated biphenyls (PCBs) on serum thyroid hormone levels in pregnant woman and their infants, while other studies did not find such effects. How PCBs might affect thyroid hormone metabolism, is still unclear. Potential mechanisms are direct influence on the thyroid gland, binding to thyroid binding proteins, increased excretion or metabolism of thyroid hormones by deiodinases or sulfatases. It is also not well known whether the effect on thyroid hormone levels is caused by PCBs themselves, or by their hydroxylated metabolites (OH-PCBs). OBJECTIVE To determine the effects of perinatal exposure to PCBs and OH-PCBs on thyroid hormone levels in cord blood and in serum of newborn infants. METHODS In a Dutch cohort of 100 mother-infant pairs, exposed to background PCB levels, correlations were assessed between 10 PCBs and 6 OH-PCBs in maternal blood during pregnancy and serum thyroxine (T4), T4 sulfate (T4S), triiodothyronine (T3), reverse T3 (rT3), thyroid-stimulating hormone (TSH) and thyroxine-binding globulin (TBG) levels in cord blood and in serum of three- and 18-month-old infants. We corrected for age of the mother, gestational age, gender and type of feeding. RESULTS After correction, prenatal levels of three of 10 measured PCBs showed a positive correlation with cord serum T3, and four PCBs showed a negative correlation with cord serum rT3. After correction, two PCBs and the sum of the 10 measured PCBs were positively correlated with the cord serum T3/rT3 ratio, an indicator of deiodinase 3 activity. No correlations were found between PCBs and T4, TSH and TBG in cord blood. 4-OH-PCB-107 was correlated with T4 at 3months and T4, T4S and T3 at 18months. CONCLUSION Our results suggest that PCBs have a negative effect on deiodinase type 3 activity, as reflected by a positive correlation with the T3/rT3 ratio. We identified a potential mechanism by which PCBs may affect thyroid hormone metabolism during human development.
Collapse
Affiliation(s)
- Shalini D Soechitram
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sietske A Berghuis
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Theo J Visser
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Pieter J J Sauer
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
25
|
Korcz W, Struciński P, Góralczyk K, Hernik A, Łyczewska M, Matuszak M, Czaja K, Minorczyk M, Ludwicki JK. Levels of polybrominated diphenyl ethers in house dust in Central Poland. INDOOR AIR 2017; 27:128-135. [PMID: 26895693 DOI: 10.1111/ina.12293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/15/2016] [Indexed: 05/21/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in numerous products, from which they are emitted to the environment, including house dust. House dust is a source of human exposure to these compounds by ingestion. The aim of this article was to determine the levels of selected PBDEs in the house dust and indicate their potential sources of origin. PBDE congeners: BDE-47, BDE-99, BDE-153 and BDE-209, were analyzed in 129 samples. The geometric mean levels (and 95% CIs) of the aforementioned congeners amounted to 3.8 (3.1-4.7) ng/g, 4.5 (3.5-5.6) ng/g, 2.2 (2.1-2.4) ng/g and 345 (269-442) ng/g respectively. BDE-209 was the dominant congener in the majority of tested samples. We found a statistically significant correlation between the concentrations of BDE-47 and the computer operating time per day (rs - 0.18) and the living area (rs - 0.20). Statistically significant higher levels of BDE-99 were found in homes where the floor was not replaced during the last 2 years.
Collapse
Affiliation(s)
- W Korcz
- Department of Toxicology and Risk Assessment, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - P Struciński
- Department of Toxicology and Risk Assessment, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - K Góralczyk
- Department of Toxicology and Risk Assessment, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - A Hernik
- Department of Toxicology and Risk Assessment, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - M Łyczewska
- Department of Toxicology and Risk Assessment, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - M Matuszak
- Department of Toxicology and Risk Assessment, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - K Czaja
- Department of Toxicology and Risk Assessment, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - M Minorczyk
- Department of Toxicology and Risk Assessment, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - J K Ludwicki
- Department of Toxicology and Risk Assessment, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| |
Collapse
|
26
|
Zendedel A, Kashani IR, Azimzadeh M, Pasbakhsh P, Omidi N, Golestani A, Beyer C, Clarner T. Regulatory effect of triiodothyronine on brain myelination and astrogliosis after cuprizone-induced demyelination in mice. Metab Brain Dis 2016; 31:425-33. [PMID: 26725831 DOI: 10.1007/s11011-015-9781-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/14/2015] [Indexed: 02/02/2023]
Abstract
Chronic demyelination and plaque formation in multiple sclerosis is accompanied by persisting astrogliosis, negatively influencing central nervous system recovery and remyelination. Triiodothyronin (T3) is thought to enhance remyelination in the adult brain by the induction of oligodendrocyte maturation. We investigated additional astrocyte-mediated mechanisms by which T3 might promote remyelination in chronically demyelinated lesions using the cuprizone mouse model. C57BL/6 mice were fed cuprizone for 12 weeks to induce lesions with an impaired remyelination capacity. While the expression of oligodenrocyte progenitor markers, i.e., platelet derived growth factor-α receptor was not affected by T3 administration, myelination status, myelin protein expression as well as total and adult oligodendrocyte numbers were markedly increased compared to cuprizone treated controls. In addition to these effects on oligodendrocyte numbers and function, astrogliosis but not microgliosis was ameliorated by T3 administration. Intermediate filament proteins vimentin and nestin as well as the extracellular matrix component tenascin C were significantly reduced after T3 exposure, indicating additional effects of T3 on astrocytes and astrogliosis. Our data clearly indicate that T3 promotes remyelination in chronic lesions by both enhancing oligodendrocyte maturation and attenuating astrogliosis.
