1
|
Liu YJ, Wang HY, Wang R, Yu J, Shi JJ, Chen RY, Yang GJ, Chen J. IgE-FcεRI protein-protein interaction as a therapeutic target against allergic asthma: An updated review. Int J Biol Macromol 2025; 284:138099. [PMID: 39608548 DOI: 10.1016/j.ijbiomac.2024.138099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
In the last decade, research has clarified the binding interactions between immunoglobulin E (IgE) and its high-affinity receptor, the FcεRI alpha chain (FcεRI). The formation of the IgE-FcεRI complex is crucial in the context of atopic allergies, linking allergen recognition to cellular activation and disease manifestation. Consequently, pharmacological strategies that disrupt these interactions are vital for managing atopic conditions. Historically, the complexity of the IgE-FcεRI binding process and challenges in producing functional recombinant derivatives has complicated data interpretation. However, advancements in structural biology, protein engineering, and immunological studies have enhanced our understanding of these protein-protein interactions (PPI), facilitating the development of more effective therapies. The introduction of anti-IgE therapies underscores the significance of the IgE-FcεRI PPI in allergic asthma. IgE, that is present locally and systemically, serves as a sensory mechanism in the adaptive immune response, particularly in mast cells (MCs) and basophils. When bound to FcεRI, IgE enables rapid memory responses to allergens, but dysregulation can lead to severe allergic asthma. Thus, the reactivity of IgE sensors can be finely modulated using various IgE-associated molecules. This review explores the mechanisms underlying IgE-dependent MC activation and its regulation by these molecules, including the latest therapeutic candidates under investigation.
Collapse
Affiliation(s)
- Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Hui-Ying Wang
- Department of Allergy and Clinical Immunology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China.
| |
Collapse
|
2
|
Zettl I, Bauernfeind C, Kollárová J, Flicker S. Single-Domain Antibodies-Novel Tools to Study and Treat Allergies. Int J Mol Sci 2024; 25:7602. [PMID: 39062843 PMCID: PMC11277559 DOI: 10.3390/ijms25147602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
IgE-mediated allergies represent a major health problem in the modern world. Apart from allergen-specific immunotherapy (AIT), the only disease-modifying treatment, researchers focus on biologics that target different key molecules such as allergens, IgE, or type 2 cytokines to ameliorate allergic symptoms. Single-domain antibodies, or nanobodies, are the newcomers in biotherapeutics, and their huge potential is being investigated in various research fields since their discovery 30 years ago. While they are dominantly applied for theranostics of cancer and treatment of infectious diseases, nanobodies have become increasingly substantial in allergology over the last decade. In this review, we discuss the prerequisites that we consider to be important for generating useful nanobody-based drug candidates for treating allergies. We further summarize the available research data on nanobodies used as allergen monitoring and detection probes and for therapeutic approaches. We reflect on the limitations that have to be addressed during the development process, such as in vivo half-life and immunogenicity. Finally, we speculate about novel application formats for allergy treatment that might be available in the future.
Collapse
Affiliation(s)
- Ines Zettl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Clarissa Bauernfeind
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Jessica Kollárová
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Wemlinger SM, Cambier JC. Therapeutic tactics for targeting B lymphocytes in autoimmunity and cancer. Eur J Immunol 2024; 54:e2249947. [PMID: 37816494 DOI: 10.1002/eji.202249947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
B lymphocytes have become a very popular therapeutic target in a number of autoimmune indications due to their newly appreciated roles, and approachability, in these diseases. Many of the therapies now applied in autoimmunity were initially developed to deplete malignant B cells. These strategies have also been found to benefit patients suffering from such autoimmune diseases as multiple sclerosis, type I diabetes, systemic lupus erythematosus, and rheumatoid arthritis, to name a few. These observations have supported the expansion of research addressing the mechanistic contributions of B cells in these diseases, as well as blossoming of therapeutics that target them. This review seeks to summarize cutting-edge modalities for targeting B cells, including monoclonal antibodies, bispecific antibodies, antibody-drug conjugates, chimeric antigen receptor-T cells, and small molecule inhibitors. Efforts to refine B-cell targeted therapy to eliminate only pathogenic autoreactive cells will be addressed as well as the potential for future B-cell-based cellular therapeutics. Finally, we also address approaches that seek to silence B-cell function without depletion.
Collapse
Affiliation(s)
- Scott M Wemlinger
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
4
|
Yang BC. Biologics to treat anaphylaxis. Curr Opin Allergy Clin Immunol 2023; 23:370-375. [PMID: 37527059 DOI: 10.1097/aci.0000000000000940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW The purpose of this literature review was to review the latest use of biologics in the management of anaphylaxis. The methodology was to highlight both the nonbiologic management of anaphylaxis and the biologic management and how they can be used in conjunction with each other. RECENT FINDINGS As the phenotypes and endotypes of anaphylaxis are better portrayed, it furthers our understanding of the mechanisms of anaphylaxis. New applications of existing biologics to the prevention of anaphylaxis are described. SUMMARY Anaphylaxis is a potentially life-threatening acute hypersensitivity reaction affecting up to 16.8% of the U.S. population. Acute management entails swift identification, removal of the causative agent, and the prevention of cardiovascular collapse, firstly with epinephrine. Adjunctive treatments such as antihistamines work to prevent anaphylaxis from recurring. Biologic management of anaphylaxis involves the use of large-molecule drugs such as monoclonal antibodies. Omalizumab, an IgG1 monoclonal antibody targeting unbound IgE, is the most prevalent and widely studied biologic in the prevention of anaphylaxis. Other monoclonal antibodies in development or approved for other indications, such as ligelizumab, quilizumab, MEDI4212, and dupilumab, may also have potential for preventing anaphylaxis through various mechanisms.
Collapse
|
5
|
Dispenza MC, Metcalfe DD, Olivera A. Research Advances in Mast Cell Biology and Their Translation Into Novel Therapies for Anaphylaxis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2032-2042. [PMID: 36958519 PMCID: PMC10330051 DOI: 10.1016/j.jaip.2023.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Anaphylaxis is an acute, potentially life-threatening systemic allergic reaction for which there are no known reliable preventative therapies. Its primary cell mediator, the mast cell, has several pathophysiologic roles and functions in IgE-mediated reactions that continue to be poorly understood. Recent advances in the understanding of allergic mechanisms have identified novel targets for inhibiting mast cell function and activation. The prevention of anaphylaxis is within reach with new drugs that could modulate immune tolerance, mast cell proliferation and differentiation, and IgE regulation and production. Several US Food and Drug Administration-approved drugs for chronic urticaria, mastocytosis, and cancer are also being repurposed to prevent anaphylaxis. New therapeutics have not only shown promise in potential efficacy for preventing IgE-mediated reactions, but in some cases, they are able to inform us about mast cell mechanisms in vivo. This review summarizes the most recent advances in the treatment of anaphylaxis that have arisen from new pharmacologic tools and our current understanding of mast cell biology.
Collapse
Affiliation(s)
- Melanie C Dispenza
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md.
