1
|
Namikawa K, Pose-Méndez S, Köster RW. Genetic modeling of degenerative diseases and mechanisms of neuronal regeneration in the zebrafish cerebellum. Cell Mol Life Sci 2024; 82:26. [PMID: 39725709 DOI: 10.1007/s00018-024-05538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024]
Abstract
The cerebellum is a highly conserved brain compartment of vertebrates. Genetic diseases of the human cerebellum often lead to degeneration of the principal neuron, the Purkinje cell, resulting in locomotive deficits and socio-emotional impairments. Due to its relatively simple but highly conserved neuroanatomy and circuitry, these human diseases can be modeled well in vertebrates amenable for genetic manipulation. In the recent years, cerebellar research in zebrafish has contributed to understanding cerebellum development and function, since zebrafish larvae are not only molecularly tractable, but also accessible for high resolution in vivo imaging due to the transparency of the larvae and the ease of access to the zebrafish cerebellar cortex for microscopy approaches. Therefore, zebrafish is increasingly used for genetic modeling of human cerebellar neurodegenerative diseases and in particular of different types of Spinocerebellar Ataxias (SCAs). These models are well suited to address the underlying pathogenic mechanisms by means of in vivo cell biological studies. Furthermore, accompanying circuitry characterizations, physiological studies and behavioral analysis allow for unraveling molecular, structural and functional relationships. Moreover, unlike in mammals, zebrafish possess an astonishing ability to regenerate neuronal populations and their functional circuitry in the central nervous system including the cerebellum. Understanding the cellular and molecular processes of these regenerative processes could well serve to counteract acute and chronic loss of neurons in humans. Based on the high evolutionary conservation of the cerebellum these regeneration studies in zebrafish promise to open therapeutic avenues for counteracting cerebellar neuronal degeneration. The current review aims to provide an overview over currently existing genetic models of human cerebellar neurodegenerative diseases in zebrafish as well as neuroregeneration studies using the zebrafish cerebellum. Due to this solid foundation in cerebellar disease modeling and neuronal regeneration analysis, the zebrafish promises to become a popular model organism for both unraveling pathogenic mechanisms of human cerebellar diseases and providing entry points for therapeutic neuronal regeneration approaches.
Collapse
Affiliation(s)
- Kazuhiko Namikawa
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Sol Pose-Méndez
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Reinhard W Köster
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
2
|
Torres M, Pederson B, Wang H, Lin LL, Wang HH, Bugarin-Lapuz A, Zhao Z, Qi L. Purkinje cell-specific deficiency in SEL1L-hrd1 endoplasmic reticulum-associated degradation causes progressive cerebellar ataxia in mice. JCI Insight 2024; 9:e174725. [PMID: 39352758 PMCID: PMC11563667 DOI: 10.1172/jci.insight.174725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Recent studies have identified multiple genetic variants of SEL1L-HRD1 endoplasmic reticulum-associated degradation (ERAD) in humans with neurodevelopmental disorders and locomotor dysfunctions, including ataxia. However, the relevance and importance of SEL1L-HRD1 ERAD in the pathogenesis of ataxia remain unexplored. Here, we showed that SEL1L deficiency in Purkinje cells leads to early-onset progressive cerebellar ataxia with progressive loss of Purkinje cells with age. Mice with Purkinje cell-specific deletion of SEL1L (Sel1LPcp2Cre) exhibited motor dysfunction beginning around 9 weeks of age. Transmission electron microscopy analysis revealed dilated ER and fragmented nuclei in Purkinje cells of adult Sel1LPcp2Cre mice, indicative of altered ER homeostasis and cell death. Finally, loss of Purkinje cells was associated with a secondary neurodegeneration of granular cells, as well as robust activation of astrocytes and proliferation of microglia, in the cerebellums of Sel1LPcp2Cre mice. These data demonstrate the pathophysiological importance of SEL1L-HRD1 ERAD in Purkinje cells in the pathogenesis of cerebellar ataxia.