Collapse
Affiliation(s)
- Adib Zendedel
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
- Department of Anatomical Sciences, Faculty of Medicine, Gilan University of Medical Sciences, Rasht, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Azimzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parichehr Pasbakhsh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Omidi
- Department of Surgery, Ziaian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Tim Clarner
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| |
Collapse
|
27
|
Flahr LM, Michel NL, Zahara ARD, Jones PD, Morrissey CA. Developmental Exposure to Aroclor 1254 Alters Migratory Behavior in Juvenile European Starlings (Sturnus vulgaris). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6274-6283. [PMID: 25893686 DOI: 10.1021/acs.est.5b01185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Birds exposed to endocrine disrupting chemicals during development could be susceptible to neurological and other physiological changes affecting migratory behaviors. We investigated the effects of ecologically relevant levels of Aroclor 1254, a polychlorinated biphenyl (PCB) mixture, on moult, fattening, migratory activity, and orientation in juvenile European starlings (Sturnus vulgaris). Birds were orally administered 0 (control), 0.35 (low), 0.70 (intermediate), or 1.05 (high) μg Aroclor 1254/g-body weight by gavage from 1 through 18 days posthatch and later exposed in captivity to a photoperiod shift simulating an autumn migration. Migratory activity and orientation were examined using Emlen funnel trials. Across treatments, we found significant increases in mass, fat, and moulting and decreasing plasma thyroid hormones over time. We observed a significant increase in activity as photoperiod was shifted from 13L:11D (light:dark) to 12L:12D, demonstrating that migratory condition was induced in captivity. At 12L:12D, control birds oriented to 155.95° (South-Southeast), while high-dosed birds did not. High-dosed birds showed a delayed orientation to 197.48° (South-Southwest) under 10L:14D, concomitant with apparent delays in moult. These findings demonstrate how subtle contaminant-induced alterations during development could lead to longer-scale effects, including changes in migratory activity and orientation, which could potentially result in deleterious effects on fitness and survival.
Collapse
Affiliation(s)
- Leanne M Flahr
- †Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5B3
- ‡Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5B3
| | - Nicole L Michel
- §School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5C8
| | - Alexander R D Zahara
- ∥Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E2
| | - Paul D Jones
- ‡Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5B3
- §School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5C8
| | - Christy A Morrissey
- ‡Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5B3
- ∥Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E2
| |
Collapse
|
28
|
Association between Several Persistent Organic Pollutants and Thyroid Hormone Levels in Cord Blood Serum and Bloodspot of the Newborn Infants of Korea. PLoS One 2015; 10:e0125213. [PMID: 25965908 PMCID: PMC4429016 DOI: 10.1371/journal.pone.0125213] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 03/23/2015] [Indexed: 11/19/2022] Open
Abstract
Current knowledge on adverse endocrine disruption effects of persistent organic pollutants (POPs) among newborn infants is limited and often controversial. To investigate the associations between prenatal exposure to major POPs and thyroid hormone levels among newborn infants, both cord serum or maternal serum concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs) were compared with five thyroid hormones in cord serum of newborn infants as well as TSH in bloodspot collected at 2 day after birth (n=104). Since cord serum thyroid hormones could be affected by those of mothers, thyroid hormone concentrations of the matching mothers at delivery were adjusted. In cord serum, BDE-47, -99, and Σchlordane (CHD) showed significant positive associations with cord or bloodspot TSH. At the same time, p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and hexachlorbenzene (HCB) showed negative associations with total T3 and total T4 in cord serum, respectively. Maternal exposure to β-hexachlorhexane (β-HCH), ΣCHD, ΣDDT, or p,p'-DDE were also associated with neonatal thyroid hormones. Although the sample size is small and the thyroid hormone levels of the subjects were within the reference range, our observation supports thyroid disrupting potential of several POPs among newborn infants, at the levels occurring in the general population. Considering the importance of thyroid hormones during gestation and early life stages, health implication of thyroid hormone effects by low level POPs exposure deserves further follow up investigations.
Collapse
|
29
|
Grimm FA, Hu D, Kania-Korwel I, Lehmler HJ, Ludewig G, Hornbuckle KC, Duffel MW, Bergman A, Robertson LW. Metabolism and metabolites of polychlorinated biphenyls. Crit Rev Toxicol 2015; 45:245-72. [PMID: 25629923 PMCID: PMC4383295 DOI: 10.3109/10408444.2014.999365] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/11/2014] [Indexed: 11/13/2022]
Abstract
Abstract The metabolism of polychlorinated biphenyls (PCBs) is complex and has an impact on toxicity, and thereby on the assessment of PCB risks. A large number of reactive and stable metabolites are formed in the processes of biotransformation in biota in general, and in humans in particular. The aim of this document is to provide an overview of PCB metabolism, and to identify the metabolites of concern and their occurrence. Emphasis is given to mammalian metabolism of PCBs and their hydroxyl, methylsulfonyl, and sulfated metabolites, especially those that persist in human blood. Potential intracellular targets and health risks are also discussed.
Collapse
Affiliation(s)
- FA Grimm
- Interdisciplinary Graduate Program in Human Toxicology, Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa
| | - D Hu
- Department of Civil and Environmental Engineering, University of Iowa
| | - I Kania-Korwel
- Department of Occupational & Environmental Health, University of Iowa
| | - HJ Lehmler
- Interdisciplinary Graduate Program in Human Toxicology, Department of Occupational & Environmental Health, University of Iowa
| | - G Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, Department of Occupational & Environmental Health, University of Iowa
| | - KC Hornbuckle
- Interdisciplinary Graduate Program in Human Toxicology, Department of Civil and Environmental Engineering, University of Iowa
| | - MW Duffel
- Interdisciplinary Graduate Program in Human Toxicology, Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa
| | - A Bergman
- Swedish Toxicology Sciences Research Center (SWETOX), Forskargatan 20, SE-151 36 Södertälje, SWEDEN
| | - LW Robertson
- Interdisciplinary Graduate Program in Human Toxicology, Department of Occupational & Environmental Health, University of Iowa
| |
Collapse
|
30
|
Abstract
Industrial chemical contaminants have a variable impact on the hypothalamic-pituitary-thyroid axis, this depending both on their class and on confounding factors. Today, mounting evidence is pointing to the role of environmental factors, and specifically EDCs, in the current distressing upsurge in the incidence of thyroid disease. The unease is warranted. These substances, which are nowadays rife in our environments (including in foodstuffs), have been shown to interfere with thyroid hormone action, biosynthesis, and metabolism, resulting in disruption of tissue homeostasis and/or thyroid function. Importantly, based on the concept of the "nonmonotonic dose-response curve", the relationship between dose and effect has often been found to be nonlinear. Thus, small doses can induce unpredictable, adverse effects, one case being polychlorinated biphenyls (PCBs), of which congener(s) may centrally inhibit the hypothalamic-pituitary-thyroid axis, or dissociate thyroid receptor and selectively affect thyroid hormone signaling and action. This means that PCBs can act as agonists or antagonists at the receptor level, underlining the complexity of the interaction. This review highlights the multifold activity of chemicals demonstrated to cause thyroid disruption. It also represents a call to action among clinicians to undertake systematic monitoring of thyroid function and registering of the classes of EDs and additionally urges broader scientific collaborations to clarify these chemicals' molecular mechanisms of action, substances whose prevalence in our environments is disrupting not only the thyroid but all life on earth.