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergy Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergy Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
6
|
Ling XJ, Wei JF, Zhu Y. Aiming to IgE: Drug development in allergic diseases. Int Immunopharmacol 2023; 121:110495. [PMID: 37348229 DOI: 10.1016/j.intimp.2023.110495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The incidence of allergic disease significantly increases in recent decades, causing it become a major public health problem all over the world. The common allergic diseases such as allergic dermatitis, allergy rhinitis, allergic asthma and food allergy are mediated, at least in part, by immunoglobulin E (IgE), and so IgE acts as a central role in allergic diseases. IgE can interact with its high-affinity receptor (FcεRⅠ) which is primarily expressed on tissue-resident mast cells and circulating basophils, initiating intracellular signal transduction and then causing the activation and degranulation of mast cells and basophils. On the other hand, IgE interaction with its low-affinity receptor (CD23), can regulate various IgE-mediated immune responses including IgE-allergen complex presentation, IgE synthesis, the growth and differentiation of both B and T cells, and the secretion of pro-inflammatory mediators. With the deeper mechanism research for allergic diseases, new therapeutic strategies for interfering IgE are developed and receive a great attention. In this review, we summarize a current profile of therapeutic strategies for interfering IgE in allergic diseases. Besides, we suggest that targeting memory B cells (including long-lived plasma cells and (or) IgE+ memory B cells) may help to completely control allergic diseases, and highlight that the development of drugs synergistically aiming to multiple targets can be a better choice for improving treatment efficacy which results from allergic diseases as the systemic disorders caused by an impaired immune system.
Collapse
Affiliation(s)
- Xiao-Jing Ling
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ji-Fu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Ying Zhu
- Department of Blood Transfusion, Ganzhou Key Laboratory of Anesthesiology, Anesthesia and Surgery Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| |
Collapse
|
7
|
Striz I, Golebski K, Strizova Z, Loukides S, Bakakos P, Hanania N, Jesenak M, Diamant Z. New insights into the pathophysiology and therapeutic targets of asthma and comorbid chronic rhinosinusitis with or without nasal polyposis. Clin Sci (Lond) 2023; 137:727-753. [PMID: 37199256 PMCID: PMC10195992 DOI: 10.1042/cs20190281] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Asthma and chronic rhinosinusitis with nasal polyps (CRSwNP) or without (CRSsNP) are chronic respiratory diseases. These two disorders often co-exist based on common anatomical, immunological, histopathological, and pathophysiological basis. Usually, asthma with comorbid CRSwNP is driven by type 2 (T2) inflammation which predisposes to more severe, often intractable, disease. In the past two decades, innovative technologies and detection techniques in combination with newly introduced targeted therapies helped shape our understanding of the immunological pathways underlying inflammatory airway diseases and to further identify several distinct clinical and inflammatory subsets to enhance the development of more effective personalized treatments. Presently, a number of targeted biologics has shown clinical efficacy in patients with refractory T2 airway inflammation, including anti-IgE (omalizumab), anti-IL-5 (mepolizumab, reslizumab)/anti-IL5R (benralizumab), anti-IL-4R-α (anti-IL-4/IL-13, dupilumab), and anti-TSLP (tezepelumab). In non-type-2 endotypes, no targeted biologics have consistently shown clinical efficacy so far. Presently, multiple therapeutical targets are being explored including cytokines, membrane molecules and intracellular signalling pathways to further expand current treatment options for severe asthma with and without comorbid CRSwNP. In this review, we discuss existing biologics, those under development and share some views on new horizons.
Collapse
Affiliation(s)
- Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Subdivision of Allergology and Clinical Immunology, Institute for Postgraduate Education in Medicine, Prague, Czech Republic
| | - Kornel Golebski
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Zuzana Strizova
- Institute of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Stelios Loukides
- Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Bakakos
- First Respiratory Medicine Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicola A. Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Milos Jesenak
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Slovakia
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Slovakia
- Department of Clinical Immunology and Allergology, University Hospital in Martin, Slovakia
| | - Zuzana Diamant
- Department of Microbiology Immunology and Transplantation, KU Leuven, Catholic University of Leuven, Belgium
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
Yang N, Musa I, Maskey AR, Li K, Wang Z, Liang B, Zhang S, Zhan J, Li XM. Formononetin isolated from Sophorae flavescentis inhibits B cell-IgE production by regulating ER-stress transcription factor XBP-1. FRONTIERS IN ALLERGY 2023; 3:1056203. [PMID: 36816476 PMCID: PMC9928687 DOI: 10.3389/falgy.2022.1056203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/12/2022] [Indexed: 02/04/2023] Open
Abstract
Rationale IgE plays an important pathologic role in most, if not all, allergic conditions. We previously showed that ASHMI (anti-asthma herbal medicine intervention) suppressed IgE production in murine models of asthma and in asthma subjects. However, the active compounds in ASHMI responsible for the IgE suppression are still unknown. Objective We sought to identify the compound(s) in ASHMI that are responsible for IgE inhibition as well as investigate the mechanisms by which the identified compound(s) decreases IgE production. Methods The compounds in Sophorae Flavescentis were separated using Column chromatography and preparative-HPLC. The separated compounds were identified using LC-MS and 1H-NMR. U266 cells, an IgE-producing plasma cell line, were cultured with various concentrations of identified compounds. The levels of IgE production by the U266 cell were measured by ELISA. Trypan blue exclusion was used to determine the cell viability. The gene expression of XBP-1 and IgE-heavy chain was determined by RT-PCR. Results A single compound identified as formononetin was isolated from Sophorae Flavescentis. Formononetin significantly and dose dependently decreased the IgE production in U266 cells across a concentration range of 2-20 µg/ml (p < 0.05-0.001 vs. untreated cells) with an IC50 value of 3.43 μg/ml. There was no cytotoxicity at any tested concentration. Formononetin significantly decreased XBP-1, and IgE-heavy chain gene expression compared with untreated cells (p < 0.001). Conclusion Formononetin decreased IgE production in human B cell line U266 cells in a dose-dependent fashion through the regulation of XBP-1 ER transcription. Formononetin may be a potential therapy for allergic asthma and other IgE-mediated diseases.