Collapse
Affiliation(s)
- Mauricio Torres
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Brent Pederson
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hui Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Liangguang Leo Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Huilun Helen Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Amara Bugarin-Lapuz
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Sekerková G, Kilic S, Cheng YH, Fredrick N, Osmani A, Kim H, Opal P, Martina M. Phenotypical, genotypical and pathological characterization of the moonwalker mouse, a model of ataxia. Neurobiol Dis 2024; 195:106492. [PMID: 38575093 PMCID: PMC11089908 DOI: 10.1016/j.nbd.2024.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
We performed a comprehensive study of the morphological, functional, and genetic features of moonwalker (MWK) mice, a mouse model of spinocerebellar ataxia caused by a gain of function of the TRPC3 channel. These mice show numerous behavioral symptoms including tremor, altered gait, circling behavior, impaired motor coordination, impaired motor learning and decreased limb strength. Cerebellar pathology is characterized by early and almost complete loss of unipolar brush cells as well as slowly progressive, moderate loss of Purkinje cell (PCs). Structural damage also includes loss of synaptic contacts from parallel fibers, swollen ER structures, and degenerating axons. Interestingly, no obvious correlation was observed between PC loss and severity of the symptoms, as the phenotype stabilizes around 2 months of age, while the cerebellar pathology is progressive. This is probably due to the fact that PC function is severely impaired much earlier than the appearance of PC loss. Indeed, PC firing is already impaired in 3 weeks old mice. An interesting feature of the MWK pathology that still remains to be explained consists in a strong lobule selectivity of the PC loss, which is puzzling considering that TRPC is expressed in every PC. Intriguingly, genetic analysis of MWK cerebella shows, among other alterations, changes in the expression of both apoptosis inducing and resistance factors possibly suggesting that damaged PCs initiate specific cellular pathways that protect them from overt cell loss.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| | - Sumeyra Kilic
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Yen-Hsin Cheng
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Natalie Fredrick
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Anne Osmani
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Haram Kim
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Puneet Opal
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Marco Martina
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Manto M, Cendelin J, Strupp M, Mitoma H. Advances in cerebellar disorders: pre-clinical models, therapeutic targets, and challenges. Expert Opin Ther Targets 2023; 27:965-987. [PMID: 37768297 DOI: 10.1080/14728222.2023.2263911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cerebellar ataxias (CAs) represent neurological disorders with multiple etiologies and a high phenotypic variability. Despite progress in the understanding of pathogenesis, few therapies are available so far. Closing the loop between preclinical studies and therapeutic trials is important, given the impact of CAs upon patients' health and the roles of the cerebellum in multiple domains. Because of a rapid advance in research on CAs, it is necessary to summarize the main findings and discuss future directions. AREAS COVERED We focus our discussion on preclinical models, cerebellar reserve, the therapeutic management of CAs, and suitable surrogate markers. We searched Web of Science and PubMed using keywords relevant to cerebellar diseases, therapy, and preclinical models. EXPERT OPINION There are many symptomatic and/or disease-modifying therapeutic approaches under investigation. For therapy development, preclinical studies, standardization of disease evaluation, safety assessment, and demonstration of clinical improvements are essential. Stage of the disease and the level of the cerebellar reserve determine the goals of the therapy. Deficits in multiple categories and heterogeneity of CAs may require disease-, stage-, and symptom-specific therapies. More research is needed to clarify how therapies targeting the cerebellum influence both basal ganglia and the cerebral cortex, poorly explored domains in CAs.