Collapse
Affiliation(s)
- Leonidas H Duntas
- Unit of Endocrinology, Metabolism and Diabetes, Evgenidion Hospital, University of Athens, Papadiamantopoulou 20, 11520, Athens, Greece,
| |
Collapse
|
31
|
Developmental neurotoxicity of persistent organic pollutants: an update on childhood outcome. Arch Toxicol 2015; 89:687-709. [DOI: 10.1007/s00204-015-1463-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/08/2015] [Indexed: 12/28/2022]
|
32
|
Tompa A, Jakab M, Biró A, Major J. [Genetic and immune-toxicologic studies on abnormal thyroid functions in hospital employees exposed to cytostatic drugs]. Orv Hetil 2015; 156:60-6. [PMID: 25563683 DOI: 10.1556/oh.2015.30064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Environmental exposure to harmful chemicals may produce severe consequences. AIM The aim of the authors was to perform geno- and immune-toxicological monitoring in female employees occupationally exposed to cytostatic agents in hospitals and compare the findings to those obtained from controls. METHOD Altogether 642 women working in hospital who were occupationally exposed to cytostatic drugs and 262 control women participated in the study. Frequency of chromosome aberrations, immune phenotype and activation of lymphocytes, and the production of reactive oxygen-species in neutrophil granulocytes were determined. RESULTS Markedly higher number (n=39) of thyroid alterations was observed among exposed subjects as compared to controls (n=3). In persons with abnormal thyroid functions, the frequency of chromosome aberrations (3.69%) was significantly higher (3.69%) than in exposed subjects without thyroid alterations (2.43%) and in controls (1.70% and 1.60% in control subjects with and without thyroid alterations, respectively). Significantly increased ratio of helper T lymphocytes and decreased ratio of cytotoxic T cells and transferrin-receptor (CD71) expressing B cells were observed in exposed subjects having abnormal thyroid functions as compared to controls. In addition, the ratio of B cells, CD71 expressing T cells and production of reactive oxygen-intermediates was significantly decreased in exposed subjects with thyroid alterations in comparison to exposed subjects without thyroid alterations. CONCLUSIONS The results indicate increased geno- and immune-toxic effects among exposed subjects having thyroid alterations. Further data are needed to clearly establish the underlying pathophysiological mechanism of this finding.
Collapse
Affiliation(s)
- Anna Tompa
- Országos Kémiai Biztonsági Intézet Citogenetikai és Immunológiai Csoport Budapest Semmelweis Egyetem, Általános Orvostudományi Kar Népegészségtani Intézet Budapest Nagyvárad tér 4. 1089
| | - Mátyás Jakab
- Országos Kémiai Biztonsági Intézet Citogenetikai és Immunológiai Csoport Budapest
| | - Anna Biró
- Országos Kémiai Biztonsági Intézet Citogenetikai és Immunológiai Csoport Budapest
| | - Jenő Major
- Országos Kémiai Biztonsági Intézet Citogenetikai és Immunológiai Csoport Budapest
| |
Collapse
|
33
|
Xu L, Huo X, Zhang Y, Li W, Zhang J, Xu X. Polybrominated diphenyl ethers in human placenta associated with neonatal physiological development at a typical e-waste recycling area in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 196:414-22. [PMID: 25468211 DOI: 10.1016/j.envpol.2014.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/24/2014] [Accepted: 11/08/2014] [Indexed: 02/05/2023]
Abstract
Our aim of this study was to characterize the exposure pattern of polybrominated diphenyl ethers(PBDEs) in human placenta and assess their potential effects on neonates. Placenta samples were obtained from a typical e-waste area in Guiyu and a reference area in Haojiang, China. The median ΣPBDE concentration was 32.25 ng/g lipid weight (lw) in placenta samples from Guiyu, and 5.13 ng/g lw from Haojiang. BDE-209 predominated in placenta samples, followed by BDE-28, -47, -99 -153, -183. Residence in Guiyu contributed the most to elevated PDBE levels. Neonatal physiological indices, including bodymass index (BMI), Apgar 1 score and head circumference, were reduced in Guiyu group. No significant difference was found in neonatal weight between the two groups, but neonatal body length in Guiyu was increased. Our data suggest prenatal exposure to PBDEs is high at the e-waste recycling area, and may lead to adverse physiological development in the fetus.
