1
|
Eranda DHU, Chaijan M, Panpipat W, Karnjanapratum S, Cerqueira MA, Castro-Muñoz R. Gelatin-chitosan interactions in edible films and coatings doped with plant extracts for biopreservation of fresh tuna fish products: A review. Int J Biol Macromol 2024; 280:135661. [PMID: 39299417 DOI: 10.1016/j.ijbiomac.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The preservation of tuna fish products, which are extremely perishable seafood items, is a substantial challenge due to their instantaneous spoilage caused by microbial development and oxidative degradation. The current review explores the potential of employing chitosan-gelatin-based edible films and coatings, which are enriched with plant extracts, as a sustainable method to prolong the shelf life of tuna fish products. The article provides a comprehensive overview of the physicochemical properties of chitosan and gelatin, emphasizing the molecular interactions that underpin the formation and functionality of these biopolymer-based films and coatings. The synergistic effects of combining chitosan and gelatin are explored, particularly in terms of improving the mechanical strength, barrier properties, and bioactivity of the films. Furthermore, the application of botanical extracts, which include high levels of antioxidants and antibacterial compounds, is being investigated in terms of their capacity to augment the protective characteristics of the films. The study also emphasizes current advancements in utilizing these composite films and coatings for tuna fish products, with a specific focus on their effectiveness in preventing microbiological spoilage, decreasing lipid oxidation, and maintaining sensory qualities throughout storage. Moreover, the current investigation explores the molecular interactions associated with chitosan-gelatin packaging systems enriched with plant extracts, offering valuable insights for improving the design of edible films and coatings and suggesting future research directions to enhance their effectiveness in seafood preservation. Ultimately, the review underscores the potential of chitosan-gelatin-based films and coatings as a promising, eco-friendly alternative to conventional packaging methods, contributing to the sustainability of the seafood industry.
Collapse
Affiliation(s)
- Don Hettiarachchige Udana Eranda
- Doctor of Philosophy Program in Agro-Industry and Biotechnology, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Supatra Karnjanapratum
- Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
2
|
Makam RMM, Wan Omar WNN, Ahmad DABJ, Nor NUM, Shamjuddin A, Amin NAS. The potential of carboxylmethyl cellulose from empty fruit bunch as versatile material in food coating: A review. Carbohydr Polym 2024; 338:122194. [PMID: 38763709 DOI: 10.1016/j.carbpol.2024.122194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
The rising demand for food packaging has led to a growing interest in sustainable and eco-friendly food coatings. Carboxymethyl cellulose (CMC), being a versatile cellulose derivative produced from various lignocellulosic sources, has emerged in edible food coatings. This review evaluates the research trends on CMC production from empty fruit bunch (EFB) as a potential edible food coating material by systematic review approach. It explores sustainable pre-treatment for green cellulose and different CMC synthesis methods. The review compares CMC-based coatings to other materials, focusing on formulation processes, coating quality, safety, and commercial feasibility. The bibliometric analysis is performed to correlate food coating and CMC. As a result, the study discovered the rapid growth in research on edible food coatings made from CMC for various food industry applications. The green approach such as ozone pre-treatment appear as promising method for cellulose isolation from EFB to be used as raw material for CMC. The synthesis conditions of the treatment would affect the CMC characteristics and usage. Herein, utilizing CMC from cellulose EFB in coating formulation and on coated food shows different benefits. This review provides a road map for future research with potential to make important contributions to the food industry's long-term evolution.
Collapse
Affiliation(s)
- Raissa Michele Mba Makam
- Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia
| | - Wan Nor Nadyaini Wan Omar
- Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia
| | - Danish Akmal Bin Jihat Ahmad
- Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia
| | - Nur Umisyuhada Mohd Nor
- Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia
| | - Amnani Shamjuddin
- Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia
| | - Nor Aishah Saidina Amin
- Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia.
| |
Collapse
|
3
|
Zheng L, Guo H, Zhu M, Xie L, Jin J, Korma SA, Jin Q, Wang X, Cacciotti I. Intrinsic properties and extrinsic factors of food matrix system affecting the effectiveness of essential oils in foods: a comprehensive review. Crit Rev Food Sci Nutr 2024; 64:7363-7396. [PMID: 36861257 DOI: 10.1080/10408398.2023.2184767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Essential oils (EOs) have been proved as natural food preservatives because of their effective and wide-spectrum antimicrobial activity. They have been extensively explored for potential applications in food industry, and substantial progresses have been achieved. However well EOs perform in antibacterial tests in vitro, it has generally been found that a higher level of EOs is needed to achieve the same effect in foods. Nevertheless, this unsimilar effect has not been clearly quantified and elaborated, as well as the underlying mechanisms. This review highlights the influence of intrinsic properties (e.g., oils and fats, carbohydrates, proteins, pH, physical structure, water, and salt) and extrinsic factors (e.g., temperature, bacteria characteristics, and packaging in vacuum/gas/air) of food matrix systems on EOs action. Controversy findings and possible mechanism hypotheses are also systematically discussed. Furthermore, the organoleptic aspects of EOs in foods and promising strategies to address this hurdle are reviewed. Finally, some considerations about the EOs safety are presented, as well as the future trends and research prospects of EOs applications in foods. The present review aims to fill the evidenced gap, providing a comprehensive overview about the influence of the intrinsic and extrinsic factors of food matrix systems to efficiently orientate EOs applications.
Collapse
Affiliation(s)
- Liyou Zheng
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Hongyan Guo
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Miaomiao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Liangliang Xie
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jun Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Sharkia, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome "Niccolò Cusano", Roma, Italy
| |
Collapse
|
4
|
Karabagias VK, Giannakas AE, Andritsos ND, Leontiou AA, Moschovas D, Karydis-Messinis A, Avgeropoulos A, Zafeiropoulos NE, Proestos C, Salmas CE. Shelf Life of Minced Pork in Vacuum-Adsorbed Carvacrol@Natural Zeolite Nanohybrids and Poly-Lactic Acid/Triethyl Citrate/Carvacrol@Natural Zeolite Self-Healable Active Packaging Films. Antioxidants (Basel) 2024; 13:776. [PMID: 39061844 PMCID: PMC11274301 DOI: 10.3390/antiox13070776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Enhancing food preservation and safety using environmentally friendly techniques is urgently needed. The aim of this study was to develop food packaging films using biodegradable poly-L-lactic acid (PLA) as biopolymer and carvacrol (CV) essential oil as an antioxidant/antibacterial agent for the replacement of chemical additives. CV was adsorbed onto natural zeolite (NZ) via a new vacuum adsorption method. The novel nanohybrid CV@NZ with a high CV content contained 61.7%wt. CV. Pure NZ and the CV@NZ nanohybrid were successfully dispersed in a PLA/triethyl citrate (TEC) matrix via a melt extrusion process to obtain PLA/TEC/xCV@NZ and PLA/TEC/xNZ nanocomposite films with 5, 10, and 15%wt CV@NZ or pure NZ content. The optimum resulting film PLA/TEC/10CV@NZ contained 10%wt. CV@NZ and exhibited self-healable properties, 22% higher tensile strength, 40% higher elongation at break, 45% higher water barrier, and 40% higher oxygen barrier than the pure PLA/TEC matrix. This film also had a high CV release content, high CV control release rate as well as 2.15 mg/L half maximal effective concentration (EC50) and 0.27 mm and 0.16 mm inhibition zones against Staphylococcus aureus and Salmonella enterica ssp. enterica serovar Typhimurium, respectively. This film not only succeeded in extending the shelf life of fresh minced pork, as shown by the total viable count measurements in four days but also prevented the lipid oxidation of fresh minced pork and provided higher nutritional values of the minced meat, as revealed by the heme iron content determination. It also had much better and acceptable sensory characteristics than the commercial packaging paper.