Collapse
Affiliation(s)
- Mario Manto
- Service des Neurosciences, University of Mons, Mons, Belgium
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo medical University, Tokyo, Japan
| |
Collapse
|
5
|
Lalonde R, Strazielle C. Probiotic Influences on Motor Skills: A Review. Curr Neuropharmacol 2023; 21:2481-2486. [PMID: 37550907 PMCID: PMC10616912 DOI: 10.2174/1570159x21666230807150523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 08/09/2023] Open
Abstract
The effects of probiotics have mostly been shown to be favorable on measures of anxiety and stress. More recent experiments indicate single- and multi-strain probiotics in treating motorrelated diseases. Initial studies in patients with Parkinson's disease and Prader-Willi syndrome are concordant with this hypothesis. In addition, probiotics improved motor coordination in normal animals and models of Parkinson's disease, multiple sclerosis, and spinal cord injury as well as grip strength in hepatic encephalopathy. Further studies should delineate the most optimal bacterial profile under each condition.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France
- CHRU Nancy, Vandœuvre-les-Nancy, France
| |
Collapse
|
6
|
Cendelin J, Cvetanovic M, Gandelman M, Hirai H, Orr HT, Pulst SM, Strupp M, Tichanek F, Tuma J, Manto M. Consensus Paper: Strengths and Weaknesses of Animal Models of Spinocerebellar Ataxias and Their Clinical Implications. CEREBELLUM (LONDON, ENGLAND) 2022; 21:452-481. [PMID: 34378174 PMCID: PMC9098367 DOI: 10.1007/s12311-021-01311-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Spinocerebellar ataxias (SCAs) represent a large group of hereditary degenerative diseases of the nervous system, in particular the cerebellum, and other systems that manifest with a variety of progressive motor, cognitive, and behavioral deficits with the leading symptom of cerebellar ataxia. SCAs often lead to severe impairments of the patient's functioning, quality of life, and life expectancy. For SCAs, there are no proven effective pharmacotherapies that improve the symptoms or substantially delay disease progress, i.e., disease-modifying therapies. To study SCA pathogenesis and potential therapies, animal models have been widely used and are an essential part of pre-clinical research. They mainly include mice, but also other vertebrates and invertebrates. Each animal model has its strengths and weaknesses arising from model animal species, type of genetic manipulation, and similarity to human diseases. The types of murine and non-murine models of SCAs, their contribution to the investigation of SCA pathogenesis, pathological phenotype, and therapeutic approaches including their advantages and disadvantages are reviewed in this paper. There is a consensus among the panel of experts that (1) animal models represent valuable tools to improve our understanding of SCAs and discover and assess novel therapies for this group of neurological disorders characterized by diverse mechanisms and differential degenerative progressions, (2) thorough phenotypic assessment of individual animal models is required for studies addressing therapeutic approaches, (3) comparative studies are needed to bring pre-clinical research closer to clinical trials, and (4) mouse models complement cellular and invertebrate models which remain limited in terms of clinical translation for complex neurological disorders such as SCAs.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8511, Japan
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig-Maximilians University, Munich, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Filip Tichanek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7843, San Antonio, TX, 78229, USA
| | - Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, UMons, Mons, Belgium
| |
Collapse
|
7
|
Lalonde R, Strazielle C. The Hole-Board Test in Mutant Mice. Behav Genet 2022; 52:158-169. [PMID: 35482162 DOI: 10.1007/s10519-022-10102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/01/2022] [Indexed: 11/02/2022]
Abstract
First described by Boissier and Simon in (Ther Recreat J 17:1225-1232, 1962), the hole-board has become a recognized test of anxiety and spatial memory. Benzodiazepines acting at the GABAA-BZD site increase hole-pokes in rats and mice, indicating a loss in behavioral inhibition concordant with the behavior of mutant mice deficient in the GABA transporter. Hole-poking also depends on arousal mechanisms dependent on dopaminergic transmission, as indicated by drug and null mutant studies. In addition, the behavior is modified in natural and null mutants affecting the cerebellum as well as null mutants affecting neuropeptides, growth factors, cell adhesion, and inflammation. Further research is required to determine convergences between genetic and pharmacological effects.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France. .,CHRU Nancy, Vandœuvre-les-Nancy, France.
| |
Collapse
|
8
|
Lalonde R, Strazielle C. The mouse at the popcorn stage of development. Int J Dev Neurosci 2022; 82:199-204. [PMID: 35080044 DOI: 10.1002/jdn.10171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
In mice, rats, and rabbits vigorous jumping and hyperexcitability occur at the popcorn stage of postnatal development. In view of subcortical structures appearing before cortical ones, the trait is deemed to occur at the maturation time of ascending excitatory projections from the brainstem and to disappear at the maturation time of descending inhibitory projections from the forebrain. There is evidence that the popcorn stage may be due in part to the lack of a cholinergic influence on dopamine systems. Based mostly on results found in adult mice and rats, there may also be a role for cortico-subcortical systems that include the cerebellum and basal ganglia requiring the influence of biogenic amines, glutamate, and endocannabinoids.