Collapse
Affiliation(s)
- Nan Yang
- General Nutraceutical Technology LLC, Elmsford, NY, United States,Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, United States
| | - Ibrahim Musa
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, United States
| | - Anish R. Maskey
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, United States
| | - Ke Li
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, United States,Guangdong Hospital Department of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Foshan, China
| | - Zhenzhen Wang
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, United States,Department of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Banghao Liang
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, United States
| | - Shuwei Zhang
- Department of Biological Engineering, Utah State University, Logan, UT, United States
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, Logan, UT, United States
| | - Xiu-Min Li
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, United States,Department of Otolaryngology, New York Medical College, Valhalla, NY, United States,Correspondence: Xiu-Min Li
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The purpose of this literature review was to review the latest advancements with biologics in rapid drug desensitization. Our methodology was to highlight both desensitization to biologics themselves and the use of biologics in desensitization to both biologic and nonbiologic drugs. RECENT FINDINGS Biologics are a vast category of drugs that include monoclonal antibodies, nanobodies, modern vaccinations, and even hormones. Desensitization to biologics can be safely performed through standardized procedure. Biomarkers are used both in vitro and in vivo to help identify and classify hypersensitivity reactions. Hypersensitivity reactions to the mRNA vaccinations against SARS-CoV-2 present their own unique challenges to management. There are specific excipients in monoclonal antibodies that are thought to be responsible for many of their hypersensitivity reactions. Certain biologics can even be used to assist in desensitization to other drugs. Rapid drug desensitization is a standardized procedure that may be able to help many patients who have experienced hypersensitivity reactions to biologics and would best be treated with them to continue to receive them. Biologic drugs have opened a new era in medicine for the prevention and treatment of infectious diseases, cancer, and inflammatory diseases. Hypersensitivity reactions to biologics are quite common. This literature review presents the latest advancements in our understanding of hypersensitivity reactions to biologics, how rapid drug desensitization can be used to continue therapy despite history of hypersensitivity, and how biologics themselves can be used to aid in desensitization itself.
Collapse
Affiliation(s)
- Barbara C Yang
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Room 5002-B, Boston, MA, 02115, USA.
- Ribon Therapeutics, 35 Cambridgepark Drive Suite 300, Cambridge, MA, 02140, USA.
| | - Mariana C Castells
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Room 5002-B, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Kuo BS, Li CH, Chen JB, Shiung YY, Chu CY, Lee CH, Liu YJ, Kuo JH, Hsu C, Su HW, Li YF, Lai A, Ho YF, Cheng YN, Huang HX, Lung MC, Wu MS, Yang FH, Lin CH, Tseng W, Yang J, Lin CY, Tsai PH, Chang HK, Wang YJ, Chen T, Lynn S, Liao MJ, Wang CY. IgE-neutralizing UB-221 mAb, distinct from omalizumab and ligelizumab, exhibits CD23-mediated IgE downregulation and relieves urticaria symptoms. J Clin Invest 2022; 132:157765. [PMID: 35912861 PMCID: PMC9337824 DOI: 10.1172/jci157765] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/14/2022] [Indexed: 01/08/2023] Open
Abstract
Over the last 2 decades, omalizumab is the only anti-IgE antibody that has been approved for asthma and chronic spontaneous urticaria (CSU). Ligelizumab, a higher-affinity anti-IgE mAb and the only rival viable candidate in late-stage clinical trials, showed anti-CSU efficacy superior to that of omalizumab in phase IIb but not in phase III. This report features the antigenic-functional characteristics of UB-221, an anti-IgE mAb of a newer class that is distinct from omalizumab and ligelizumab. UB-221, in free form, bound abundantly to CD23-occupied IgE and, in oligomeric mAb-IgE complex forms, freely engaged CD23, while ligelizumab reacted limitedly and omalizumab stayed inert toward CD23; these observations are consistent with UB-221 outperforming ligelizumab and omalizumab in CD23-mediated downregulation of IgE production. UB-221 bound IgE with a strong affinity to prevent FcԑRI-mediated basophil activation and degranulation, exhibiting superior IgE-neutralizing activity to that of omalizumab. UB-221 and ligelizumab bound cellular IgE and effectively neutralized IgE in sera of patients with atopic dermatitis with equal strength, while omalizumab lagged behind. A single UB-221 dose administered to cynomolgus macaques and human IgE (ε, κ)-knockin mice could induce rapid, pronounced serum-IgE reduction. A single UB-221 dose administered to patients with CSU in a first-in-human trial exhibited durable disease symptom relief in parallel with a rapid reduction in serum free-IgE level.
Collapse
Affiliation(s)
- Be-Sheng Kuo
- United BioPharma, Inc., Hsinchu, Taiwan.,UBI Asia, Hsinchu, Taiwan.,United Biomedical, Inc., Hauppauge, New York, USA
| | | | | | | | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | - Cindy Hsu
- United BioPharma, Inc., Hsinchu, Taiwan
| | | | | | - Annie Lai
- United BioPharma, Inc., Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Chang Yi Wang
- United BioPharma, Inc., Hsinchu, Taiwan.,UBI Asia, Hsinchu, Taiwan.,United Biomedical, Inc., Hauppauge, New York, USA
| |
Collapse
|
11
|
Rodak A, Stadlmayr G, Stadlbauer K, Lichtscheidl D, Bobbili MR, Rüker F, Wozniak-Knopp G. Bispecific T-Cell Engagers Targeting Membrane-Bound IgE. Biomedicines 2021; 9:1568. [PMID: 34829798 PMCID: PMC8615095 DOI: 10.3390/biomedicines9111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/07/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
The increased incidence of allergies and asthma has sparked interest in IgE, the central player in the allergic response. Interaction with its high-affinity receptor FcεRI leads to sensitization and allergen presentation, extracellular membrane-proximal domain in membrane IgE can act as an antigen receptor on B cells, and the interaction with low-affinity IgE receptor CD23 additionally influences its homeostatic range. Therapeutic anti-IgE antibodies act by the inhibition of IgE functions by interfering with its receptor binding or by the obliteration of IgE-B cells, causing a reduction of serum IgE levels. Fusion proteins of antibody fragments that can act as bispecific T-cell engagers have proven very potent in eliciting cytotoxic T-lymphocyte-mediated killing. We have tested five anti-IgE Fc antibodies, recognizing different epitopes on the membrane-expressed IgE, for the ability to elicit specific T-cell activation when expressed as single-chain Fv fragments fused with anti-CD3ε single-chain antibody. All candidates could specifically stain the cell line, expressing the membrane-bound IgE-Fc and bind to CD3-positive Jurkat cells, and the specific activation of engineered CD3-overexpressing Jurkat cells and non-stimulated CD8-positive cells was demonstrated for 8D6- and ligelizumab-based bispecific antibodies. Thus, such anti-IgE antibodies have the potential to be developed into agents that reduce the serum IgE concentration by lowering the numbers of IgE-secreting cells.
Collapse
Affiliation(s)
- Aleksandra Rodak
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| | - Gerhard Stadlmayr
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| | - Katharina Stadlbauer
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| | - Dominic Lichtscheidl
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| | - Madhusudhan Reddy Bobbili
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
- Ludwig Boltzmann Institute for Experimental, Clinical Traumatology in the AUVA Research Center, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Florian Rüker
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| | - Gordana Wozniak-Knopp
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (G.S.); (K.S.); (D.L.); (M.R.B.); (F.R.)
| |
Collapse
|
12
|
Amison RT, Page CP. Novel pharmacological therapies for the treatment of bronchial asthma. Minerva Med 2021; 113:31-50. [PMID: 34236157 DOI: 10.23736/s0026-4806.21.07559-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Asthma has long been recognised as a chronic inflammatory disease of the airways, often in response to inhaled allergens prompting inappropriate activation of the immune response. involving a range of cells including mast cells, Th2 lymphocytes and eosinophils and a wide range of inflammatory mediators. First-line therapy for treatment of persistent asthma involves the use of inhaled corticosteroids (ICS) in combination with inhaled β2-agonists enabling both the control of the underlying airways inflammation and a reduction of airway hyperresponsiveness. However, many patients remain symptomatic despite high-dose therapy. There is therefore a continued unmet clinical need to develop specifically new anti-inflammatory therapies for patients with asthma, either as an add-on therapy to ICS or as replacement monotherapies. The success of fixed dose combination inhalers containing both a bronchodilator and an anti-inflammatory drug has also led to the development of "bifunctional" drugs which are molecules specifically designed to have two distinct pharmacological actions based on distinct pharmacophores. In this review we will discuss these different pharmacological approaches under development for the treatment of bronchial asthma and the available pre-clinical and clinical data.