Collapse
Affiliation(s)
- Vassilios K. Karabagias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.A.L.)
| | - Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.A.L.)
| | - Nikolaos D. Andritsos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.A.L.)
| | - Areti A. Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.A.L.)
| | - Dimitrios Moschovas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Andreas Karydis-Messinis
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Apostolos Avgeropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Nikolaos E. Zafeiropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece;
| | - Constantinos E. Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| |
Collapse
|
5
|
Cagal MM, Taner G, Kalaycı S, Duman G. Enhanced antibacterial and genoprotective properties of nanoliposomal Satureja hortensis L. essential oil. Drug Chem Toxicol 2024:1-7. [PMID: 38835158 DOI: 10.1080/01480545.2024.2362180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Nanoliposomes are drug delivery systems that improve bioavailability by encapsulating therapeutic agents. The main objective of this study was to investigate the effects of nanoliposomal (NL) formulation on enhancing the bioavailability of essential oil. The essential oil of Satureja hortensis (SHO) was encapsulated in nanoliposomes (SHNLs). Physicochemical characterizations of NL formulations (size, charge, polydispersity index [PDI]) were evaluated by dynamic light scattering technique. The nanoliposome encapsulation efficiency (EE) was calculated as 89.90%. The prepared bionanosystems demonstrated significant antibacterial activities against Escherichia coli ATCC 10536, Pseudomonas aeruginosa ATCC 15442, and Staphylococcus aureus ATCC as determined by the agar diffusion method and microdilution tests. Minimum inhibitory concentration (MIC) values for SHNLs were found to be 5.187 µg/µL for E. coli and 2.59 µg/µL for both P. aeruginosa and S. aureus. Importantly, despite the lower substance content, both SHNLs and SHO exhibited comparable antibacterial activity against all tested strains. Furthermore, in order to determine the toxicity profile and possible effects on DNA damage or repair both the genotoxic and antigenotoxic effects of SHNLs were assessed using the cytokinesis-blocked micronucleus (CBMN) method in human lymphocyte cultures. The experimental data collectively indicate that the NL formulation of the S. hortensis essential oil enhances antibacterial activities and provides genoprotective effects against DNA damage. This highlights the significance of liposomal formulations of antioxidants in augmenting their biological activity. The results indicate that SHNLs can be a safe antibacterial agent for the pharmaceutical industry.
Collapse
Affiliation(s)
| | - Gokce Taner
- Department of Bioengineering, Bursa Technical University, Bursa, Turkey
| | - Sadık Kalaycı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Gulengul Duman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
6
|
Mondal K, Goswami M, Goud VV, Katiyar V. Optimization of guar gum-based anti-browning coating for prolonging the shelf life of cut potatoes. Int J Biol Macromol 2024; 269:132051. [PMID: 38777687 DOI: 10.1016/j.ijbiomac.2024.132051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
The impact of guar gum (GG), crude algae ethanolic extract (CAEE), and turmeric essential oil (TEO) incorporated edible coating formulations on the quality of cut potatoes was investigated at room temperature (27 ± 3 °C, 70-85 % RH) storage using a rotatable central composite design. Besides, 30 % glycerol, 5 % calcium chloride, and 3 % ascorbic acid (w/w) were added to the coating solution as additives. The surface color, respiration rate, water vapor transmission rate, visible mold growth, and sensory analysis were assessed after seven days of storage. The inclusion of ascorbic acid and TEO in edible coating demonstrated a more effective delay in browning. The coated potatoes had lower OTR, CTR, and WVTR values for GG concentrations of 0.5 to 1 g/100 mL than the control. Compared to additives, higher concentrations of GG improved response parameters. The WVTR value of coated potatoes was significantly impacted by the interaction between CAEE and TEO with GG. Incorporating CAEE and TEO into the formulations of guar gum led to a reduction in the permeability of the coating to oxygen and water vapor. The seven days of extended shelf life compared to two days of control were observed with the optimized coating formulation. Furthermore, the application of the coating treatment proved effective in preventing enzymatic browning and creating a barrier against moisture and gases, contributing to prolonged freshness during extended storage periods.
Collapse
Affiliation(s)
- Kona Mondal
- Dpt. of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mandavi Goswami
- Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Vaibhav V Goud
- Dpt. of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Vimal Katiyar
- Dpt. of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India; Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
7
|
Silva M, Ramos AC, Lidon FJ, Reboredo FH, Gonçalves EM. Pre- and Postharvest Strategies for Pleurotus ostreatus Mushroom in a Circular Economy Approach. Foods 2024; 13:1464. [PMID: 38790763 PMCID: PMC11120248 DOI: 10.3390/foods13101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Mushroom cultivation presents a viable solution for utilizing agro-industrial byproducts as substrates for growth. This process enables the transformation of low-economic-value waste into nutritional foods. Enhancing the yield and quality of preharvest edible mushrooms, along with effectively preserving postharvest mushrooms, stands as a significant challenge in advancing the industry. Implementing pre- and postharvest strategies for Pleurotus ostreatus (Jacq.) P. Kumm (oyster mushroom) within a circular economy framework involves optimizing resource use, minimizing waste, and creating a sustainable and environmentally friendly production system. This review aimed to analyze the development and innovation of the different themes and trends by bibliometric analysis with a critical literature review. Furthermore, this review outlines the cultivation techniques for Pleurotus ostreatus, encompassing preharvest steps such as spawn production, substrate preparation, and the entire mushroom growth process, which includes substrate colonization, fruiting, harvesting, and, finally, the postharvest. While novel methodologies are being explored for maintaining quality and extending shelf-life, the evaluation of the environmental impact of the entire mushroom production to identify areas for improvement is needed. By integrating this knowledge, strategies can be developed for a more sustainable and circular approach to Pleurotus ostreatus mushroom cultivation, promoting environmental stewardship and long-term viability in this industry.
Collapse
Affiliation(s)
- Mafalda Silva
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
| | - Ana Cristina Ramos
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando J. Lidon
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando H. Reboredo
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elsa M. Gonçalves
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
8
|
Phan LTK, Le ATH, Hoang NTN, Debonne E, De Saeger S, Eeckhout M, Jacxsens L. Evaluation of the efficacy of cinnamon oil on Aspergillus flavus and Fusarium proliferatum growth and mycotoxin production on paddy and polished rice: Towards a mitigation strategy. Int J Food Microbiol 2024; 415:110636. [PMID: 38422676 DOI: 10.1016/j.ijfoodmicro.2024.110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
In the present investigation, the effect of cinnamon oil (CO) (10, 30, 50 and 70 %) on the growth rate (mm/day) and aflatoxin B1 (AFB1) and fumonisin B1 (FB1) production of Aspergillus flavus (AF01) and Fusarium proliferatum (FP01) isolates, respectively was determined at optimum water activities (0.95 and 0.99 aw) and temperatures (25, 30 and 35 °C) on paddy and polished rice grains. The results showed that the growth rate, AFB1 and FB1 production of all the fungal isolates decreased with an increase in CO concentrations on both matrices. AF01 and FP01 failed to grow under all conditions on paddy at 50 % of CO concentration whereas both fungi were completely inhibited (No Growth-NG) at 70 % of CO on polished rice. Regarding mycotoxin production, 30 % of CO concentrations could inhibit AFB1 and FB1 production in both matrices (No Detection-ND). In this study, the production of mycotoxins was significantly influenced by cinnamon oil compared to the growth of both fungi. These results indicated the promising potential of CO in improving the quality of rice preservation in post-harvest; however, further investigations should be evaluated on the effects on the qualitative characteristics of grains. Especially, the prospective application of CO in rice storage in industry scales to mitigate mycotoxin contamination need also to be further researched. Moreover, collaboration between researchers, agricultural experts, and food industry should be set up to achieve effective and sustainable strategies for preserving rice.