Collapse
Affiliation(s)
- Long Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, China
| | | | | | | | | | | |
Collapse
|
34
|
Impact of endocrine-disrupting chemicals on neural development and the onset of neurological disorders. Pharmacol Rep 2014; 65:1632-9. [PMID: 24553011 DOI: 10.1016/s1734-1140(13)71524-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/25/2013] [Indexed: 10/25/2022]
Abstract
Even though high doses of organic pollutants are toxic, relatively low concentrations have been reported to cause long-term alterations in functioning of individual organisms, populations and even next generations. Among these pollutants are dioxins, polychlorinated biphenyls, pesticides, brominated flame retardants, plasticizers (bisphenol A, nonylphenol, and phthalates) as well as personal care products and drugs. In addition to toxic effects, they are able to interfere with hormone receptors, hormone synthesis or hormone conversion. Because these chemicals alter hormone-dependent processes and disrupt functioning of the endocrine glands, they have been classified as endocrine-disrupting chemicals (EDCs). Because certain EDCs are able to alter neural transmission and the formation of neural networks, the term neural-disrupting chemicals has been introduced, thus implicating EDCs in the etiology of neurological disorders. Recently, public concern has been focused on the effects of EDCs on brain function, concomitantly with an increase in neuropsychiatric disorders, including autism, attention deficit and hyperactivity disorder as well as learning disabilities and aggressiveness. Several lines of evidence suggest that exposure to EDCs is associated with depression and could result in neural degeneration. EDCs act via several classes of receptors with the best documented mechanisms being reported for nuclear steroid and xenobiotic receptors. Low doses of EDCs have been postulated to cause incomplete methylation of specific gene regions in the young brain and to impair neural development and brain functions across generations. Efforts are needed to develop systematic epidemiological studies and to investigate the mechanisms of action of EDCs in order to fully understand their effects on wildlife and humans.
Collapse
|
35
|
Lasoń W, Budziszewska B, Basta-Kaim A, Kubera M, Maes M. New trends in the neurobiology and pharmacology of affective disorders. Pharmacol Rep 2014; 65:1441-50. [PMID: 24552991 DOI: 10.1016/s1734-1140(13)71504-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 12/11/2013] [Indexed: 11/19/2022]
Abstract
Although depression is a common disorder that is often resistant to pharmacotherapy, its pathophysiology has remained elusive. Since the early 1950s, when the first antidepressants were introduced, i.e., the non-selective MAO inhibitors and tricyclic drugs, a number of hypotheses describing ethiopathogenesis of depression and antidepressant drug action have been formulated. The Institute of Pharmacology, the Polish Academy of Sciences has performed experimental and clinical research focused on the pathophysiology of depression and the mechanisms of action of antidepressant drugs for over 40 years. Our results from this period have significantly contributed to understanding the complex mechanisms of antidepressant drug actions and new pathways that underpin the pathophysiology of depression. Most of these theories are based on the finding that the chronic administration of antidepressants leads to adaptive changes in pre- and post-synaptic monoaminergic and glutamatergic neurotransmission as well as to alterations in gene transcription and immune-inflammatory and neurotrophic factors, resulting in neuroplastic changes in the brain. Taking into account the functional interdependence of the neuronal, hormonal and immunologic systems, we propose neurodevelopmental and neuroimmune theories for affective disorders. Moreover, commonalities have been documented for the pathomechanisms of depression and neurodegenerative and metabolic disorders as well as drug dependence. The aim of this special issue is to briefly present the major research contributions and the new research directions of the Institute of Pharmacology, the Polish Academy of Sciences with respect to the neurobiology of affective disorders and the mechanisms of action of marketed and new putative antidepressant drugs.
Collapse
Affiliation(s)
- Władysław Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|
36
|
Duarte-Guterman P, Navarro-Martín L, Trudeau VL. Mechanisms of crosstalk between endocrine systems: regulation of sex steroid hormone synthesis and action by thyroid hormones. Gen Comp Endocrinol 2014; 203:69-85. [PMID: 24685768 DOI: 10.1016/j.ygcen.2014.03.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/15/2014] [Accepted: 03/17/2014] [Indexed: 01/20/2023]
Abstract
Thyroid hormones (THs) are well-known regulators of development and metabolism in vertebrates. There is increasing evidence that THs are also involved in gonadal differentiation and reproductive function. Changes in TH status affect sex ratios in developing fish and frogs and reproduction (e.g., fertility), hormone levels, and gonad morphology in adults of species of different vertebrates. In this review, we have summarized and compared the evidence for cross-talk between the steroid hormone and thyroid axes and present a comparative model. We gave special attention to TH regulation of sex steroid synthesis and action in both the brain and gonad, since these are important for gonad development and brain sexual differentiation and have been studied in many species. We also reviewed research showing that there is a TH system, including receptors and enzymes, in the brains and gonads in developing and adult vertebrates. Our analysis shows that THs influences sex steroid hormone synthesis in vertebrates, ranging from fish to pigs. This concept of crosstalk and conserved hormone interaction has implications for our understanding of the role of THs in reproduction, and how these processes may be dysregulated by environmental endocrine disruptors.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | - Laia Navarro-Martín
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Vance L Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
37
|
Baxi EG, Schott JT, Fairchild AN, Kirby LA, Karani R, Uapinyoying P, Pardo-Villamizar C, Rothstein JR, Bergles DE, Calabresi PA. A selective thyroid hormone β receptor agonist enhances human and rodent oligodendrocyte differentiation. Glia 2014; 62:1513-29. [PMID: 24863526 DOI: 10.1002/glia.22697] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 01/16/2023]
Abstract
Nerve conduction within the mammalian central nervous system is made efficient by oligodendrocyte-derived myelin. Historically, thyroid hormones have a well described role in regulating oligodendrocyte differentiation and myelination during development; however, it remains unclear which thyroid hormone receptors are required to drive these effects. This is a question with clinical relevance since nonspecific thyroid receptor stimulation can produce deleterious side-effects. Here we report that GC-1, a thyromimetic with selective thyroid receptor β action and a potentially limited side-effect profile, promotes in vitro oligodendrogenesis from both rodent and human oligodendrocyte progenitor cells. In addition, we used in vivo genetic fate tracing of oligodendrocyte progenitor cells via PDGFαR-CreER;Rosa26-eYFP double-transgenic mice to examine the effect of GC-1 on cellular fate and find that treatment with GC-1 during developmental myelination promotes oligodendrogenesis within the corpus callosum, occipital cortex and optic nerve. GC-1 was also observed to enhance the expression of the myelin proteins MBP, CNP and MAG within the same regions. These results indicate that a β receptor selective thyromimetic can enhance oligodendrocyte differentiation in vitro and during developmental myelination in vivo and warrants further study as a therapeutic agent for demyelinating models.
