1
|
Contaldi E, Gallo S, Corrado L, D'Alfonso S, Magistrelli L. Parkinsonism in SCA19/22: Dopamine Transporter Imaging in an Italian Family Harboring a Novel Mutation. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1226-1230. [PMID: 37857779 DOI: 10.1007/s12311-023-01619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Spinocerebellar ataxia (SCA)19/22 is a channelopathy caused by mutations in the KCND3 gene encoding for the voltage-gated potassium channel Kv4.3. In the present work, we report an Italian family harboring a novel KCND3 missense mutation characterized by ataxia and mild parkinsonism. Patients underwent dopamine transporter single-photon emission computed tomography to assess dopaminergic degeneration. Normal findings were observed, and treatment with levodopa did not yield any benefit, thus suggesting the involvement of other mechanisms to explain parkinsonian symptoms in SCA19/22. Our cases expand the genetic and imaging spectrum of this rare disease and emphasize a cautious approach in managing parkinsonism in these patients.
Collapse
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Corso Mazzini 18, 28100, Novara, Italy.
- PhD Program in Medical Sciences and Biotechnology, University of Piemonte Orientale, 28100, Novara, Italy.
| | - Silvia Gallo
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Corso Mazzini 18, 28100, Novara, Italy
| | - Lucia Corrado
- Department of Health Sciences, Centre of Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100, Novara, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences, Centre of Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Corso Mazzini 18, 28100, Novara, Italy
| |
Collapse
|
2
|
Ågren R, Geerdink N, Brunner HG, Paucar M, Kamsteeg EJ, Sahlholm K. An E280K Missense Variant in KCND3/Kv4.3-Case Report and Functional Characterization. Int J Mol Sci 2023; 24:10924. [PMID: 37446101 DOI: 10.3390/ijms241310924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
A five-year-old girl presented with headache attacks, clumsiness, and a history of transient gait disturbances. She and her father, mother, twin sister, and brother underwent neurological evaluation, neuroimaging, and exome sequencing covering 357 genes associated with movement disorders. Sequencing revealed the new variant KCND3 c.838G>A, p.E280K in the father and sisters, but not in the mother and brother. KCND3 encodes voltage-gated potassium channel D3 (Kv4.3) and mutations have been associated with spinocerebellar ataxia type 19/22 (SCA19/22) and cardiac arrhythmias. SCA19/22 is characterized by ataxia, Parkinsonism, peripheral neuropathy, and sometimes, intellectual disability. Neuroimaging, EEG, and ECG were unremarkable. Mild developmental delay with impaired fluid reasoning was observed in both sisters, but not in the brother. None of the family members demonstrated ataxia or parkinsonism. In Xenopus oocyte electrophysiology experiments, E280K was associated with a rightward shift in the Kv4.3 voltage-activation relationship of 11 mV for WT/E280K and +17 mV for E280K/E280K relative to WT/WT. Steady-state inactivation was similarly right-shifted. Maximal peak current amplitudes were similar for WT/WT, WT/E280K, and E280K/E280K. Our data indicate that Kv4.3 E280K affects channel activation and inactivation and is associated with developmental delay. However, E280K appears to be relatively benign considering it does not result in overt ataxia.
Collapse
Affiliation(s)
- Richard Ågren
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Niels Geerdink
- Department of Pediatrics, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands
| | - Han G Brunner
- Department of Human Genetics, Donders Centre for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Clinical Genetics, MUMC Maastricht, GROW School for Oncology and Developmental Biology, MHENS School for Mental Health and Neuroscience, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Martin Paucar
- Department of Neurology, Karolinska University Hospital, 141 86 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud UMC, 6525 GA Nijmegen, The Netherlands
| | - Kristoffer Sahlholm
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
3
|
Li M, Liu F, Hao X, Fan Y, Li J, Hu Z, Shi J, Fan L, Zhang S, Ma D, Guo M, Xu Y, Shi C. Rare KCND3 Loss-of-Function Mutation Associated With the SCA19/22. Front Mol Neurosci 2022; 15:919199. [PMID: 35813061 PMCID: PMC9261871 DOI: 10.3389/fnmol.2022.919199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Spinocerebellar ataxia 19/22 (SCA19/22) is a rare neurodegenerative disorder caused by mutations of the KCND3 gene, which encodes the Kv4. 3 protein. Currently, only 22 KCND3 single-nucleotide mutation sites of SCA19/22 have been reported worldwide, and detailed pathogenesis remains unclear. In this study, Sanger sequencing was used to screen 115 probands of cerebellar ataxia families in 67 patients with sporadic cerebellar ataxia and 200 healthy people to identify KCND3 mutations. Mutant gene products showed pathogenicity damage, and the polarity was changed. Next, we established induced pluripotent stem cells (iPSCs) derived from SCA19/22 patients. Using a transcriptome sequencing technique, we found that protein processing in the endoplasmic reticulum was significantly enriched in SCA19/22-iPS-derived neurons and was closely related to endoplasmic reticulum stress (ERS) and apoptosis. In addition, Western blotting of the SCA19/22-iPS-derived neurons showed a reduction in Kv4.3; but, activation of transcription factor 4 (ATF4) and C/EBP homologous protein was increased. Therefore, the c.1130 C>T (p.T377M) mutation of the KCND3 gene may mediate misfold and aggregation of Kv4.3, which activates the ERS and further induces neuron apoptosis involved in SCA19/22.