Collapse
Affiliation(s)
- Lien Thi Kim Phan
- Faculty of Food Science and Technology, Ho Chi Minh city University of Industry and Trade, 140 Le Trong Tan street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh city, Viet Nam.
| | - Anh Thi Hong Le
- Faculty of Food Science and Technology, Ho Chi Minh city University of Industry and Trade, 140 Le Trong Tan street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh city, Viet Nam.
| | - Nhon Thi Ngoc Hoang
- Faculty of Food Science and Technology, Ho Chi Minh city University of Industry and Trade, 140 Le Trong Tan street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh city, Viet Nam.
| | - Els Debonne
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Sarah De Saeger
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Mia Eeckhout
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Liesbeth Jacxsens
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
9
|
Grigore-Gurgu L, Bucur FI, Mihalache OA, Nicolau AI. Comprehensive Review on the Biocontrol of Listeria monocytogenes in Food Products. Foods 2024; 13:734. [PMID: 38472848 DOI: 10.3390/foods13050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis, a group of human illnesses that appear more frequently in countries with better-developed food supply systems. This review discusses the efficacy of actual biocontrol methods combined with the main types of food involved in illnesses. Comments on bacteriophages, lactic acid bacteria, bacteriocins, essential oils, and endolysins and derivatives, as main biological antilisterial agents, are made bearing in mind that, using them, food processors can intervene to protect consumers. Both commercially available antilisterial products and solutions presented in scientific papers for mitigating the risk of contamination are emphasized. Potential combinations between different types of antilisterial agents are highlighted for their synergic effects (bacteriocins and essential oils, phages and bacteriocins, lactic acid bacteria with natural or synthetic preservatives, etc.). The possibility to use various antilisterial biological agents in active packaging is also presented to reveal the diversity of means that food processors may adopt to assure the safety of their products. Integrating biocontrol solutions into food processing practices can proactively prevent outbreaks and reduce the occurrences of L. monocytogenes-related illnesses.
Collapse
Affiliation(s)
- Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Octavian Augustin Mihalache
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| |
Collapse
|
10
|
Pham BTT, Hoang HNT, Trinh CD, Bui QTP, Phung TK, Nguyen TT. Development of gelatin/agarose active coatings functionalized with Ocimum gratissimum L. essential oil for enhancing storability of 'Booth 7' avocado. Int J Biol Macromol 2023; 253:127516. [PMID: 37866575 DOI: 10.1016/j.ijbiomac.2023.127516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
Novel active coating from gelatin/agarose (GA) functionalized with Ocimum gratissimum L. essential oil (OGO) had been developed as a medium to evaluate their properties before being applied for avocado preservation. The resultant coating films showed enhanced mechanical, water-barrier, bactericidal, antioxidant, and UV-shielding properties by adding OGO. The best tensile strength (2.91 MPa) and flexibility (45.82 %) was found in the GA film containing 5 % (w/w) of OGO (GA-OGO-5). Furthermore, this coating formulation presented moderate antibacterial activities against Listeria, Pseudomonas, Salmonella, and Escherichia. The GA-OGO-5 coating film also divulged the highest hydrophobicity and adequate antioxidant function (30.75 μg/mL) and thus, was chosen to coat on 'Booth 7' avocados by dipping method. The GA-OGO-5 coating layers were to be efficient to decline the respiration rate of avocado during 6-day storage at 25 °C and 64 %RH. Peel color, weight loss (5.22 %), total soluble solids (8.14 %), and solution pH (6.79) at the end of storage also indicated that the GA-OGO-5 coating presented the best effectiveness for enhancing the storability of avocado as compared to uncoated and GA-treated fruit. Therefore, the GA-OGO coating has been considered as an alternative post-harvest technique to enhance the avocado storability and could be further commercialized for industry application.
Collapse
Affiliation(s)
- Bao-Tran Tran Pham
- Institute of Technology Application and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Hong-Nhung Thi Hoang
- Faculty of Chemical Engineering, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Viet Nam
| | | | - Quynh Thi Phuong Bui
- Faculty of Chemical Engineering, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Viet Nam
| | - Thanh Khoa Phung
- Department of Chemical Engineering, School of Chemical and Environmental Engineering, International University, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh, Viet Nam
| | - Thuong Thi Nguyen
- Institute of Technology Application and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
11
|
Xin Y, Liu Z, Yang C, Dong C, Chen F, Liu K. Smart antimicrobial system based on enzyme-responsive high methoxyl pectin-whey protein isolate nanocomplex for fresh-cut apple preservation. Int J Biol Macromol 2023; 253:127064. [PMID: 37748593 DOI: 10.1016/j.ijbiomac.2023.127064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
The increase in pectin methylesterase (PME) activity on fresh-cut apple surface can smartly trigger the controlled release of bactericidal agents encapsulated within intelligent responsive Pickering emulsions. In this study, we developed a PME-responsive nanocomplex (W-H-II) to stabilize Pickering emulsion containing thyme essential oil (TEO), preserving fresh-cut apples. W-H-II, formed by heat-induced whey protein isolate (WPI) and high methoxyl pectin (HMP) (pH 4.5, 85 °C, 15 min, WPI:HMP ratio 1:2), exhibited good pH stability due to the stabilizing effects of hydrophobic, hydrogen bonding, and electrostatic interactions. The presence of PME triggered the demethylation of HMP within W-H-II, conferring PME response characteristics. Subsequently, a bacteriostasis experiment with pectinase-producing Bacillus subtilis provided evidence of PME-triggered TEO release from W-H-II-stabilized Pickering emulsion. Furthermore, microscopy techniques were employed to verify the demulsification behavior of the emulsion when PME activity ranged from 0.25 to 2.50 U mL-1. Finally, the PME-responsive TEO Pickering emulsion effectively preserved fresh-cut apples. Stored for 6 days at 5 °C and 10 °C, as the PME activity on the apple surface increased, the decay rate of the coated group was 0 %, with a total colony count below 3.0 log CFU g-1. This study introduces a novel intelligent preservation strategy for storing fresh-cut apples.