Collapse
Affiliation(s)
- Emily G Baxi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Audet-Delage Y, Ouellet N, Dallaire R, Dewailly E, Ayotte P. Persistent organic pollutants and transthyretin-bound thyroxin in plasma of Inuit women of childbearing age. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13086-13092. [PMID: 24160776 DOI: 10.1021/es4027634] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Inuit population of Nunavik (Northern Quebec, Canada) is highly exposed to persistent organic pollutants (POPs) through their traditional diet. Some POPs, i.e., hydroxylated metabolites of polychlorinated biphenyls (OH-PCBs), pentachlorophenol (PCP), and perfluorooctane sulfonate (PFOS), compete with thyroxin (T4) for binding sites on transthyretin (TTR), a T4 transport protein found in plasma and cerebrospinal fluid. We tested the hypothesis that these TTR-binding compounds decrease circulating concentrations of T4 bound to TTR (T4-TTR) in Inuit women of reproductive age. We measured the concentration of T4-TTR in plasma samples obtained from 120 Inuit women (18-39 years old) by combining native-polyacrylamide gel electrophoresis and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques. Total T4, TTR, and thyroxin-binding globulin (TBG) concentrations were also determined, while POPs levels had been previously measured. The mean T4-TTR concentration was 8.4 nmol/L (SD = 2.4) with values ranging from 2.9 to 14.4 nmol/L. Linear regression analysis revealed that TTR, TBG, and total T4 concentrations were significant predictors (p < 0.002) of T4-TTR levels (total adjusted R-squared = 0.26, p < 0.0001) but not levels of OH-PCBs, chlorophenols, or PFOS. Our results suggest that circulating levels of these TTR-binding compounds in Inuit women of childbearing age are not high enough to affect TTR-mediated thyroid hormone transport. The possibility of increased delivery of these compounds to the developing brain requires further investigation.
Collapse
Affiliation(s)
- Y Audet-Delage
- Axe Santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Québec, QC, Canada
| | | | | | | | | |
Collapse
|
39
|
De Coster S, van Leeuwen DM, Jennen DGJ, Koppen G, Den Hond E, Nelen V, Schoeters G, Baeyens W, van Delft JHM, Kleinjans JCS, van Larebeke N. Gender-specific transcriptomic response to environmental exposure in Flemish adults. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:574-588. [PMID: 23653218 DOI: 10.1002/em.21774] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/01/2013] [Accepted: 02/21/2013] [Indexed: 06/02/2023]
Abstract
Flanders, Belgium, is one of the most densely populated areas in Europe. The Flemish Environment and Health Survey (2002-2006) aimed at determining exposure to pollutants of neonates, adolescents, and older adults and to assess associated biological and health effects. This study investigated genome wide gene expression changes associated with a range of environmental pollutants, including cadmium, lead, PCBs, dioxin, hexachlorobenzene, p,p'-DDE, benzene, and PAHs. Gene expression levels were measured in peripheral blood cells of 20 adults with relatively high and 20 adults with relatively low combined internal exposure levels, all non-smokers aged 50-65. Pearson correlation was used to analyze associations between pollutants and gene expression levels, separately for both genders. Pollutant- and gender-specific correlation analysis results were obtained. For organochlorine pollutants, analysis within genders revealed that genes were predominantly regulated in opposite directions in males and females. Significantly modulated pathways were found to be associated with each of the exposure biomarkers measured. Pathways and/or genes related to estrogen and STAT5 signaling were correlated to organochlorine exposures in both genders. Our work demonstrates that gene expression in peripheral blood is influenced by environmental pollutants. In particular, gender-specific changes are associated with organochlorine pollutants, including gender-specific modulation of endocrine related pathways and genes. These pathways and genes have previously been linked to endocrine disruption related disorders, which in turn have been associated with organochlorine exposure. Based on our results, we recommend that males and females be considered separately when analyzing gene expression changes associated with exposures that may include chemicals with endocrine disrupting properties.
Collapse
Affiliation(s)
- Sam De Coster
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent, 9000, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Villanger GD, Gabrielsen KM, Kovacs KM, Lydersen C, Lie E, Karimi M, Sørmo EG, Jenssen BM. Effects of complex organohalogen contaminant mixtures on thyroid homeostasis in hooded seal (Cystophora cristata) mother-pup pairs. CHEMOSPHERE 2013; 92:828-842. [PMID: 23726007 DOI: 10.1016/j.chemosphere.2013.04.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Many lipid-soluble and phenolic compounds present in the complex mixture of orgaohalogen contaminants (OHCs) that arctic wildlife is exposed to have the ability to interfere with the thyroid hormone (TH) system. The aim of this study was to identify compounds that might interfere with thyroid homeostasis in 14 nursing hooded seal (Cystophora cristata) mothers and their pups (1-4d old) sampled in the West Ice in March 2008. Multivariate modelling was used to assess the potential effects of measured plasma levels of OHCs on circulating TH levels of the measured free (F) and total (T) levels of triidothyrine (T3) and thyroxine (T4). Biological factors were important in all models (e.g. age and sex). In both mothers and pups, TT3:FT3 ratios were associated with α- and β-hexachlorocyclohexane (HCH), ortho-PCBs, chlordanes and DDTs. The similarities between the modelled TT3:FT3 responses to OHC levels in hooded seal mothers and pups most probably reflects similar exposure patterns, but could also indicate interconnected TH responses. There were some differences in the modelled TH responses of mothers and pups. Most importantly, the negative relationships between many OH-PCBs (particularly 3'-OH-CB138) and TT3:FT3 ratio and the positive relationships between TT4:FT4 ratios and polybrominated diphenyl ether [PBDE]-99, -100 and 4-OH-CB107 in pups, which was not found in mothers. Although statistical associations are not evidence per se of biological cause-effect relationships, the results suggest that thyroid homeostasis is affected in hooded seals, and that the inclusion of the fullest possible OHC mixture is important when assessing TH related effects in wildlife.