Collapse
Affiliation(s)
- Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Fen Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Jiadi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Jingjing Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Cell Biology and Medical Genetics, Basic Medical College of Zhengzhou University, Zhengzhou, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Dongrui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Mengnan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Cell Biology and Medical Genetics, Basic Medical College of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Changhe Shi
| |
Collapse
|
4
|
Rare Gain-of-Function KCND3 Variant Associated with Cerebellar Ataxia, Parkinsonism, Cognitive Dysfunction, and Brain Iron Accumulation. Int J Mol Sci 2021; 22:ijms22158247. [PMID: 34361012 PMCID: PMC8347726 DOI: 10.3390/ijms22158247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
Loss-of-function mutations in the KV4.3 channel-encoding KCND3 gene are linked to neurodegenerative cerebellar ataxia. Patients suffering from neurodegeneration associated with iron deposition may also present with cerebellar ataxia. The mechanism underlying brain iron accumulation remains unclear. Here, we aim to ascertain the potential pathogenic role of KCND3 variant in iron accumulation-related cerebellar ataxia. We presented a patient with slowly progressive cerebellar ataxia, parkinsonism, cognitive impairment, and iron accumulation in the basal ganglia and the cerebellum. Whole exome sequencing analyses identified in the patient a heterozygous KCND3 c.1256G>A (p.R419H) variant predicted to be disease-causing by multiple bioinformatic analyses. In vitro biochemical and immunofluorescence examinations revealed that, compared to the human KV4.3 wild-type channel, the p.R419H variant exhibited normal protein abundance and subcellular localization pattern. Electrophysiological investigation, however, demonstrated that the KV4.3 p.R419H variant was associated with a dominant increase in potassium current amplitudes, as well as notable changes in voltage-dependent gating properties leading to enhanced potassium window current. These observations indicate that, in direct contrast with the loss-of-function KCND3 mutations previously reported in cerebellar ataxia patients, we identified a rare gain-of-function KCND3 variant that may expand the clinical and molecular spectra of neurodegenerative cerebellar disorders associated with brain iron accumulation.
Collapse
|
5
|
Paucar M, Ågren R, Li T, Lissmats S, Bergendal Å, Weinberg J, Nilsson D, Savichetva I, Sahlholm K, Nilsson J, Svenningsson P. V374A KCND3 Pathogenic Variant Associated With Paroxysmal Ataxia Exacerbations. NEUROLOGY-GENETICS 2021; 7:e546. [PMID: 33575485 PMCID: PMC7862093 DOI: 10.1212/nxg.0000000000000546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022]
Abstract
Objective Ataxia channelopathies share common features such as slow motor progression and variable degrees of cognitive dysfunction. Mutations in potassium voltage-gated channel subfamily D member 3 (KCND3), encoding the K+ channel, Kv4.3, are associated with spinocerebellar ataxia (SCA) 19, allelic with SCA22. Mutations in potassium voltage-gated channel subfamily C member 3 (KCNC3), encoding another K+ channel, Kv3.3, cause SCA13. First, a comprehensive phenotype assessment was carried out in a family with autosomal dominant ataxia harboring 2 genetic variants in KCNC3 and KCND3. To evaluate the physiological impact of these variants on channel currents, in vitro studies were performed. Methods Clinical and psychometric evaluations, neuroimaging, and genotyping of a family (mother and son) affected by ataxia were carried out. Heterozygous and homozygous Kv3.3 A671V and Kv4.3 V374A variants were evaluated in Xenopus laevis oocytes using 2-electrode voltage-clamp. The influence of Kv4 conductance on neuronal activity was investigated computationally using a Purkinje neuron model. Results The main clinical findings were consistent with adult-onset ataxia with cognitive dysfunction and acetazolamide-responsive paroxysmal motor exacerbations in the index case. Despite cognitive deficits, fluorodeoxyglucose (FDG)-PET displayed hypometabolism mainly in the severely atrophic cerebellum. Genetic analyses revealed the new variant c.1121T>C (V374A) in KCND3 and c.2012T>C (A671V) in KCNC3. In vitro electrophysiology experiments on Xenopus oocytes demonstrated that the V374A mutant was nonfunctional when expressed on its own. Upon equal co-expression of wild-type (WT) and V374A channel subunits, Kv4.3 currents were significantly reduced in a dominant negative manner, without alterations of the gating properties of the channel. By contrast, Kv3.3 A671V, when expressed alone, exhibited moderately reduced currents compared with WT, with no effects on channel activation or inactivation. Immunohistochemistry demonstrated adequate cell membrane translocation of the Kv4.3 V374A variant, thus suggesting an impairment of channel function, rather than of expression. Computational modeling predicted an increased Purkinje neuron firing frequency upon reduced Kv4.3 conductance. Conclusions Our findings suggest that Kv4.3 V374A is likely pathogenic and associated with paroxysmal ataxia exacerbations, a new trait for SCA19/22. The present FDG PET findings contrast with a previous study demonstrating widespread brain hypometabolism in SCA19/22.