Collapse
Affiliation(s)
- Richard T Amison
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK -
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| |
Collapse
|
13
|
Ando T, Kitaura J. Tuning IgE: IgE-Associating Molecules and Their Effects on IgE-Dependent Mast Cell Reactions. Cells 2021; 10:cells10071697. [PMID: 34359869 PMCID: PMC8305778 DOI: 10.3390/cells10071697] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The recent emergence of anti-immunoglobulin E (IgE) drugs and their candidates for humans has endorsed the significance of IgE-dependent pathways in allergic disorders. IgE is distributed locally in the tissues or systemically to confer a sensory mechanism in a domain of adaptive immunity to the otherwise innate type of effector cells, namely, mast cells and basophils. Bound on the high-affinity IgE receptor FcεRI, IgE enables fast memory responses against revisiting threats of venoms, parasites, and bacteria. However, the dysregulation of IgE-dependent reactions leads to potentially life-threatening allergic diseases, such as asthma and anaphylaxis. Therefore, reactivity of the IgE sensor is fine-tuned by various IgE-associating molecules. In this review, we discuss the mechanistic basis for how IgE-dependent mast cell activation is regulated by the IgE-associating molecules, including the newly developed therapeutic candidates.
Collapse
Affiliation(s)
- Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (T.A.); (J.K.); Tel.: +81-3-5802-1591 (T.A. & J.K.)
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (T.A.); (J.K.); Tel.: +81-3-5802-1591 (T.A. & J.K.)
| |
Collapse
|
14
|
Zhang Z, Kurashima Y. Two Sides of the Coin: Mast Cells as a Key Regulator of Allergy and Acute/Chronic Inflammation. Cells 2021; 10:cells10071615. [PMID: 34203383 PMCID: PMC8308013 DOI: 10.3390/cells10071615] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
It is well known that mast cells (MCs) initiate type I allergic reactions and inflammation in a quick response to the various stimulants, including—but not limited to—allergens, pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs). MCs highly express receptors of these ligands and proteases (e.g., tryptase, chymase) and cytokines (TNF), and other granular components (e.g., histamine and serotonin) and aggravate the allergic reaction and inflammation. On the other hand, accumulated evidence has revealed that MCs also possess immune-regulatory functions, suppressing chronic inflammation and allergic reactions on some occasions. IL-2 and IL-10 released from MCs inhibit excessive immune responses. Recently, it has been revealed that allergen immunotherapy modulates the function of MCs from their allergic function to their regulatory function to suppress allergic reactions. This evidence suggests the possibility that manipulation of MCs functions will result in a novel approach to the treatment of various MCs-mediated diseases.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- CU-UCSD Center for Mucosal Immunology, Department of Pathology/Medicine, Allergy and Vaccines, University of California, San Diego, CA 92093-0063, USA
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Correspondence: ; Tel.: +81-43-226-2848; Fax: +81-43-226-2183
| |
Collapse
|
15
|
Anti-IgE: A treatment option in allergic rhinitis? Allergol Select 2021; 5:119-127. [PMID: 33644635 PMCID: PMC7905705 DOI: 10.5414/alx02205e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Allergic rhinitis (AR) is the most common IgE-mediated allergic disease. Multiple clinical trials have demonstrated promising results on the AR treatment with biologics, in particular with the use of omalizumab – an anti-IgE antibody. Omalizumab has also been established in the routine management of allergic asthma and chronic idiopathic urticaria. However, currently there is no approved license for the use of biologics in AR in Germany. Materials and methods: A systematic literature review has been completed including randomized controlled trials, meta-analyses, and reviews on the treatment of AR with omalizumab. Results: The systematic review demonstrates strong evidence supporting the use of omalizumab in the treatment of AR with regard to symptom control, safety profile, and management of comorbidities. Conclusion: Omalizumab is a good and safe option in the treatment of AR in terms of symptom control and the management of pre-existing comorbidities. Further clinical trials with other biologics in the management of AR are needed and are expected to follow soon.
Collapse
|
16
|
Dispenza MC, Bochner BS, MacGlashan DW. Targeting the FcεRI Pathway as a Potential Strategy to Prevent Food-Induced Anaphylaxis. Front Immunol 2021; 11:614402. [PMID: 33391286 PMCID: PMC7773654 DOI: 10.3389/fimmu.2020.614402] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022] Open
Abstract
Despite attempts to halt it, the prevalence of food allergy is increasing, and there is an unmet need for strategies to prevent morbidity and mortality from food-induced allergic reactions. There are no known medications that can prevent anaphylaxis, but several novel therapies show promise for the prevention of food-induced anaphylaxis through targeting of the high-affinity IgE receptor (FcϵRI) pathway. This pathway includes multiple candidate targets, including tyrosine kinases and the receptor itself. Small molecule inhibitors of essential kinases have rapid onset of action and transient efficacy, which may be beneficial for short-term use for immunotherapy buildup or desensitizations. Short courses of FDA-approved inhibitors of Bruton’s tyrosine kinase can eliminate IgE-mediated basophil activation and reduce food skin test size in allergic adults, and prevent IgE-mediated anaphylaxis in humanized mice. In contrast, biologics may provide longer-lasting protection, albeit with slower onset. Omalizumab is an anti-IgE antibody that sequesters IgE, thereby reducing FcϵRI expression on mast cells and basophils. As a monotherapy, it can increase the clinical threshold dose of food allergen, and when used as an adjunct for food immunotherapy, it decreases severe reactions during buildup phase. Finally, lirentelimab, an anti-Siglec-8 antibody currently in clinical trials, can prevent IgE-mediated anaphylaxis in mice through mast cell inhibition. This review discusses these and other emerging therapies as potential strategies for preventing food-induced anaphylaxis. In contrast to other food allergy treatments which largely focus on individual allergens, blockade of the FcϵRI pathway has the advantage of preventing clinical reactivity from any food.