Collapse
Affiliation(s)
- Ying Xin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhenzhen Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Chenhao Yang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Chen Dong
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Kunlun Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
12
|
Nieto G, Martínez-Zamora L, Peñalver R, Marín-Iniesta F, Taboada-Rodríguez A, López-Gómez A, Martínez-Hernández GB. Applications of Plant Bioactive Compounds as Replacers of Synthetic Additives in the Food Industry. Foods 2023; 13:47. [PMID: 38201075 PMCID: PMC10778451 DOI: 10.3390/foods13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
According to the Codex Alimentarius, a food additive is any substance that is incorporated into a food solely for technological or organoleptic purposes during the production of that food. Food additives can be of synthetic or natural origin. Several scientific evidence (in vitro studies and epidemiological studies like the controversial Southampton study published in 2007) have pointed out that several synthetic additives may lead to health issues for consumers. In that sense, the actual consumer searches for "Clean Label" foods with ingredient lists clean of coded additives, which are rejected by the actual consumer, highlighting the need to distinguish synthetic and natural codded additives from the ingredient lists. However, this natural approach must focus on an integrated vision of the replacement of chemical substances from the food ingredients, food contact materials (packaging), and their application on the final product. Hence, natural plant alternatives are hereby presented, analyzing their potential success in replacing common synthetic emulsifiers, colorants, flavorings, inhibitors of quality-degrading enzymes, antimicrobials, and antioxidants. In addition, the need for a complete absence of chemical additive migration to the food is approached through the use of plant-origin bioactive compounds (e.g., plant essential oils) incorporated in active packaging.
Collapse
Affiliation(s)
- Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Lorena Martínez-Zamora
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Fulgencio Marín-Iniesta
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Amaury Taboada-Rodríguez
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
- Agrosingularity, Calle Pintor Aurelio Pérez 12, 30006 Murcia, Spain
| | - Antonio López-Gómez
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
| | - Ginés Benito Martínez-Hernández
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
| |
Collapse
|
13
|
Giménez MJ, Giménez-Berenguer M, Guillén F, Serna-Escolano V, Gutiérrez-Pozo M, Zapata PJ. Effect of Cysteine with Essential Oils on Quality Attributes and Functional Properties of 'Blanca de Tudela' Fresh-Cut Artichoke. Foods 2023; 12:4414. [PMID: 38137218 PMCID: PMC10742624 DOI: 10.3390/foods12244414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The commercialisation of fresh-cut artichokes with optimal quality and appearance and a maximum shelf-life is a great challenge for the artichoke market. The use of different anti-browning agents has been previously studied; however, their effect is still limited. Therefore, the objective of this study is the evaluation of the effect of L-cysteine and, in combination with a mixture of essential oils components (eugenol, thymol and carvacrol) on browning, quality and bioactive compounds of fresh-cut artichokes stored for 9 days at 2 °C. Four different treatments were applied to 'Blanca de Tudela' fresh-cut artichokes: cysteine and cysteine with 75, 150 and 300 µL of the essential oils components (EOs) mixture. After 2, 4 and 9 days of storage, physicochemical parameters (weight loss, colour, respiration rate) and functional (total phenolic content, antioxidant activity) were studied. A descriptive sensorial analysis was also carried out to evaluate sensory attributes. Results showed that the application of cysteine and 150 µL of EOs displayed the lowest browning and highest antioxidant properties, as well as the best quality and sensory parameters. The use of this post-harvest treatment on fresh-cut artichokes would result in a natural and eco-friendly solution to improve artichoke quality and shelf-life.
Collapse
Affiliation(s)
| | | | | | | | - María Gutiérrez-Pozo
- Department of Food Technology, Escuela Politécnica Superior de Orihuela, University Miguel Hernández, Ctra. Beniel km 3.2, 03312 Alicante, Spain; (M.J.G.); (M.G.-B.); (F.G.); (V.S.-E.); (P.J.Z.)
| | | |
Collapse
|
14
|
Khan S, Abdo AAA, Shu Y, Zhang Z, Liang T. The Extraction and Impact of Essential Oils on Bioactive Films and Food Preservation, with Emphasis on Antioxidant and Antibacterial Activities-A Review. Foods 2023; 12:4169. [PMID: 38002226 PMCID: PMC10670266 DOI: 10.3390/foods12224169] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Essential oils, consisting of volatile compounds, are derived from various plant parts and possess antibacterial and antioxidant properties. Certain essential oils are utilized for medicinal purposes and can serve as natural preservatives in food products, replacing synthetic ones. This review describes how essential oils can promote the performance of bioactive films and preserve food through their antioxidant and antibacterial properties. Further, this article emphasizes the antibacterial efficacy of essential oil composite films for food preservation and analyzes their manufacturing processes. These films could be an attractive delivery strategy for improving phenolic stability in foods and the shelf-life of consumable food items. Moreover, this article presents an overview of current knowledge of the extraction of essential oils, their effects on bioactive films and food preservation, as well as the benefits and drawbacks of using them to preserve food products.
Collapse
Affiliation(s)
- Sohail Khan
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
| | - Abdullah A. A. Abdo
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb 70270, Yemen
| | - Ying Shu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan 545000, China
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
| | - Tieqiang Liang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan 545000, China
| |
Collapse
|
15
|
You Y, Zhou Y, Duan X, Mao X, Li Y. Research progress on the application of different preservation methods for controlling fungi and toxins in fruit and vegetable. Crit Rev Food Sci Nutr 2023; 63:12441-12452. [PMID: 35866524 DOI: 10.1080/10408398.2022.2101982] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruits and vegetables are susceptible to fungal infections during picking, transportation, storage and processing, which have a high potential to produce toxins. Fungi and toxins can cause acute or chronic poisoning after entering the body. In the field of fruit and vegetable preservation, technologies such as temperature control, modified atmosphere, irradiation, application of natural or chemical preservatives, and edible films are commonly used. In practical applications, according to the types, physiological differences and actual needs of fruits and vegetables, suitable preservation methods can be selected to achieve the effect of preservation and control of fungi and toxins. The starting point of fresh-keeping technology is to delay post-harvest senescence of fruits and vegetables, inhibit the respiratory intensity, and control the reproduction of microorganisms, which is important to control the reproduction of fungi and the production of toxins. From the three directions of physical, chemical and biological means, the article analyses and explores the effects of different external factors on the production of toxins and the effects of different preservation techniques on fungal growth and toxin production in fruits and vegetables, in order to provide new ideas for the preservation of fruits and vegetables and the control of harmful substances in food.
Collapse
Affiliation(s)
- Yanli You
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Yunna Zhou
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Xuewu Duan
- Department of South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Xin Mao
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Yanshen Li
- Yantai University, Yantai, Shandong, People's Republic of China
| |
Collapse
|
16
|
Perez-Vazquez A, Barciela P, Carpena M, Prieto MA. Edible Coatings as a Natural Packaging System to Improve Fruit and Vegetable Shelf Life and Quality. Foods 2023; 12:3570. [PMID: 37835222 PMCID: PMC10572534 DOI: 10.3390/foods12193570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
In the past years, consumers have increased their interest in buying healthier food products, rejecting those products with more additives and giving preference to the fresh ones. Moreover, the current environmental situation has made society more aware of the importance of reducing the production of plastic and food waste. In this way and considering the food industry's need to reduce food spoilage along the food chain, edible coatings have been considered eco-friendly food packaging that can replace traditional plastic packaging, providing an improvement in the product's shelf life. Edible coatings are thin layers applied straight onto the food material's surface that are made of biopolymers that usually incorporate other elements, such as nanoparticles or essential oils, to improve their physicochemical properties. These materials must provide a barrier that can prevent the passage of water vapor and other gasses, microbial growth, moisture loss, and oxidation so shelf life can be extended. The aim of this review was to compile the current data available to give a global vision of the formulation process and the different ways to improve the characteristics of the coats applied to both fruits and vegetables. In this way, the suitability of compounds in by-products produced in the food industry chain were also considered for edible coating production.