Collapse
Affiliation(s)
- Martin Paucar
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Richard Ågren
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Tianyi Li
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Simon Lissmats
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Åsa Bergendal
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Jan Weinberg
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Daniel Nilsson
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Irina Savichetva
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Kristoffer Sahlholm
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Johanna Nilsson
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| |
Collapse
|
6
|
Li Z, Feng J, Yuan Z. Key Modules and Hub Genes Identified by Coexpression Network Analysis for Revealing Novel Biomarkers for Spina Bifida. Front Genet 2020; 11:583316. [PMID: 33343629 PMCID: PMC7738565 DOI: 10.3389/fgene.2020.583316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
Spina bifida is a common neural tube defect (NTD) accounting for 5–10% of perinatal mortalities. As a polygenic disease, spina bifida is caused by a combination of genetic and environmental factors, for which the precise molecular pathogenesis is still not systemically understood. In the present study, we aimed to identify the related gene module that might play a vital role in the occurrence and development of spina bifida by using weighted gene co-expression network analysis (WGCNA). Transcription profiling according to an array of human amniocytes from patients with spina bifida and healthy controls was downloaded from the Gene Expression Omnibus database. First, outliers were identified and removed by principal component analysis (PCA) and sample clustering. Then, genes in the top 25% of variance in the GSE4182 dataset were then determined in order to explore candidate genes in potential hub modules using WGCNA. After data preprocessing, 5407 genes were obtained for further WGCNA. Highly correlated genes were divided into nineteen modules. Combined with a co-expression network and significant differentially expressed genes, 967 candidate genes were identified that may be involved in the pathological processes of spina bifida. Combined with our previous microRNA (miRNA) microarray results, we constructed an miRNA–mRNA network including four miRNAs and 39 mRNA among which three key genes were, respectively, linked to two miRNA-associated gene networks. Following the verification of qRT-PCR and KCND3 was upregulated in the spina bifida. KCND3 and its related miR-765 and miR-142-3p are worthy of further study. These findings may be conducive for early detection and intervention in spina bifida, as well as be of great significance to pregnant women and clinical staff.
Collapse
Affiliation(s)
- Zijian Li
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
KCND3-Related Neurological Disorders: From Old to Emerging Clinical Phenotypes. Int J Mol Sci 2020; 21:ijms21165802. [PMID: 32823520 PMCID: PMC7461103 DOI: 10.3390/ijms21165802] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
KCND3 encodes the voltage-gated potassium ion channel subfamily D member 3, a six trans-membrane protein (Kv4.3), involved in the transient outward K+ current. KCND3 defect causes both cardiological and neurological syndromes. From a neurological perspective, Kv4.3 defect has been associated to SCA type 19/22, a complex neurological disorder encompassing a wide spectrum of clinical features beside ataxia. To better define the phenotypic spectrum and course of KCND3-related neurological disorder, we review the clinical presentation and evolution in 68 reported cases. We delineated two main clinical phenotypes according to the age of onset. Neurodevelopmental disorder with epilepsy and/or movement disorders with ataxia later in the disease course characterized the early onset forms, while a prominent ataxic syndrome with possible cognitive decline, movement disorders, and peripheral neuropathy were observed in the late onset forms. Furthermore, we described a 37-year-old patient with a de novo KCND3 variant [c.901T>C (p.Ser301Pro)], previously reported in dbSNP as rs79821338, and a clinical phenotype paradigmatic of the early onset forms with neurodevelopmental disorder, epilepsy, parkinsonism-dystonia, and ataxia in adulthood, further expanding the clinical spectrum of this condition.