Collapse
Affiliation(s)
- Gro D Villanger
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Grimm FA, Lehmler HJ, He X, Robertson LW, Duffel MW. Sulfated metabolites of polychlorinated biphenyls are high-affinity ligands for the thyroid hormone transport protein transthyretin. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:657-62. [PMID: 23584369 PMCID: PMC3672920 DOI: 10.1289/ehp.1206198] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/11/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND The displacement of l-thyroxine (T4) from binding sites on transthyretin (TTR) is considered a significant contributing mechanism in polychlorinated biphenyl (PCB)-induced thyroid disruption. Previous research has discovered hydroxylated PCB metabolites (OH-PCBs) as high-affinity ligands for TTR, but the binding potential of conjugated PCB metabolites such as PCB sulfates has not been explored. OBJECTIVES We evaluated the binding of five lower-chlorinated PCB sulfates to human TTR and compared their binding characteristics to those determined for their OH-PCB precursors and for T4. METHODS We used fluorescence probe displacement studies and molecular docking simulations to characterize the binding of PCB sulfates to TTR. The stability of PCB sulfates and the reversibility of these interactions were characterized by HPLC analysis of PCB sulfates after their binding to TTR. The ability of OH-PCBs to serve as substrates for human cytosolic sulfotransferase 1A1 (hSULT1A1) was assessed by OH-PCB-dependent formation of adenosine-3',5'-diphosphate, an end product of the sulfation reaction. RESULTS All five PCB sulfates were able to bind to the high-affinity binding site of TTR with equilibrium dissociation constants (Kd values) in the low nanomolar range (4.8-16.8 nM), similar to that observed for T4 (4.7 nM). Docking simulations provided corroborating evidence for these binding interactions and indicated multiple high-affinity modes of binding. All OH-PCB precursors for these sulfates were found to be substrates for hSULT1A1. CONCLUSIONS Our findings show that PCB sulfates are high-affinity ligands for human TTR and therefore indicate, for the first time, a potential relevance for these metabolites in PCB-induced thyroid disruption.
Collapse
Affiliation(s)
- Fabian A Grimm
- Interdisciplinary Graduate Program in Human Toxicology, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, College of Public Health, The University of Iowa, Iowa City, Iowa 52246, USA
| | | | | | | | | |
Collapse
|
42
|
Mitchell MM, Woods R, Chi LH, Schmidt RJ, Pessah IN, Kostyniak PJ, LaSalle JM. Levels of select PCB and PBDE congeners in human postmortem brain reveal possible environmental involvement in 15q11-q13 duplication autism spectrum disorder. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:589-98. [PMID: 22930557 PMCID: PMC3739306 DOI: 10.1002/em.21722] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 05/18/2023]
Abstract
Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs) that bioaccumulate in lipid-rich tissues are of concern as developmental neurotoxicants. Epigenetic mechanisms such as DNA methylation act at the interface of genetic and environmental factors implicated in autism-spectrum disorders. The relationship between POP levels and DNA methylation patterns in individuals with and without neurodevelopmental disorders has not been previously investigated. In this study, a total of 107 human frozen postmortem brain samples were analyzed for eight PCBs and seven PBDEs by GC-micro electron capture detector and GC/MS using negative chemical ionization. Human brain samples were grouped as neurotypical controls (n = 43), neurodevelopmental disorders with known genetic basis (n = 32, including Down, Rett, Prader-Willi, Angelman, and 15q11-q13 duplication syndromes), and autism of unknown etiology (n = 32). Unexpectedly, PCB 95 was significantly higher in the genetic neurodevelopmental group, but not idiopathic autism, as compared to neurotypical controls. Interestingly, samples with detectable PCB 95 levels were almost exclusively those with maternal 15q11-q13 duplication (Dup15q) or deletion in Prader-Willi syndrome. When sorted by birth year, Dup15q samples represented five out of six of genetic neurodevelopmental samples born after the 1976 PCB ban exhibiting detectable PCB 95 levels. Dup15q was the strongest predictor of PCB 95 exposure over age, gender, or year of birth. Dup15q brain showed lower levels of repetitive DNA methylation measured by LINE-1 pyrosequencing, but methylation levels were confounded by year of birth. These results demonstrate a novel paradigm by which specific POPs may predispose to genetic copy number variation of 15q11-q13.