Collapse
Affiliation(s)
- Robert Lalonde
- University of Lorraine, Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- University of Lorraine, Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, Vandœuvre-les-Nancy, France.,CHRU Nancy, Vandœuvre-les-Nancy, France
| |
Collapse
|
9
|
van der Heijden ME, Sillitoe RV. Interactions Between Purkinje Cells and Granule Cells Coordinate the Development of Functional Cerebellar Circuits. Neuroscience 2021; 462:4-21. [PMID: 32554107 PMCID: PMC7736359 DOI: 10.1016/j.neuroscience.2020.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Cerebellar development has a remarkably protracted morphogenetic timeline that is coordinated by multiple cell types. Here, we discuss the intriguing cellular consequences of interactions between inhibitory Purkinje cells and excitatory granule cells during embryonic and postnatal development. Purkinje cells are central to all cerebellar circuits, they are the first cerebellar cortical neurons to be born, and based on their cellular and molecular signaling, they are considered the master regulators of cerebellar development. Although rudimentary Purkinje cell circuits are already present at birth, their connectivity is morphologically and functionally distinct from their mature counterparts. The establishment of the Purkinje cell circuit with its mature firing properties has a temporal dependence on cues provided by granule cells. Granule cells are the latest born, yet most populous, neuronal type in the cerebellar cortex. They provide a combination of mechanical, molecular and activity-based cues that shape the maturation of Purkinje cell structure, connectivity and function. We propose that the wiring of Purkinje cells for function falls into two developmental phases: an initial phase that is guided by intrinsic mechanisms and a later phase that is guided by dynamically-acting cues, some of which are provided by granule cells. In this review, we highlight the mechanisms that granule cells use to help establish the unique properties of Purkinje cell firing.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
10
|
Irie T, Yamazaki D, Kikura-Hanajiri R. F-phenibut (β-(4-Fluorophenyl)-GABA), a potent GABA B receptor agonist, activates an outward-rectifying K + current and suppresses the generation of action potentials in mouse cerebellar Purkinje cells. Eur J Pharmacol 2020; 884:173437. [PMID: 32735986 DOI: 10.1016/j.ejphar.2020.173437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 11/15/2022]
Abstract
The GABA analog phenibut (β-Phenyl-GABA) is a GABAB receptor agonist that has been licensed for various uses in Russia. Phenibut is also available as a dietary supplement from online vendors worldwide, and previous studies have indicated that phenibut overdose results in intoxication, withdrawal symptoms, and addiction. F-phenibut (β-(4-Fluorophenyl)-GABA), a derivative of phenibut, has not been approved for clinical use. However, it is also available as a nootropic supplement from online suppliers. F-phenibut binds to GABAB with a higher affinity than phenibut; therefore, F-phenibut may lead to more serious intoxication than phenibut. However, the mechanisms by which F-phenibut acts on GABAB receptors and influences neuronal function remain unknown. In the present study, we compared the potency of F-phenibut, phenibut, and the GABAB agonist (±)-baclofen (baclofen) using in vitro patch-clamp recordings obtained from mouse cerebellar Purkinje cells slice preparations Our findings indicate that F-phenibut acted as a potent GABAB agonist. EC50 of outward current density evoked by the three GABAB agonists decreased in the following order: phenibut (1362 μM) > F-phenibut (23.3 μM) > baclofen (6.0 μM). The outward current induced by GABAB agonists was an outward-rectifying K+ current, in contrast to the previous finding that GABAB agonists activates an inward-rectifying K+ current. The K+ current recorded in the present study was insensitive to extracellular Ba2+, intra- or extracellular Cs+, and intra- or extracellular tetraethylammonium-Cl. Moreover, F-phenibut suppressed action potential generation in Purkinje cells. Thus, abuse of F-phenibut may lead to severe damage by inhibiting the excitability of GABAB-expressing neurons.
Collapse
Affiliation(s)
- Tomohiko Irie
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, 210-9501, Japan.
| | - Daiju Yamazaki
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, 210-9501, Japan
| | - Ruri Kikura-Hanajiri
- Division of Pharmacognosy, Phytochemistry, and Narcotics, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, 210-9501, Japan
| |
Collapse
|
11
|
Machado AS, Marques HG, Duarte DF, Darmohray DM, Carey MR. Shared and specific signatures of locomotor ataxia in mutant mice. eLife 2020; 9:55356. [PMID: 32718435 PMCID: PMC7386913 DOI: 10.7554/elife.55356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/09/2020] [Indexed: 01/30/2023] Open
Abstract
Several spontaneous mouse mutants with deficits in motor coordination and associated cerebellar neuropathology have been described. Intriguingly, both visible gait alterations and neuroanatomical abnormalities throughout the brain differ across mutants. We previously used the LocoMouse system to quantify specific deficits in locomotor coordination in mildly ataxic Purkinje cell degeneration mice (pcd; Machado et al., 2015). Here, we analyze the locomotor behavior of severely ataxic reeler mutants and compare and contrast it with that of pcd. Despite clearly visible gait differences, direct comparison of locomotor kinematics and linear discriminant analysis reveal a surprisingly similar pattern of impairments in multijoint, interlimb, and whole-body coordination in the two mutants. These findings capture both shared and specific signatures of gait ataxia and provide a quantitative foundation for mapping specific locomotor impairments onto distinct neuropathologies in mice.