Collapse
Affiliation(s)
| | | | | | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain; (A.P.-V.); (P.B.); (M.C.)
| |
Collapse
|
17
|
Kocić-Tanackov S, Pavlović H. Natural Antimicrobial Agents Utilized in Food Preservation. Foods 2023; 12:3484. [PMID: 37761193 PMCID: PMC10530020 DOI: 10.3390/foods12183484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Since the initial transformation of food surpluses, improving food quality and safety are of principal importance to human health [...].
Collapse
Affiliation(s)
| | - Hrvoje Pavlović
- Faculty of Food Technology Osijek, University of Osijek, 31000 Osijek, Croatia;
| |
Collapse
|
18
|
Oliveira GDS, McManus C, Salgado CB, Pires PGDS, de Figueiredo Sousa HA, da Silva ER, Dos Santos VM. Antimicrobial Coating Based on Tahiti Lemon Essential Oil and Green Banana Flour to Preserve the Internal Quality of Quail Eggs. Animals (Basel) 2023; 13:2123. [PMID: 37443921 DOI: 10.3390/ani13132123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
This study evaluated the microbiological and internal quality of quail eggs stored for 21 days at room temperature (29.53 ± 1.36 °C) after being coated with green banana flour and Tahiti lemon essential oil (GBF/TAH). One hundred and sixty-two quail eggs were equally distributed into three treatments: (1) uncoated eggs, (2) eggs coated with green banana flour (GBF), and (3) eggs coated with GBF/TAH. The Haugh unit (HU) of the eggs was significantly lower in the third week for uncoated eggs (70.94 ± 1.63, grade A) compared to eggs coated with GBF/TAH (81.47 ± 2.38, grade AA). On the 21st day of storage, the eggs coated with GBF/TAH had significantly lower total counts of aerobic mesophilic bacteria in the shell and egg contents compared to the other treatments. GBF/TAH coating is an effective blending approach to reduce the microbial load of the shell and egg contents and preserve the sensory and internal quality of the eggs.
Collapse
Affiliation(s)
| | - Concepta McManus
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília 70910-900, Brazil
| | - Cristiane Batista Salgado
- Laboratory of Geosciences and Human Sciences, Federal Institute of Brasília-Campus Brasília, Brasília 70830-450, Brazil
| | | | | | - Edilsa Rosa da Silva
- Laboratory of Microbiology and Food, Federal Institute of Brasília-Campus Planaltina, Brasília 73380-900, Brazil
| | | |
Collapse
|
19
|
Bhatia S, Al-Harrasi A, Alhadhrami AS, Shah YA, Kotta S, Iqbal J, Anwer MK, Nair AK, Koca E, Aydemir LY. Physical, Chemical, Barrier, and Antioxidant Properties of Pectin/Collagen Hydrogel-Based Films Enriched with Melissa officinalis. Gels 2023; 9:511. [PMID: 37504390 PMCID: PMC10379118 DOI: 10.3390/gels9070511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023] Open
Abstract
The essential oil extracted from Melissa officinalis (MOEO) exhibits a wide range of therapeutic properties, including antioxidant, antibacterial, and antifungal activities. The current research aimed to analyze the mechanical, barrier, chemical, and antioxidant properties of pectin and collagen-based films. Hydrogel-based films loaded with varying concentrations of MOEO (0.1%, 0.15%, and 0.2%) were prepared by solvent-casting method, and their physicochemical as well as antioxidant properties were examined. GC-MS analysis revealed the presence of major components in MOEO such as 2,6-octadienal, 3,7-dimethyl, citral, caryophyllene, geranyl acetate, caryophyllene oxide, citronellal, and linalool. Fourier transform infrared (FTIR) results revealed the interaction between components of the essential oil and polymer matrix. Scanning electron microscopy (SEM) revealed that films loaded with the highest concentration (0.2%) of MOEO showed more homogeneous structure with fewer particles, cracks, and pores as compared to control film sample. MOEO-incorporated films exhibited higher elongation at break (EAB) (30.24-36.29%) and thickness (0.068-0.073 mm); however, they displayed lower tensile strength (TS) (3.48-1.25 MPa) and transparency (87.30-82.80%). MOEO-loaded films demonstrated superior barrier properties against water vapors. According to the results, the incorporation of MOEO into pectin-collagen composite hydrogel-based films resulted in higher antioxidant properties, indicating that MOEO has the potential to be used in active food packaging material for potential applications.
Collapse
Affiliation(s)
- Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Aysha Salim Alhadhrami
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Yasir Abbas Shah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Javed Iqbal
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Anjana Karunakaran Nair
- Department of Biomedical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Esra Koca
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey
| | - Levent Yurdaer Aydemir
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey
| |
Collapse
|
20
|
Pandey VK, Tripathi A, Srivastava S, Dar AH, Singh R, Farooqui A, Pandey S. Exploiting the bioactive properties of essential oils and their potential applications in food industry. Food Sci Biotechnol 2023; 32:885-902. [PMID: 37123062 PMCID: PMC10130317 DOI: 10.1007/s10068-023-01287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 05/02/2023] Open
Abstract
Fruits are an abundant source of minerals and nutrients. High nutritional value and easy-to-consume property have increased its demand. In a way to fulfil this need, farmers have increased production, thus making it available for consumers in various regions. This distribution of fruits to various regions deals with many associated problems like deterioration and spoilage. In a way, the common practices that are being used are stored at low temperatures, preservation with chemicals, and many more. Recently, edible coating has emerged as a promising preservation technique to combat the above-mentioned problems. Edible coating stands for coating fruits with bioactive compounds which maintains the nutritional characteristics of fruit and also enhances the shelf life. The property of edible coating to control moisture loss, solute movement, gas exchange, and oxidation makes it most suitable to use. Preservation is uplifted by maintaining the nutritional and physicochemical properties of fruits with the effectiveness of essential oils. The essential oil contains antioxidant, antimicrobial, flavor, and probiotic properties. The utilization of essential oil in the edible coating has increased the property of coating. This review includes the process of extraction, potential benefits and applications of essential oils in food industry.
Collapse
Affiliation(s)
- Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, UP India
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur, UP India
| | - Anjali Tripathi
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur, UP India
| | | | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Kashmir India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow, UP India
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow, UP India
| | - Sneha Pandey
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, UP India
| |
Collapse
|
21
|
Sharma P, Pandey A, Malviya R, Dey S, Karmakar S, Gayen D. Genome editing for improving nutritional quality, post-harvest shelf life and stress tolerance of fruits, vegetables, and ornamentals. Front Genome Ed 2023; 5:1094965. [PMID: 36911238 PMCID: PMC9998953 DOI: 10.3389/fgeed.2023.1094965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Agricultural production relies on horticultural crops, including vegetables, fruits, and ornamental plants, which sustain human life. With an alarming increase in human population and the consequential need for more food, it has become necessary for increased production to maintain food security. Conventional breeding has subsidized the development of improved verities but to enhance crop production, new breeding techniques need to be acquired. CRISPR-Cas9 system is a unique and powerful genome manipulation tool that can change the DNA in a precise way. Based on the bacterial adaptive immune system, this technique uses an endonuclease that creates double-stranded breaks (DSBs) at the target loci under the guidance of a single guide RNA. These DSBs can be repaired by a cellular repair mechanism that installs small insertion and deletion (indels) at the cut sites. When equated to alternate editing tools like ZFN, TALENs, and meganucleases, CRISPR- The cas-based editing tool has quickly gained fast-forward for its simplicity, ease to use, and low off-target effect. In numerous horticultural and industrial crops, the CRISPR technology has been successfully used to enhance stress tolerance, self-life, nutritional improvements, flavor, and metabolites. The CRISPR-based tool is the most appropriate one with the prospective goal of generating non-transgenic yields and avoiding the regulatory hurdles to release the modified crops into the market. Although several challenges for editing horticultural, industrial, and ornamental crops remain, this new novel nuclease, with its crop-specific application, makes it a dynamic tool for crop improvement.