Collapse
Affiliation(s)
- Melanie C Dispenza
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Donald W MacGlashan
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Liu P, Pan Z, Gu C, Cao X, Liu X, Zhang J, Xiao Z, Wang X, Guo H, Ju D, Deng SJ. An Omalizumab Biobetter Antibody With Improved Stability and Efficacy for the Treatment of Allergic Diseases. Front Immunol 2020; 11:596908. [PMID: 33329588 PMCID: PMC7728613 DOI: 10.3389/fimmu.2020.596908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/29/2020] [Indexed: 11/25/2022] Open
Abstract
The critical role of IgE in allergic diseases is well-documented and clinically proven. Omalizumab, a humanized anti-IgE antibody, was the first approved antibody for the treatment of allergic diseases. Nevertheless, omalizumab still has some limitations, such as product instability and dosage restriction in clinical application. In this study, we attempted to develop an omalizumab biobetter antibody with the potential to overcome its limitations. We removed two aspartic acid isomerization hotspots in CDRs of omalizumab to improve antibody candidate’s stability. Meanwhile, several murine amino acids in the framework region of omalizumab were replaced with human source to reduce the potential immunogenicity. Yeast display technology was then applied to screen antibody candidates with high binding affinity to IgE. Moreover, YTE mutation in Fc fragment was introduced into the candidates for extending their serum half-life. A lead candidate, AB1904Am15, was screened out, which showed desired biophysical properties and improved stability, high binding affinity and elevated potency in vitro, prolonged half-life in human FcRn transgenic mouse, and enhanced in vivo efficacy in cynomolgus monkey asthma model. Overall, our study developed a biobetter antibody of omalizumab, AB1904Am15, which has the potential to show improved clinical benefit in the treatment of allergic diseases.
Collapse
Affiliation(s)
- Peipei Liu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China.,Shanghai Jemincare Pharmaceuticals Co., Ltd., Shanghai, China
| | - Zhongzong Pan
- Shanghai Jemincare Pharmaceuticals Co., Ltd., Shanghai, China
| | - Chunyin Gu
- Shanghai Jemincare Pharmaceuticals Co., Ltd., Shanghai, China
| | - Xiaodan Cao
- Shanghai Jemincare Pharmaceuticals Co., Ltd., Shanghai, China
| | - Xiaowu Liu
- Shanghai Jemincare Pharmaceuticals Co., Ltd., Shanghai, China
| | - Jianjian Zhang
- Shanghai Jemincare Pharmaceuticals Co., Ltd., Shanghai, China
| | - Zheng Xiao
- Shanghai Jemincare Pharmaceuticals Co., Ltd., Shanghai, China
| | - Xueping Wang
- Shanghai Jemincare Pharmaceuticals Co., Ltd., Shanghai, China
| | - Haibing Guo
- Shanghai Jemincare Pharmaceuticals Co., Ltd., Shanghai, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Su-Jun Deng
- Shanghai Jemincare Pharmaceuticals Co., Ltd., Shanghai, China
| |
Collapse
|
18
|
Guntern P, Eggel A. Past, present, and future of anti-IgE biologics. Allergy 2020; 75:2491-2502. [PMID: 32249957 DOI: 10.1111/all.14308] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/09/2020] [Accepted: 03/28/2020] [Indexed: 12/31/2022]
Abstract
About 20 years after the identification of immunoglobulin E (IgE) and its key role in allergic hypersensitivity reactions against normally harmless substances, scientists have started inventing strategies to block its pathophysiological activity in 1986. The initial concept of specific IgE targeting through the use of anti-IgE antibodies has gained a lot of momentum and within a few years independent research groups have reported successful generation of first murine monoclonal anti-IgE antibodies. Subsequent generation of optimized chimeric and humanized versions of these antibodies has paved the way for the development of therapeutic anti-IgE biologicals as we know them today. With omalizumab, there is currently still only one therapeutic anti-IgE antibody approved for the treatment of allergic conditions. Since its application is limited to the treatment of moderate-to-severe persistent asthma and chronic spontaneous urticaria, major efforts have been undertaken to develop alternative anti-IgE biologicals that could potentially be used in a broader spectrum of allergic diseases. Several new drug candidates have been generated and are currently assessed in pre-clinical studies or clinical trials. In this review, we highlight the molecular properties of past and present anti-IgE biologicals and suggest concepts that might improve treatment efficacy of future drug candidates.
Collapse
Affiliation(s)
- Pascal Guntern
- Graduate School of Cellular and Biomedical Sciences University of Bern Bern Switzerland
- Department of BioMedical Research University of Bern Bern Switzerland
- Department of Rheumatology, Immunology and Allergology University Hospital Bern Bern Switzerland
| | - Alexander Eggel
- Department of BioMedical Research University of Bern Bern Switzerland
- Department of Rheumatology, Immunology and Allergology University Hospital Bern Bern Switzerland
| |
Collapse
|
19
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020; 11:1986. [PMID: 32983137 PMCID: PMC7485114 DOI: 10.3389/fimmu.2020.01986] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage–derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
|
21
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020. [PMID: 32983137 DOI: 10.3389/fimmu.2020.01986/bibtex] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage-derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Tracing IgE-Producing Cells in Allergic Patients. Cells 2019; 8:cells8090994. [PMID: 31466324 PMCID: PMC6769703 DOI: 10.3390/cells8090994] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Immunoglobulin E (IgE) is the key immunoglobulin in the pathogenesis of IgE associated allergic diseases affecting 30% of the world population. Recent data suggest that allergen-specific IgE levels in serum of allergic patients are sustained by two different mechanisms: inducible IgE production through allergen exposure, and continuous IgE production occurring even in the absence of allergen stimulus that maintains IgE levels. This assumption is supported by two observations. First, allergen exposure induces transient increases of systemic IgE production. Second, reduction in IgE levels upon depletion of IgE from the blood of allergic patients using immunoapheresis is only temporary and IgE levels quickly return to pre-treatment levels even in the absence of allergen exposure. Though IgE production has been observed in the peripheral blood and locally in various human tissues (e.g., nose, lung, spleen, bone marrow), the origin and main sites of IgE production in humans remain unknown. Furthermore, IgE-producing cells in humans have yet to be fully characterized. Capturing IgE-producing cells is challenging not only because current staining technologies are inadequate, but also because the cells are rare, they are difficult to discriminate from cells bearing IgE bound to IgE-receptors, and plasma cells express little IgE on their surface. However, due to the central role in mediating both the early and late phases of allergy, free IgE, IgE-bearing effector cells and IgE-producing cells are important therapeutic targets. Here, we discuss current knowledge and unanswered questions regarding IgE production in allergic patients as well as possible therapeutic approaches targeting IgE.
Collapse
|
23
|
Abstract
Severe asthma defined as uncontrolled or refractory asthma despite adequate use of high dose of inhaled steroid and additional long acting bronchodilators is associated with a high risk of comorbidities, exacerbations and persistent asthma-related symptoms. It remains a significant health care problem and represents the majority of health costs due to asthma. A better understanding of the basic mechanisms of the disease has allowed identification of new phenotypes and endotypes and of some predictive biomarkers. In the meantime an increasing number of promising biologicals are commercialized or on development providing new hopes to achieve asthma control and decrease exacerbation rate without the use of systemic corticosteroid. The increasing number of highly expensive available molecules poses physicians a new challenge: the identification of "the good treatment for the good patient". This article discuss the different biological available or in development in the field of severe asthma based on their mechanism of action and target. One of the aims is to help clarify the clinical decision-making process taking in account both the phenotype/endotype of the patient and the characteristics of these new drugs.