Collapse
Affiliation(s)
- Michelle M. Mitchell
- Medical Microbiology&Immunology, School of Medicine, University of California, Davis, CA
- Genome Center, University of California, Davis, CA
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, CA
| | - Rima Woods
- Medical Microbiology&Immunology, School of Medicine, University of California, Davis, CA
- Genome Center, University of California, Davis, CA
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, CA
| | - Lai-Har Chi
- Toxicology Research Center, University at Buffalo, The State University of New York, Buffalo, NY
| | - Rebecca J. Schmidt
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, CA
- Center for Children's Environmental Health, University of California, Davis, CA 95616
- Public Health Sciences, University of California, Davis, CA 95616
| | - Isaac N. Pessah
- Center for Children's Environmental Health, University of California, Davis, CA 95616
- Environmental Toxicology, University of California, Davis, CA 95616
- Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Paul J. Kostyniak
- Toxicology Research Center, University at Buffalo, The State University of New York, Buffalo, NY
| | - Janine M. LaSalle
- Medical Microbiology&Immunology, School of Medicine, University of California, Davis, CA
- Genome Center, University of California, Davis, CA
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, CA
- Center for Children's Environmental Health, University of California, Davis, CA 95616
| |
Collapse
|
43
|
Salihovic S, Mattioli L, Lindström G, Lind L, Lind PM, van Bavel B. A rapid method for screening of the Stockholm Convention POPs in small amounts of human plasma using SPE and HRGC/HRMS. CHEMOSPHERE 2012; 86:747-753. [PMID: 22153485 DOI: 10.1016/j.chemosphere.2011.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/26/2011] [Accepted: 11/06/2011] [Indexed: 05/28/2023]
Abstract
A rapid analytical screening method allowing simultaneous analysis of 23 persistent organic pollutants (POPs) in human plasma was developed. Sample preparation based on solid-phase extraction (SPE) with additional clean-up using small multilayer silica gel columns. SPE was performed using a custom made polystyrene-divinylbenzene sorbent for the extraction of chlorinated and brominated POPs. Special efforts to reduce sample volume and improve speed and efficiency of the analytical procedure were made. Determination of 16 polychlorinated biphenyls (PCBs), 5 organochlorine (OC) pesticides, octachlorinated dibenzo-p-dioxin (OCDD) and polybrominated diphenyl ether (BDE #47) in 0.5 mL human plasma was performed by using high resolution gas chromatography coupled to high resolution mass spectrometry (HRGC/HRMS). Recovery of POPs ranged between 46% and 110%, and reproducibility was below 25% relative standard deviation (RSD) for all target compounds, except for trans-nonachlor and OCDD, which were present only at low levels. Limits of detection (LOD) were for the PCBs between 0.8 and 117.7 pg mL(-1) plasma and for the OC pesticides between 5.9 and 89.1 pg mL(-1) plasma. The LOD for OCDD and BDE #47 were 1.4 pg mL(-1) plasma, and 9.2 pg mL(-1) plasma, respectively. The presented method was successfully applied to 1016 human plasma samples from an epidemiological study on cardiovascular disease.
Collapse
Affiliation(s)
- Samira Salihovic
- MTM Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| | | | | | | | | | | |
Collapse
|
44
|
Kim UJ, Lee IS, Kim HS, Oh JE. Monitoring of PBDEs concentration in umbilical cord blood and breast milk from Korean population and estimating the effects of various parameters on accumulation in humans. CHEMOSPHERE 2011; 85:487-93. [PMID: 21890170 DOI: 10.1016/j.chemosphere.2011.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 07/11/2011] [Accepted: 08/04/2011] [Indexed: 05/06/2023]
Abstract
In this study, we investigated concentration, congener distribution pattern, and effects of potential environmental factors that affect PBDE accumulation. We also estimated correlation between PBDE concentration and health status or thyroid function by analyzing 90 cord blood and 21 breast milk samples obtained from Korean population. Seven from tri- to hepta-BDEs were analyzed by solid phase extraction-high-resolution gas chromatography/high-resolution mass spectrometry (SPE-HRGC/HRMS). The total concentration of 7 PBDEs in cord blood was 2.786-94.64 ng g(-1) lipid and that in breast milk was 1.076-8.664 ng g(-1) lipid. Tetra-BDE (#47) was the predominant type of PBDE and was present at concentrations of over 40% in both sample types. A weak correlation was observed between the concentration of BDE28 and 153 and thyroid hormone concentration only in the breast milk samples. In children, a weak negative correlation was observed between free thyroxine (FT4) concentration and BDE28 concentration (0.302, p<0.05), while in mothers, a weak positive correlation was observed between thyroid hormone concentration and BDE153 concentration (0.403, p<0.05). No significant correlations between PBDE concentration and work and residential environments were found in this study, but a weak correlation between BDE concentration in cord blood and potential PBDE sources was confirmed by investigating the frequency of oil paint usage (0.510, p<0.001). A weak correlation was also found between PBDE concentration in breast milk during pregnancy and dietary habits such as green tea drinking (0.541, p=0.025) and Trichiuridae intake (0.565, p=0.015).
Collapse
Affiliation(s)
- Un-Jung Kim
- Department of Civil and Environmental Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | | | | | | |
Collapse
|
45
|
Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus. Toxicol Appl Pharmacol 2011; 256:290-9. [PMID: 21791222 DOI: 10.1016/j.taap.2011.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/06/2011] [Accepted: 07/08/2011] [Indexed: 01/23/2023]
Abstract
The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca(2+)-mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studies showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit β (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity.
Collapse
|
46
|
Gutleb AC, Lilienthal H, Erhard HW, Zimmer KE, Skaare JU, Ropstad E. Effects of pre- and postnatal polychlorinated biphenyl exposure on emotional reactivity observed in lambs before weaning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1396-1401. [PMID: 21450342 DOI: 10.1016/j.ecoenv.2011.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/27/2011] [Accepted: 03/05/2011] [Indexed: 05/30/2023]
Abstract
Humans and animals are exposed to PCBs and influences on developmental and endocrine processes are among the most pronounced effects. In the present study it was hypothesised that exposure to PCBs may interfere with sexually dimorphic behaviour. To test this hypothesis, behavioural studies in developmentally exposed sheep were conducted. Ewes were orally administered PCB 153 (98 μg/kg bw day), PCB 118 (49 μg/kg bw day) or corn oil from conception until delivery. However, because of accidental cross-contamination occurring twice causing a mixed exposure scenario in all three groups, the focus of this paper is to compare three distinct groups of lambs with different PCB levels (PCB 153 high-PCB 153 h, PCB 118 high-PCB 118 h, and low combined group-LC) rather than comparing animals exposed to single PCB congeners to those of a control group. Lambs were tested between 2 and 6 weeks of age. When LC males started the light/dark choice test in a dark box, they spent significantly more time in the dark part of the pen than LC females. This gender-related difference was not found in groups exposed to PCBs. A significant inhibitory effect on the activity level of males exposed to stress of confinement was found in the PCB 118 h group. In a high stress situation females from PCB 118 h and males from PCB 153 h were less active than their gender counterparts. The results support the hypothesis that intrauterine exposure to PCBs can alter sexually dimorphic behaviour of offspring.