Collapse
Affiliation(s)
- Ana S Machado
- Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Hugo G Marques
- Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Diogo F Duarte
- Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Dana M Darmohray
- Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Megan R Carey
- Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| |
Collapse
|
12
|
Lee LKC, Leong LI, Liu Y, Luo M, Chan HYE, Choi CHJ. Preclinical Nanomedicines for Polyglutamine-Based Neurodegenerative Diseases. Mol Pharm 2020; 18:610-626. [PMID: 32584043 DOI: 10.1021/acs.molpharmaceut.0c00506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyglutamine (polyQ) diseases, such as Huntington's disease and several types of spinocerebellar ataxias, are dominantly inherited progressive neurodegenerative disorders and characterized by the presence of expanded CAG trinucleotide repeats in the respective disease locus of the patient genomes. Patients with polyQ diseases currently need to rely on symptom-relieving treatments because disease-modifying therapeutic interventions remain scarce. Many disease-modifying therapeutic agents are now under clinical testing for treating polyQ diseases, but their delivery to the brain is often too invasive (e.g., intracranial injection) or inefficient, owing to in vivo degradation and clearance by physiological barriers (e.g., oral and intravenous administration). Nanoparticles provide a feasible solution for improving drug delivery to the brain, as evidenced by an increasing number of preclinical studies that document the efficacy of nanomedicines for polyQ diseases over the past 5-6 years. In this review, we present the pathogenic mechanisms of polyQ diseases, the common animal models of polyQ diseases for evaluating the efficacy of nanomedicines, and the common administration routes for delivering nanoparticles to the brain. Next, we summarize the recent preclinical applications of nanomedicines for treating polyQ diseases and improving neurological conditions in vivo, placing emphasis on antisense oligonucleotides, small peptide inhibitors, and small molecules as the disease-modifying agents. We conclude with our perspectives of the burgeoning field of "nanomedicines for polyQ diseases", including the use of inorganic nanoparticles and potential drugs as next-generation nanomedicines, development of higher-order animal models of polyQ diseases, and importance of "brain-nano" interactions.
Collapse
Affiliation(s)
| | | | | | - Meihua Luo
- Monash Institute of Pharmaceutics Science, Monash University, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
13
|
Bowie E, Goetz SC. TTBK2 and primary cilia are essential for the connectivity and survival of cerebellar Purkinje neurons. eLife 2020; 9:51166. [PMID: 31934864 PMCID: PMC7028366 DOI: 10.7554/elife.51166] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Primary cilia are vital signaling organelles that extend from most types of cells, including neurons and glia. These structures are essential for development of many tissues and organs; however, their function in adult tissues, particularly neurons in the brain, remains largely unknown. Tau tubulin kinase 2 (TTBK2) is a critical regulator of ciliogenesis, and is also mutated in a hereditary neurodegenerative disorder, spinocerebellar ataxia type 11 (SCA11). Here, we show that conditional knockout of Ttbk2 in adult mice results in degenerative cerebellar phenotypes that recapitulate aspects of SCA11 including motor coordination deficits and defects to Purkinje cell (PC) integrity. We also find that the Ttbk2 conditional mutant mice quickly lose cilia throughout the brain. We show that conditional knockout of the key ciliary trafficking gene Ift88 in adult mice results in nearly identical cerebellar phenotypes to those of the Ttbk2 knockout, indicating that disruption of ciliary signaling is a key driver of these phenotypes. Our data suggest that primary cilia play an integral role in maintaining the function of PCs in the adult cerebellum and reveal novel insights into mechanisms involved in neurodegeneration.
Collapse
Affiliation(s)
- Emily Bowie
- University Program in Genetics and Genomics, Duke University, Durham, United States
| | - Sarah C Goetz
- Department of Pharmacology and Cancer Biology, Duke University, Durham, United States
| |
Collapse
|