Collapse
|
24
|
van de Veen W, Akdis M. The use of biologics for immune modulation in allergic disease. J Clin Invest 2019; 129:1452-1462. [PMID: 30882368 DOI: 10.1172/jci124607] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The rising prevalence of allergies represents an increasing socioeconomic burden. A detailed understanding of the immunological mechanisms that underlie the development of allergic disease, as well as the processes that drive immune tolerance to allergens, will be instrumental in designing therapeutic strategies to treat and prevent allergic disease. Improved characterization of individual patients through the use of specific biomarkers and improved definitions of disease endotypes are paving the way for the use of targeted therapeutic approaches for personalized treatment. Allergen-specific immunotherapy and biologic therapies that target key molecules driving the Th2 response are already used in the clinic, and a wave of novel drug candidates are under development. In-depth analysis of the cells and tissues of patients treated with such targeted interventions provides a wealth of information on the mechanisms that drive allergies and tolerance to allergens. Here, we aim to deliver an overview of the current state of specific inhibitors used in the treatment of allergy, with a particular focus on asthma and atopic dermatitis, and provide insights into the roles of these molecules in immunological mechanisms of allergic disease.
Collapse
Affiliation(s)
- Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
25
|
Yu S, Li Y, Zhou Y, Follansbee T, Hwang ST. Immune mediators and therapies for pruritus in atopic dermatitis and psoriasis. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2019. [DOI: 10.1002/cia2.12049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sebastian Yu
- Department of Dermatology; University of California Davis School of Medicine; Sacramento California
- Department of Dermatology; Kaohsiung Medical University Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Dermatology; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Yanxi Li
- Department of Dermatology; University of California Davis School of Medicine; Sacramento California
| | - Yan Zhou
- Department of Dermatology; University of California Davis School of Medicine; Sacramento California
| | - Taylor Follansbee
- Department of Neurobiology, Physiology and Behavior; University of California Davis; Davis California
| | - Samuel T. Hwang
- Department of Dermatology; University of California Davis School of Medicine; Sacramento California
| |
Collapse
|
26
|
Improvement of pharmacokinetic properties of therapeutic antibodies by antibody engineering. Drug Metab Pharmacokinet 2018; 34:25-41. [PMID: 30472066 DOI: 10.1016/j.dmpk.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/13/2018] [Accepted: 10/23/2018] [Indexed: 01/17/2023]
Abstract
Monoclonal antibodies (mAbs) have become an important therapeutic option for several diseases. Since several mAbs have shown promising efficacy in clinic, the competition to develop mAbs has become severe. In efforts to gain a competitive advantage over other mAbs and provide significant benefits to patients, innovations in antibody engineering have aimed at improving the pharmacokinetic properties of mAbs. Because engineering can provide therapeutics that are more convenient, safer, and more efficacious for patients in several disease areas, it is an attractive approach to provide significant benefits to patients. Further advances in engineering mAbs to modulate their pharmacokinetics were driven by the increase of total soluble target antigen concentration that is often observed after injecting a mAb, which then requires a high dosage to antagonize. To decrease the required dosage, several antibody engineering techniques have been invented that reduce the total concentration of soluble target antigen. Here, we review the various ways that antibody engineering can improve the pharmacokinetic properties of mAbs.
Collapse
|
27
|
Systemic Treatment for Severe Atopic Dermatitis. Arch Immunol Ther Exp (Warsz) 2018; 67:69-78. [PMID: 30159581 DOI: 10.1007/s00005-018-0521-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory, relapsing disease of the skin, characterized by intense pruritus, maculopapular or vesicular erythematous lesions and scaling, sometimes accompanied by oozing, crusts and/or lichenification that has a negative impact on patients' quality of life. Prevalence is higher in children, around 15%, and approximately 5% in adults. Before introducing systemic therapy, it is mandatory to review patients' adherence to the correct use of topical treatments (corticosteroids, calcineurin inhibitors or cresoborole) and/or phototherapy. Ensure that environmental measures are being taken care of, irritant or proven allergic substances are not in use and even if the diagnostic is correct. If all is being done and topical treatment with corticosteroid, emollients and phototherapy have not been sufficient to achieve a good control in AD of adults or children patients, it is time to consider systemic agents. Up to now, most of systemic treatments were based on immunosuppressive therapies, being cyclosporine A, the usually first choice for moderate-to-severe AD. Recently, biologic drugs have been developed and approved for AD, as dupilumab, and a whole new group of drugs is giving much hope for patients to have a better control of the disease with less side effects.
Collapse
|
28
|
Hu J, Chen J, Ye L, Cai Z, Sun J, Ji K. Anti-IgE therapy for IgE-mediated allergic diseases: from neutralizing IgE antibodies to eliminating IgE + B cells. Clin Transl Allergy 2018; 8:27. [PMID: 30026908 PMCID: PMC6050685 DOI: 10.1186/s13601-018-0213-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Allergic diseases are inflammatory disorders that involve many types of cells and factors, including allergens, immunoglobulin (Ig)E, mast cells, basophils, cytokines and soluble mediators. Among them, IgE plays a vital role in the development of acute allergic reactions and chronic inflammatory allergic diseases, making its control particularly important in the treatment of IgE-mediated allergic diseases. This review provides an overview of the current state of IgE targeted therapy development, focusing on three areas of translational research: IgE neutralization in blood; IgE-effector cell elimination; and IgE+ B cell reduction. IgE-targeted medicines such as FDA approved drug Xolair (Omalizumab) represent a promising avenue for treating IgE-mediated allergic diseases given the pernicious role of IgE in disease progression. Additionally, targeted therapy for IgE-mediated allergic diseases may be advanced through cellular treatments, including the modification of effector cells.
Collapse
Affiliation(s)
- Jiayun Hu
- 1Department of Biochemistry and Molecular Biology, School of Medicine of Shenzhen University, Shenzhen, 518035 China.,2Department of Allergy, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730 China
| | - Jiajie Chen
- 1Department of Biochemistry and Molecular Biology, School of Medicine of Shenzhen University, Shenzhen, 518035 China
| | - Lanlan Ye
- 1Department of Biochemistry and Molecular Biology, School of Medicine of Shenzhen University, Shenzhen, 518035 China
| | - Zelang Cai
- 1Department of Biochemistry and Molecular Biology, School of Medicine of Shenzhen University, Shenzhen, 518035 China
| | - Jinlu Sun
- 2Department of Allergy, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730 China
| | - Kunmei Ji
- 1Department of Biochemistry and Molecular Biology, School of Medicine of Shenzhen University, Shenzhen, 518035 China
| |
Collapse
|
29
|
Gasser P, Eggel A. Targeting IgE in allergic disease. Curr Opin Immunol 2018; 54:86-92. [PMID: 29986302 DOI: 10.1016/j.coi.2018.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022]
Abstract
Immunoglobulin E (IgE) represents the least abundant antibody isotype in human serum. Nevertheless, it has the ability to induce potent allergic reactions. As a key component in the development and manifestation of hypersensitivity responses against usually non-hazardous foreign substances, IgE has become a major target of investigation and the subject of multiple therapeutic approaches for the treatment of allergies. Recent advances in the understanding of pathophysiologic mechanisms underlying IgE-associated allergic disorders have led to the generation of new drug candidates that are currently in development or under clinical evaluation. In this review, we highlight molecular and structural mechanisms underlying the different anti-IgE molecules and suggest a concept of multi-level targeting using a new class of disruptive IgE inhibitors to potentially optimize treatment efficacy.