Collapse
Affiliation(s)
- Punam Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Anuradha Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Rinku Malviya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Sharmistha Dey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | | | - Dipak Gayen
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
22
|
A Review of Regulatory Standards and Advances in Essential Oils as Antimicrobials in Foods. J Food Prot 2023; 86:100025. [PMID: 36916569 DOI: 10.1016/j.jfp.2022.100025] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022]
Abstract
As essential oils (EOs) possess GRAS status, there is a strong interest in their application to food preservation. Trends in the food industry suggest consumers are drawn to environmentally friendly alternatives and less synthetic chemical preservatives. Although the use of EOs has increased over the years, adverse effects have limited their use. This review aims to address the regulatory standards for EO usage in food, techniques for delivery of EOs, essential oils commonly used to control pathogens and molds, and advances with new active compounds that overcome sensory effects for meat products, fresh fruits and vegetables, fruit and vegetable juices, seafood, dairy products, and other products. This review will show adverse sensory effects can be overcome in various products by the use of edible coatings containing encapsulated EOs to facilitate the controlled release of EOs. Depending on the method of cooking, the food product has been shown to mask flavors associated with EOs. In addition, using active packaging materials can decrease the diffusion rate of the EOs, thus controlling undesirable flavor characteristics while still preserving or prolonging the shelf life of food. The use of encapsulation in packaging film can control the release of volatile or active ingredients. Further, use of EOs in the vapor phase allows for contact indirectly, and use of nanoemulsion, coating, and film wrap allows for the controlled release of the EOs. Research has also shown that combining EOs can prevent adverse sensory effects. Essential oils continue to serve as a very beneficial way of controlling undesirable microorganisms in food systems.
Collapse
|
23
|
De Bruno A, Gattuso A, Ritorto D, Piscopo A, Poiana M. Effect of Edible Coating Enriched with Natural Antioxidant Extract and Bergamot Essential Oil on the Shelf Life of Strawberries. Foods 2023; 12:foods12030488. [PMID: 36766017 PMCID: PMC9914418 DOI: 10.3390/foods12030488] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
In this study, the effects of the application of edible coatings on the shelf life of the strawberry were evaluated, with the aim of extending the fruit's availability and shelf life while preserving its qualitative characteristics. In particular, the application of edible coatings enriched with a natural antioxidant to strawberries was evaluated for their physicochemical, microbial, and structural properties, during a storage period (up to 14 days) at refrigerated temperature. The experimental plan provided the formulation for edible coatings enriched with different concentrations of a natural antioxidant extract obtained from bergamot (Citrus bergamia Risso) pomace (1, 2.5, and 5%), bergamot essential oil (0.1% v/v and 0.2% v/v), and a synthetic antioxidant, butylated hydroxytoluene (BHT, 100 ppm). Moreover, a control test with untreated strawberries was considered. The enriched gum Arabic coatings provided good results related to the preservation of the qualitative parameters of the strawberries. The samples coated with the antioxidant extract (2.5%, sample D) and bergamot essential oil (0.1%, sample F) showed the best maintenance of the qualitative parameters after 14 days, showing lower decay rates (36% D and 27% F), good acceptability by consumers (between 5 and 6), and good retention of ascorbic acid (>30 mg 100 g-1).
Collapse
Affiliation(s)
- Alessandra De Bruno
- Department of AGRARIA, University Mediterranea of Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Antonio Gattuso
- Department of AGRARIA, University Mediterranea of Reggio Calabria, 89124 Reggio Calabria, Italy
- Experimental Station for the Industry of the Essential Oils and Citrus Products SSEA, 89127 Reggio Calabria, Italy
| | - Davide Ritorto
- Department of AGRARIA, University Mediterranea of Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Amalia Piscopo
- Department of AGRARIA, University Mediterranea of Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Marco Poiana
- Department of AGRARIA, University Mediterranea of Reggio Calabria, 89124 Reggio Calabria, Italy
- Correspondence: ; Tel.: +39-0965-1694367
| |
Collapse
|
24
|
Salmas CE, Giannakas AE, Moschovas D, Kollia E, Georgopoulos S, Gioti C, Leontiou A, Avgeropoulos A, Kopsacheili A, Avdylaj L, Proestos C. Kiwi Fruits Preservation Using Novel Edible Active Coatings Based on Rich Thymol Halloysite Nanostructures and Chitosan/Polyvinyl Alcohol Gels. Gels 2022; 8:gels8120823. [PMID: 36547348 PMCID: PMC9777596 DOI: 10.3390/gels8120823] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The concept of this study is the replacement of previous fossil-based techniques for food packaging and food shelf-life extension, with novel more green processes and materials following the spirit of circular economy and the global trend for environmentally positive fingerprints. A novel adsorption process to produce thymol-halloysite nanohybrids is presented in this work. The high dispersion of this thymol-halloysite nanostructure in chitosan biopolymer is one of the goals of this study. The incorporation of this biodegradable matrix with poly-vinyl-alcohol produced a very promising food-packaging film. Mechanical, water-oxygen barrier, antimicrobial, and antioxidant properties were measured. Transparency levels were also tested using a UV-vis instrument. Moreover, the developed films were tested in-vivo for the preservation and the extension of the shelf-life of kiwi fruits. In all cases, results indicated that the increased fraction of thymol from thyme oil significantly enhances the antimicrobial and antioxidant activity of the prepared chitosan-poly-vinyl- alcohol gel. The use of the halloysite increases the mechanical and water-oxygen barrier properties and leads to a control release process of thymol which extends the preservation and the shelf-life of kiwi fruits. Finally, the results indicated that the halloysite improves the properties of the chitosan/poly-vinyl-alcohol films, and the thymol makes them further advantageous.