Collapse
Affiliation(s)
- Arno C Gutleb
- Department of Production Animal Clinical Science, Norwegian School of Veterinary Science, POB 8146 Dep., N-0033 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
47
|
Ahmed R. Perinatal TCDD exposure alters developmental neuroendocrine system. Food Chem Toxicol 2011; 49:1276-84. [DOI: 10.1016/j.fct.2011.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/26/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
|
48
|
Hectors TLM, Vanparys C, van der Ven K, Martens GA, Jorens PG, Van Gaal LF, Covaci A, De Coen W, Blust R. Environmental pollutants and type 2 diabetes: a review of mechanisms that can disrupt beta cell function. Diabetologia 2011; 54:1273-90. [PMID: 21442161 DOI: 10.1007/s00125-011-2109-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/07/2011] [Indexed: 12/17/2022]
Abstract
The prevalence of diabetes mellitus is currently at epidemic proportions and it is estimated that it will increase even further over the next decades. Although genetic predisposition and lifestyle choices are commonly accepted reasons for the occurrence of type 2 diabetes, it has recently been suggested that environmental pollutants are additional risk factors for diabetes development and this review aims to give an overview of the current evidence for this. More specifically, because of the crucial role of pancreatic beta cells in the development and progression of type 2 diabetes, the present work summarises the known effects of several compounds on beta cell function with reference to mechanistic studies that have elucidated how these compounds interfere with the insulin secreting capacity of beta cells. Oestrogenic compounds, organophosphorus compounds, persistent organic pollutants and heavy metals are discussed, and a critical reflection on the relevance of the concentrations used in mechanistic studies relative to the levels found in the human population is given. It is clear that some environmental pollutants affect pancreatic beta cell function, as both epidemiological and experimental research is accumulating. This supports the need to develop a solid and structured platform to fully explore the diabetes-inducing potential of pollutants.
Collapse
Affiliation(s)
- T L M Hectors
- Department of Biology, Laboratory of Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Villanger GD, Jenssen BM, Fjeldberg RR, Letcher RJ, Muir DCG, Kirkegaard M, Sonne C, Dietz R. Exposure to mixtures of organohalogen contaminants and associative interactions with thyroid hormones in East Greenland polar bears (Ursus maritimus). ENVIRONMENT INTERNATIONAL 2011; 37:694-708. [PMID: 21345491 DOI: 10.1016/j.envint.2011.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/02/2010] [Accepted: 01/20/2011] [Indexed: 05/05/2023]
Abstract
We investigated the multivariate relationships between adipose tissue residue levels of 48 individual organohalogen contaminants (OHCs) and circulating thyroid hormone (TH) levels in polar bears (Ursus maritimus) from East Greenland (1999-2001, n=62), using projection to latent structure (PLS) regression for four groupings of polar bears; subadults (SubA), adult females with cubs (AdF_N), adult females without cubs (AdF_S) and adult males (AdM). In the resulting significant PLS models for SubA, AdF_N and AdF_S, some OHCs were especially important in explaining variations in circulating TH levels: polybrominated diphenylether (PBDE)-99, PBDE-100, PBDE-153, polychlorinated biphenyl (PCB)-52, PCB-118, cis-nonachlor, trans-nonachlor, trichlorobenzene (TCB) and pentachlorobenzene (QCB), and both negative and positive relationships with THs were found. In addition, the models revealed that DDTs had a positive influence on total 3,5,3'-triiodothyronine (TT3) in AdF_S, and that a group of 17 higher chlorinated ortho-PCBs had a positive influence on total 3,5,3',5'-tetraiodothyronine (thyroxine, TT4) in AdF_N. TH levels in AdM seemed less influenced by OHCs because of non-significant PLS models. TH levels were also influenced by biological factors such as age, sex, body size, lipid content of adipose tissue and sampling date. When controlling for biological variables, the major relationships from the PLS models for SubA, AdF_N and AdF_S were found significant in partial correlations. The most important OHCs that influenced TH levels in the significant PLS models may potentially act through similar mechanisms on the hypothalamic-pituitary-thyroid (HPT) axis, suggesting that both combined effects by dose and response addition and perhaps synergistic potentiation may be a possibility in these polar bears. Statistical associations are not evidence per se of biological cause-effect relationships. Still, the results of the present study indicate that OHCs may affect circulating TH levels in East Greenland polar bears, adding to the "weight of evidence" suggesting that OHCs might interfere with thyroid homeostasis in polar bears.
Collapse
Affiliation(s)
- Gro D Villanger
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Masuo Y, Ishido M. Neurotoxicity of endocrine disruptors: possible involvement in brain development and neurodegeneration. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:346-369. [PMID: 21790316 DOI: 10.1080/10937404.2011.578557] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Environmental chemicals that act as endocrine disruptors do not appear to pose a risk to human reproduction; however, their effects on the central nervous systems are less well understood. Animal studies suggested that maternal exposure to endocrine-disrupting chemicals (EDC) produced changes in rearing behavior, locomotion, anxiety, and learning/memory in offspring, as well as neuronal abnormalities. Some investigations suggested that EDC exert effects on central monoaminergic neurons, especially dopaminergic neurons. Our data demonstrated that EDC attenuate the development of dopaminergic neurons, which might be involved in developmental disorders. Perinatal exposure to EDC might affect neuronal plasticity in the hippocampus, thereby potentially modulating neuronal development, leading to impaired cognitive and memory functions. Endocrine disruptors also attenuate gender differences in brain development. For example, the locus ceruleus is larger in female rats than in males, but treatments with bisphenol-A (BPA) enlarge this region in males. Some reports indicated that EDC induce hypothyroidism, which might be evidenced as abnormal brain development. Endocrine disruptors might also affect mature neurons, resulting in neurodegenerative disorders such as Parkinson's disease. The current review focused on alterations in the brain induced by EDC, specifically on the possible involvement of EDC in brain development and neurodegeneration.
Collapse
Affiliation(s)
- Yoshinori Masuo
- Laboratory of Neuroscience, Department of Biology, Faculty of Science, Toho University, Chiba, Japan.
| | | |
Collapse
|