Collapse
Affiliation(s)
- Pascal Gasser
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland; Department of Rheumatology, Immunology and Allergology, University Hospital Bern, Bern, Switzerland
| | - Alexander Eggel
- Department of BioMedical Research, University of Bern, Bern, Switzerland; Department of Rheumatology, Immunology and Allergology, University Hospital Bern, Bern, Switzerland.
| |
Collapse
|
30
|
Sécher T, Guilleminault L, Reckamp K, Amanam I, Plantier L, Heuzé-Vourc'h N. Therapeutic antibodies: A new era in the treatment of respiratory diseases? Pharmacol Ther 2018; 189:149-172. [PMID: 29730443 DOI: 10.1016/j.pharmthera.2018.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Respiratory diseases affect millions of people worldwide, and account for significant levels of disability and mortality. The treatment of lung cancer and asthma with therapeutic antibodies (Abs) is a breakthrough that opens up new paradigms for the management of respiratory diseases. Antibodies are becoming increasingly important in respiratory medicine; dozens of Abs have received marketing approval, and many more are currently in clinical development. Most of these Abs target asthma, lung cancer and respiratory infections, while very few target chronic obstructive pulmonary disease - one of the most common non-communicable causes of death - and idiopathic pulmonary fibrosis. Here, we review Abs approved for or in clinical development for the treatment of respiratory diseases. We notably highlight their molecular mechanisms, strengths, and likely future trends.
Collapse
Affiliation(s)
- T Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université François Rabelais de Tours, F-37032 Tours, France
| | - L Guilleminault
- Pôle des Voies respiratoires, Hôpital Larrey, CHU de Toulouse, F-31059 Toulouse, France; STROMALab, Université de Toulouse, CNRS ERL 5311, EFS, INP-ENVT, Inserm, UPS, F-31013 Toulouse, France
| | - K Reckamp
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - I Amanam
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - L Plantier
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université François Rabelais de Tours, F-37032 Tours, France; CHRU de Tours, Service de Pneumologie, F-37000 Tours, France
| | - N Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université François Rabelais de Tours, F-37032 Tours, France.
| |
Collapse
|
31
|
Caruso M, Morjaria J, Emma R, Amaradio MD, Polosa R. Biologic agents for severe asthma patients: clinical perspectives and implications. Intern Emerg Med 2018; 13:155-176. [PMID: 29238905 DOI: 10.1007/s11739-017-1773-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/01/2017] [Indexed: 12/20/2022]
Abstract
Asthma is a chronic inflammatory multifactorial disorder of the airways characterized by the involvement of immune cells and mediators in its onset and maintenance. Traditional therapeutic strategies have been unsatisfactory in controlling the underlying pathology, especially in the more severe states. Hence in the last couple of decades, new biological approaches targeting molecular mediators have been developed. In this narrative review we examine biological agents currently available for the management of severe asthma, focusing our attention on their clinical application, pros and cons, and in particular on gaps regarding the use of these agents. The most well-known and used biologic agent in clinical practice is omalizumab, though there is emerging evidence for mepolizumab too. The future of these biological therapies is to broaden our knowledge of their practical use and ascertain predictive biomarkers, or define an algorithm, useful in the optimal application of these 'biological weapons'.
Collapse
MESH Headings
- Anti-Asthmatic Agents/pharmacokinetics
- Anti-Asthmatic Agents/pharmacology
- Anti-Asthmatic Agents/therapeutic use
- Antibodies, Anti-Idiotypic/pharmacology
- Antibodies, Anti-Idiotypic/therapeutic use
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Asthma/drug therapy
- Biological Factors/pharmacokinetics
- Biological Factors/pharmacology
- Biological Factors/therapeutic use
- Humans
- Interleukin-5/antagonists & inhibitors
- Interleukin-5/pharmacology
- Interleukin-5/therapeutic use
- Omalizumab/pharmacokinetics
- Omalizumab/pharmacology
- Omalizumab/therapeutic use
Collapse
Affiliation(s)
- Massimo Caruso
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico - Vittorio Emanuele, Università degli Studi di Catania, Via S. Sofia, 78, 95123, Catania, Italy.
| | | | - Rosalia Emma
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico - Vittorio Emanuele, Università degli Studi di Catania, Via S. Sofia, 78, 95123, Catania, Italy
| | - Maria Domenica Amaradio
- Department of Internal and Emergency Medicine, AOU "Policlinico - Vittorio Emanuele", Catania, Italy
| | - Riccardo Polosa
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico - Vittorio Emanuele, Università degli Studi di Catania, Via S. Sofia, 78, 95123, Catania, Italy
- Department of Internal and Emergency Medicine, AOU "Policlinico - Vittorio Emanuele", Catania, Italy
| |
Collapse
|
32
|
Licari A, Castagnoli R, Brambilla I, Marseglia A, Tosca MA, Marseglia GL, Ciprandi G. New approaches for identifying and testing potential new anti-asthma agents. Expert Opin Drug Discov 2017; 13:51-63. [PMID: 29077521 DOI: 10.1080/17460441.2018.1396315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Asthma is a chronic disease with significant heterogeneity in clinical features, disease severity, pattern of underlying disease mechanisms, and responsiveness to specific treatments. While the majority of asthmatic patients are controlled by standard pharmacological strategies, a significant subgroup has limited therapeutic options representing a major unmet need. Ongoing asthma research aims to better characterize distinct clinical phenotypes, molecular endotypes, associated reliable biomarkers, and also to develop a series of new effective targeted treatment modalities. Areas covered: The expanding knowledge on the pathogenetic mechanisms of asthma has allowed researchers to investigate a range of new treatment options matched to patient profiles. The aim of this review is to provide a comprehensive and updated overview of the currently available, new and developing approaches for identifying and testing potential treatment options for asthma management. Expert opinion: Future therapeutic strategies for asthma require the identification of reliable biomarkers that can help with diagnosis and endotyping, in order to determine the most effective drug for the right patient phenotype. Furthermore, in addition to the identification of clinical and inflammatory phenotypes, it is expected that a better understanding of the mechanisms of airway remodeling will likely optimize asthma targeted treatment.