Collapse
Affiliation(s)
- Constantinos E. Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
- Correspondence: (C.E.S.); (A.E.G.); (C.P.)
| | - Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
- Correspondence: (C.E.S.); (A.E.G.); (C.P.)
| | - Dimitrios Moschovas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Eleni Kollia
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Stavros Georgopoulos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Christina Gioti
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Areti Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Apostolos Avgeropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Anna Kopsacheili
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Learda Avdylaj
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
- Correspondence: (C.E.S.); (A.E.G.); (C.P.)
| |
Collapse
|
25
|
A comprehensive review on gelatin: Understanding impact of the sources, extraction methods, and modifications on potential packaging applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Quality and shelf life assessment of steam-cooked chicken fingers coated with essential oil nanoemulsions. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Oliveira GDS, McManus C, Dos Santos VM. Essential oils and propolis as additives in egg coatings. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2119914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- G. D. S. Oliveira
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - C. McManus
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - V. M. Dos Santos
- Laboratory of Poultry Science, Federal Institute of Brasília, Brasília, Brazil
| |
Collapse
|
28
|
Giannakas AE, Salmas CE, Moschovas D, Zaharioudakis K, Georgopoulos S, Asimakopoulos G, Aktypis A, Proestos C, Karakassides A, Avgeropoulos A, Zafeiropoulos NE, Nychas GJ. The Increase of Soft Cheese Shelf-Life Packaged with Edible Films Based on Novel Hybrid Nanostructures. Gels 2022; 8:539. [PMID: 36135251 PMCID: PMC9498775 DOI: 10.3390/gels8090539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
This study presents, the development of a green method to produce rich in thymol natural zeolite (TO@NZ) nanostructures. This material was used to prepare sodium-alginate/glycerol/xTO@NZ (ALG/G/TO@NZ) nanocomposite active films for the packaging of soft cheese to extend its shelf-life. Differential scanning calorimetry (DSC), X-ray analysis (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) instruments were used for the characterization of such nanostructures and films, to identify the thymol adsorbed amount, to investigate the thermal behaviour, and to confirm the dispersion of nanostructure powder into the polymer matrix. Water vapor transmission rate, oxygen permeation analyzer, tensile measurements, antioxidant measurements, and antimicrobial measurements were used to estimate the film's water and oxygen barrier, mechanical properties, nanostructure's nanoreinforcement activity, antioxidant and antimicrobial activity. The findings from the study revealed that ALG/G/TO@NZ nanocomposite film could be used as an active packaging film for foods with enhanced, mechanical properties, oxygen and water barrier, antioxidant and antimicrobial activity, and it is capable of extending food shelf-life.
Collapse
Affiliation(s)
- Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Constantinos E. Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Moschovas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Zaharioudakis
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
- School of Food and Nutritional Sciences, Department of Food Science and Human Nutrition, Laboratory of Microbiology and Biotechnology of Foods, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Stavros Georgopoulos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Georgios Asimakopoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Anastasios Aktypis
- School of Food and Nutritional Sciences, Department of Food Science and Human Nutrition, Laboratory of Microbiology and Biotechnology of Foods, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Anastasios Karakassides
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Apostolos Avgeropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | | | - George-John Nychas
- School of Food and Nutritional Sciences, Department of Food Science and Human Nutrition, Laboratory of Microbiology and Biotechnology of Foods, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
29
|
Rhus coriaria L. (Sumac), a Versatile and Resourceful Food Spice with Cornucopia of Polyphenols. Molecules 2022; 27:molecules27165179. [PMID: 36014419 PMCID: PMC9414570 DOI: 10.3390/molecules27165179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, utilization of Rhus coriaria L. (sumac) is upgrading not only in their culinary use and human nutrition, but also in the pharmaceutical industry, food industry and veterinary practices. This is driven by accumulating evidence that support the ethnobotanical use of this plant; in particular, advanced knowledge of the content of nutritional, medicinal and techno-functional bioactive ingredients. Herein, we discuss polyphenolic compounds as the main bioactive ingredients in Rhus coriaria L., which contribute mainly to the significance and utility of this spice. Most of the antioxidant potential and therapeutic roles of sumac are increasingly attributed to its constituent tannins, flavonoids, and phenolic acids. Hydroxyphenyl pyranoanthocyanins and other anthocynins are responsible for the highly desired red pigments accounting for the strong pigmentation capacity and colorant ability of sumac. Certain polyphenols and the essential oil components are responsible for the peculiar flavor and antimicrobial activity of sumac. Tannin-rich sumac extracts and isolates are known to enhance the food quality and the oxidative stability of animal products such as meat and milk. In conclusion, polyphenol-rich sumac extracts and its bioactive ingredients could be exploited towards developing novel food products which do not only address the current consumers' interests regarding organoleptic and nutritional value of food, but also meet the growing need for 'clean label' as well as value addition with respect to antioxidant capacity, disease prevention, and health promotion in humans.
Collapse
|
30
|
Mendoza IC, Luna EO, Pozo MD, Vásquez MV, Montoya DC, Moran GC, Romero LG, Yépez X, Salazar R, Romero-Peña M, León JC. Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables. Lebensm Wiss Technol 2022; 165:113714. [PMID: 35783661 PMCID: PMC9239846 DOI: 10.1016/j.lwt.2022.113714] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 12/22/2022]
Abstract
Pandemic COVID-19 warned the importance of preparing the immune system to prevent diseases. Therefore, consuming fresh fruits and vegetables is essential for a healthy and balanced diet due to their diverse compositions of vitamins, minerals, fiber, and bioactive compounds. However, these fresh products grew close to manure and irrigation water and are harvested with equipment or by hand, representing a high risk of microbial, physical, and chemical contamination. The handling of fruits and vegetables exposed them to various wet surfaces of equipment and utensils, an ideal environment for biofilm formation and a potential risk for microbial contamination and foodborne illnesses. In this sense, this review presents an overview of the main problems associated with microbial contamination and the several chemicals, physical, and biological disinfection methods concerning their ability to avoid food contamination. This work has discussed using chemical products such as chlorine compounds, peroxyacetic acid, and quaternary ammonium compounds. Moreover, newer techniques including ozone, electrolyzed water, ultraviolet light, ultrasound, high hydrostatic pressure, cold plasma technology, and microbial surfactants have also been illustrated here. Finally, future trends in disinfection with a sustainable approach such as combined methods were also described. Therefore, the fruit and vegetable industries can be informed about their main microbial risks to establish optimal and efficient procedures to ensure food safety.
Collapse
Affiliation(s)
- Iana Cruz Mendoza
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Esther Ortiz Luna
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - María Dreher Pozo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Mirian Villavicencio Vásquez
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Diana Coello Montoya
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Galo Chuchuca Moran
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Luis Galarza Romero
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Ximena Yépez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Rómulo Salazar
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - María Romero-Peña
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Jonathan Coronel León
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
31
|
Liu G, Nie R, Liu Y, Mehmood A. Combined antimicrobial effect of bacteriocins with other hurdles of physicochemic and microbiome to prolong shelf life of food: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154058. [PMID: 35217045 DOI: 10.1016/j.scitotenv.2022.154058] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Bacteriocins are ribosomally synthesized peptides to inhibit food spoilage bacteria, which are widely used as a kind of food biopreservation. The role of bacteriocins in therapeutics and food industries has received increasing attention across a number of disciplines in recent years. Despite their advantages as alternative therapeutics over existing strategies, the application of bacteriocins suffers from shortcomings such as the high isolation and purification cost, narrow spectrum of activity, low stability and solubility and easy enzymatic degradation. Previous studies have studied the synergistic or additive effects of bacteriocins when used in combination with other hurdles including physics, chemicals, and microbes. These combined treatments reduce the adverse effects of chemical additives, extending the shelf life of food products while guaranteeing food quality. This review highlights the advantages and disadvantages of bacteriocins in food preservation. It then reviews the combined effect and mechanism of different hurdles and bacteriocins in enhancing food preservation in detail. The combination of bacterioncins and other hurdles provide potential approaches for maintaining food quality and food safety.