Collapse
|
8
|
Paucar M, Lundin J, Alshammari T, Bergendal Å, Lindefeldt M, Alshammari M, Solders G, Di Re J, Savitcheva I, Granberg T, Laezza F, Iwarsson E, Svenningsson P. Broader phenotypic traits and widespread brain hypometabolism in spinocerebellar ataxia 27. J Intern Med 2020; 288:103-115. [PMID: 32112487 PMCID: PMC10123866 DOI: 10.1111/joim.13052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The goal of this study was to characterize a Swedish family with members affected by spinocerebellar ataxia 27 (SCA27), a rare autosomal dominant disease caused by mutations in fibroblast growth factor 14 (FGF14). Despite normal structural neuroimaging, psychiatric manifestations and intellectual disability are part of the SCA27 phenotype raising the need for functional neuroimaging. Here, we used clinical assessments, structural and functional neuroimaging to characterize these new SCA27 patients. Since one patient presents with a psychotic disorder, an exploratory study of markers of schizophrenia associated with GABAergic neurotransmission was performed in fgf14-/- mice, a preclinical model that replicates motor and learning deficits of SCA27. METHODS A comprehensive characterization that included clinical assessments, cognitive tests, structural neuroimaging studies, brain metabolism with 18 F-fluorodeoxyglucose PET ([18F] FDG PET) and genetic analyses was performed. Brains of fgf14-/- mice were studied with immunohistochemistry. RESULTS Nine patients had ataxia, and all affected patients harboured an interstitial deletion of chromosome 13q33.1 encompassing the entire FGF14 and integrin subunit beta like 1 (ITGBL1) genes. New features for SCA27 were identified: congenital onset, psychosis, attention deficit hyperactivity disorder and widespread hypometabolism that affected the medial prefrontal cortex (mPFC) in all patients. Hypometabolism in the PFC was far more pronounced in a SCA27 patient with psychosis. Reduced expression of VGAT was found in the mPFC of fgf14-/- mice. CONCLUSIONS This is the second largest SCA27 family identified to date. We provide new clinical and preclinical evidence for a significant psychiatric component in SCA27, strengthening the hypothesis of FGF14 as an important modulator of psychiatric disease.
Collapse
Affiliation(s)
- M Paucar
- From the, Departments of, Department of, Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of, Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - J Lundin
- Department of, Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - T Alshammari
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of, Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Å Bergendal
- From the, Departments of, Department of, Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M Lindefeldt
- Department of, Pediatric Neurology, Astrid Lindgren's Hospital, Stockholm, Sweden
| | - M Alshammari
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of, Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - G Solders
- From the, Departments of, Department of, Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of, Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - J Di Re
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
- Neuroscience Graduate Program, The University of Texas Medical Branch, Galveston, TX, USA
| | - I Savitcheva
- Departments of, Department of, Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - T Granberg
- From the, Departments of, Department of, Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of, Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - F Laezza
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - E Iwarsson
- Department of, Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - P Svenningsson
- From the, Departments of, Department of, Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of, Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Hsiao CT, Fu SJ, Liu YT, Lu YH, Zhong CY, Tang CY, Soong BW, Jeng CJ. Novel SCA19/22-associated KCND3 mutations disrupt human K V 4.3 protein biosynthesis and channel gating. Hum Mutat 2019; 40:2088-2107. [PMID: 31293010 DOI: 10.1002/humu.23865] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 11/07/2022]
Abstract
Mutations in the human voltage-gated K+ channel subunit KV 4.3-encoding KCND3 gene have been associated with the autosomal dominant neurodegenerative disorder spinocerebellar ataxia types 19 and 22 (SCA19/22). The precise pathophysiology underlying the dominant inheritance pattern of SCA19/22 remains elusive. Using cerebellar ataxia-specific targeted next-generation sequencing technology, we identified two novel KCND3 mutations, c.950 G>A (p.C317Y) and c.1123 C>T (p.P375S) from a cohort with inherited cerebellar ataxias in Taiwan. The patients manifested notable phenotypic heterogeneity that includes cognitive impairment. We employed in vitro heterologous expression systems to inspect the biophysical and biochemical properties of human KV 4.3 harboring the two novel mutations, as well as two previously reported but uncharacterized disease-related mutations, c.1013 T>A (p.V338E) and c.1130 C>T (p.T377M). Electrophysiological analyses revealed that all of these SCA19/22-associated KV 4.3 mutant channels manifested loss-of-function phenotypes. Protein chemistry and immunofluorescence analyses further demonstrated that these mutants displayed enhanced protein degradation and defective membrane trafficking. By coexpressing KV 4.3 wild-type with the disease-related mutants, we provided direct evidence showing that the mutants instigated anomalous protein biosynthesis and channel gating of KV 4.3. We propose that the dominant inheritance pattern of SCA19/22 may be explained by the dominant-negative effects of the mutants on protein biosynthesis and voltage-dependent gating of KV 4.3 wild-type channel.
Collapse
Affiliation(s)
- Cheng-Tsung Hsiao
- Department of Internal Medicine, Taipei Veterans General Hospital Taoyuan Branch, Taoyuan, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ssu-Ju Fu
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yo-Tsen Liu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Hsiang Lu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ciao-Yu Zhong
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yung Tang
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bing-Wen Soong
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|