Collapse
Affiliation(s)
- Amelia Licari
- a Pediatric Clinic , Fondazione IRCCS San Matteo , Pavia , Italy
| | | | - Ilaria Brambilla
- a Pediatric Clinic , Fondazione IRCCS San Matteo , Pavia , Italy
| | | | - Maria Angela Tosca
- b Pediatric Pulmonology and Allergy , IRCCS Istituto Giannina Gaslini , Genoa , Italy
| | | | - Giorgio Ciprandi
- b Pediatric Pulmonology and Allergy , IRCCS Istituto Giannina Gaslini , Genoa , Italy.,c Internal Medicine , Ospedale Policlinico San Martino , Genoa , Italy
| |
Collapse
|
33
|
Licari A, Castagnoli R, Panfili E, Marseglia A, Brambilla I, Marseglia GL. An Update on Anti-IgE Therapy in Pediatric Respiratory Diseases. CURRENT RESPIRATORY MEDICINE REVIEWS 2017; 13:22-29. [PMID: 29290750 PMCID: PMC5735517 DOI: 10.2174/1573398x13666170616110738] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/24/2017] [Accepted: 05/23/2017] [Indexed: 11/22/2022]
Abstract
Anti-IgE treatment represents a major breakthrough in the therapeutic management of severe allergic asthma. Omalizumab is the unique biologic treatment registered for asthma therapy in children. The clinical efficacy and safety of omalizumab treatment in the pediatric population has been extensively documented in specific trials and consistently expanded from real-life studies. In addition, new experimental evidence suggests that omalizumab may also interfere with the cellular and molecular mechanisms underlying airway remodeling. Novel investigational anti-IgE monoclonal antibodies with improved pharmacodynamic properties are in the pipeline, potentially offering alternative mechanisms of modulating IgE pathway. The aim of this review is to update current knowledge on anti-IgE therapy in pediatric respiratory diseases.
Collapse
Affiliation(s)
- Amelia Licari
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Riccardo Castagnoli
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Elisa Panfili
- Institute of Paediatrics, Department of Biomedical and Surgical Specialties, University of Perugia, Perugia, Italy
| | - Alessia Marseglia
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Ilaria Brambilla
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
34
|
Incorvaia C, Riario-Sforza GG, Ridolo E. IgE Depletion in Severe Asthma: What We Have and What Could Be Added in the Near Future. EBioMedicine 2017; 17:16-17. [PMID: 28259589 PMCID: PMC5360587 DOI: 10.1016/j.ebiom.2017.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 11/19/2022] Open
Affiliation(s)
| | | | - Erminia Ridolo
- Department of Clinical & Experimental Medicine, University of Parma, Parma, Italy
| |
Collapse
|
35
|
Perotin JM, Barnig C. [Omalizumab: Beyond anti-IgE properties]. Rev Mal Respir 2017; 34:121-133. [PMID: 28189435 DOI: 10.1016/j.rmr.2016.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/18/2016] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Omalizumab is used as a treatment for severe allergic asthma. Its intended mechanism of action is based on its anti-IgE proprieties. However, recent studies have highlighted other mechanisms of action. STATE OF THE ART Omalizumab treatment is associated with a decrease in the number of dendritic cells, T and B lymphocytes and eosinophils. This anti-inflammatory activity is characterized by a decrease in the levels of several cytokines involved in the recruitment, activation and survival of eosinophils and mastocytes, and in a Th2 orientation of the immune response. A modulation of bronchial remodeling by omalizumab has recently been shown. A decrease in the production of extracellular matrix components and in the proliferation of smooth muscle cells could be involved in this modulation. These mechanisms of action could explain in part the clinical efficiency of omalizumab in non-allergic conditions such as non-allergic asthma, non-allergic urticaria or nasal polyposis. CONCLUSION A precise knowledge of the mechanisms of action of omalizumab could allow the identification of biomarkers predictive of efficacy of this treatment. These could be useful tools in the phenotyping of severe asthma.
Collapse
Affiliation(s)
- J-M Perotin
- Service des maladies respiratoires, Inserm UMRS 903, centre hospitalier universitaire, 45, rue Cognacq-Jay, 51100 Reims, France.
| | - C Barnig
- Service de physiologie et d'explorations fonctionnelles, pôle de pathologie thoracique, centre hospitalier universitaire, 67000 Strasbourg, France
| |
Collapse
|
36
|
Licari A, Castagnoli R, De Sando E, Marseglia GL. Development of a peptide conjugate vaccine for inducing therapeutic anti-IgE antibodies. Expert Opin Biol Ther 2017; 17:429-434. [PMID: 28132528 DOI: 10.1080/14712598.2017.1289172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Given the multifaceted effector functions of IgE in immediate hypersensitivity, late-phase reactions, regulation of IgE receptor expression and immune modulation, IgE antibodies have long represented an attractive target for therapeutic agents in asthma and other allergic diseases. Effective pharmacologic blockade of the binding of IgE to its receptors has become one of most innovative therapeutic strategies in the field of allergic diseases in the last 10 years. Areas covered: The latest strategies targeting IgE include the development of a therapeutic vaccine, able to trigger our own immune systems to produce therapeutic anti-IgE antibodies, potentially providing a further step forward in the treatment of allergic diseases. The aim of this review is to discuss the discovery strategy, preclinical and early clinical development of a peptide conjugate vaccine for inducing therapeutic anti-IgE antibodies. Expert opinion: Outside the area of development of humanized anti-IgE monoclonal antibodies, the research field of therapeutic IgE-targeted vaccines holds potential benefits for the treatment of allergic diseases. However, most of the experimental observations in animal models have not yet been translated into new treatments and evidence of human efficacy and safety of this new therapeutic strategy are still lacking.
Collapse
Affiliation(s)
- Amelia Licari
- a Department of Pediatrics , Foundation IRCCS Policlinico San Matteo, University of Pavia , Pavia , Italy
| | - Riccardo Castagnoli
- a Department of Pediatrics , Foundation IRCCS Policlinico San Matteo, University of Pavia , Pavia , Italy
| | - Elisabetta De Sando
- a Department of Pediatrics , Foundation IRCCS Policlinico San Matteo, University of Pavia , Pavia , Italy
| | - Gian Luigi Marseglia
- a Department of Pediatrics , Foundation IRCCS Policlinico San Matteo, University of Pavia , Pavia , Italy
| |
Collapse
|
37
|
Moreno AS, McPhee R, Arruda LK, Howell MD. Targeting the T Helper 2 Inflammatory Axis in Atopic Dermatitis. Int Arch Allergy Immunol 2016; 171:71-80. [PMID: 27846627 DOI: 10.1159/000451083] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that affects up to 25% of children and 10% of adults. The skin of patients with moderate to severe AD is characterized by significant barrier disruption and T helper 2 (Th2)-driven inflammation, which are thought to play a significant role in the pathogenesis of AD. Current management of AD is aimed at suppressing the inflammatory response and restoring the barrier function of the skin, reducing exacerbations, and preventing secondary skin infections. Combinations of treatment strategies are used to alleviate the symptoms of the disease; however, resolution is often temporary, and long-term usage of some of the medications for AD can be associated with significant side effects. Antibody therapies previously approved for other inflammatory diseases have been evaluated in patients with AD. Unfortunately, they have often failed to result in significant clinical improvement. Monoclonal antibodies and novel small molecules currently in development may provide more consistent benefit to patients with AD by specifically targeting the immune and molecular pathways important for the pathogenesis of AD. Here we review the state-of-the-art therapeutics targeting the Th2 axis in AD.
Collapse
Affiliation(s)
- Adriana S Moreno
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|