Collapse
Affiliation(s)
- Guorong Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Rong Nie
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yangshuo Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
32
|
Di Giuseppe FA, Volpe S, Cavella S, Masi P, Torrieri E. Physical properties of active biopolymer films based on chitosan, sodium caseinate, and rosemary essential oil. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Keshari D, Tripathi AD, Agarwal A, Rai S, Srivastava SK, Kumar P. Effect of α-dl tocopherol acetate (antioxidant) enriched edible coating on the physicochemical, functional properties and shelf life of minimally processed carrots (Daucus carota subsp. sativus). FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
34
|
Yadav A, Kumar N, Upadhyay A, Sethi S, Singh A. Edible coating as postharvest management strategy for shelf-life extension of fresh tomato (Solanum lycopersicum L.): An overview. J Food Sci 2022; 87:2256-2290. [PMID: 35502679 DOI: 10.1111/1750-3841.16145] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 01/01/2023]
Abstract
Tomato is considered as one of the most grown horticultural crops having a short shelf-life due to its climacteric nature of ripening, susceptibility to postharvest microbial decay, and mechanical damage, resulting in huge postharvest losses. Recently, the use of edible coatings has been seen as a promising environment friendly and sustainable technology for preserving the quality attributes and prolonging the shelf-life of tomato during storage. Although a lot of literature is available on the aspects of edible coating for fresh produce, especially stone and tropical fruits, but there is no dedicated comprehensive review that specifically addresses the requirements of edible coatings for whole fresh tomato. This review aims to provide the information about the desirable coating property requirements specific to tomato and summarizes or analyzes the recent studies conducted on the application of edible coating on tomato. The article also deals with recent trends on utilization of bioactive compounds as well as nanotechnological approaches for improving the performance and functionality of coating materials used for tomato. However, the edible coating technology for tomato is still at infancy state, and adoption of technology on a commercial scale requires economic viability and large-scale consumer acceptability.
Collapse
Affiliation(s)
- Ajay Yadav
- Agro Produce Processing Division, ICAR-Central Institute if Agricultural Engineering, Bhopal, Madhya Pradesh, India.,Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Nishant Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Shruti Sethi
- Division of Food Science and Postharvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anurag Singh
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| |
Collapse
|
35
|
Phan LTK, Nguyen HX, De Saeger S, Jacxsens L, Eeckhout M, Devlieghere F. Predictive modelling of the radial growth of Aspergillus flavus and Fusarium proliferatum on paddy and white rice (Oryza sativa). Int J Food Microbiol 2022; 375:109743. [DOI: 10.1016/j.ijfoodmicro.2022.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
|
36
|
Abstract
Citrus essential oils (EOs) are widely used as flavoring agents in food, pharmaceutical, cosmetical and chemical industries. For this reason, their demand is constantly increasing all over the world. Besides industrial applications, the abundance of EOs in the epicarp is particularly relevant for the quality of citrus fruit. In fact, these compounds represent a natural protection against postharvest deteriorations due to their remarkable antimicrobial, insecticidal and antioxidant activities. Several factors, including genotype, climatic conditions and cultural practices, can influence the assortment and accumulation of EOs in citrus peels. This review is focused on factors influencing variation of the EOs’ composition during ripening and on the implications on postharvest quality of the fruit.
Collapse
|
37
|
Applications of Essential Oils as Antibacterial Agents in Minimally Processed Fruits and Vegetables—A Review. Microorganisms 2022; 10:microorganisms10040760. [PMID: 35456810 PMCID: PMC9032070 DOI: 10.3390/microorganisms10040760] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Microbial foodborne diseases are a major health concern. In this regard, one of the major risk factors is related to consumer preferences for “ready-to-eat” or minimally processed (MP) fruits and vegetables. Essential oil (EO) is a viable alternative used to reduce pathogenic bacteria and increase the shelf-life of MP foods, due to the health risks associated with food chlorine. Indeed, there has been increased interest in using EO in fresh produce. However, more information about EO applications in MP foods is necessary. For instance, although in vitro tests have defined EO as a valuable antimicrobial agent, its practical use in MP foods can be hampered by unrealistic concentrations, as most studies focus on growth reductions instead of bactericidal activity, which, in the case of MP foods, is of utmost importance. The present review focuses on the effects of EO in MP food pathogens, including the more realistic applications. Overall, due to this type of information, EO could be better regarded as an “added value” to the food industry.
Collapse
|
38
|
Zubair M, Shahzad S, Hussain A, Pradhan RA, Arshad M, Ullah A. Current Trends in the Utilization of Essential Oils for Polysaccharide- and Protein-Derived Food Packaging Materials. Polymers (Basel) 2022; 14:polym14061146. [PMID: 35335477 PMCID: PMC8950623 DOI: 10.3390/polym14061146] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
Essential oils (EOs) have received attention in the food industry for developing biopolymer-derived food packaging materials. EOs are an excellent choice to replace petroleum-derived additives in food packaging materials due to their abundance in nature, eco-friendliness, and superior antimicrobial and antioxidant attributes. Thus far, EOs have been used in cellulose-, starch-, chitosan-, and protein-based food packaging materials. Biopolymer-based materials have lower antioxidant and antibacterial properties in comparison with their counterparts, and are not suitable for food packaging applications. Various synthetic-based compounds are being used to improve the antimicrobial and antioxidant properties of biopolymers. However, natural essential oils are sustainable and non-harmful alternatives to synthetic antimicrobial and antioxidant agents for use in biopolymer-derived food packaging materials. The incorporation of EOs into the polymeric matrix affects their physicochemical properties, particularly improving their antimicrobial and antioxidant properties. EOs in the food packaging materials increase the shelf life of the packaged food, inhibit the growth of microorganisms, and provide protection against oxidation. Essential oils also influence other properties, such as tensile, barrier, and optical properties of the biopolymers. This review article gives a detailed overview of the use of EOs in biopolymer-derived food packaging materials. The innovative ways of incorporating of EOs into food packaging materials are also highlighted, and future perspectives are discussed.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Lab# 540, South Academic Building, Edmonton, AB T6G 2P5, Canada; (M.Z.); (M.A.)
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan;
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60000, Pakistan;
| | - Rehan Ali Pradhan
- Biopolymer Innovation Head, Yash Pakka Limited, Ayodhya 224135, UP, India;
| | - Muhammad Arshad
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Lab# 540, South Academic Building, Edmonton, AB T6G 2P5, Canada; (M.Z.); (M.A.)
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Lab# 540, South Academic Building, Edmonton, AB T6G 2P5, Canada; (M.Z.); (M.A.)
- Correspondence:
| |
Collapse
|
39
|
Bay Laurel (Laurus nobilis L.) Essential Oil as a Food Preservative Source: Chemistry, Quality Control, Activity Assessment and Applications to Olive Industry Products. Foods 2022; 11:foods11050752. [PMID: 35267385 PMCID: PMC8909149 DOI: 10.3390/foods11050752] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Essential oils (EOs) find application as flavoring agents in the food industry and are also desirable ingredients as they possess preservative properties. The Mediterranean diet involves the use of a lot of herbs and spices and their products (infusions, EOs) as condiments and for the preservation of foods. Application of EOs has the advantage of homogeneous dispersion in comparison with dry leaf use in small pieces or powder. Among them, Laurus nobilis (bay laurel) L. EO is an interesting source of volatiles, such as 1,8-cineole and eugenol, which are known for their preservative properties. Its flavor suits cooked red meat, poultry, and fish, as well as vegetarian dishes, according to Mediterranean recipes. The review is focused on its chemistry, quality control aspects, and recent trends in methods of analysis and activity assessment with a focus on potential antioxidant activity and applications to olive industry products. Findings indicate that this EO is not extensively studied in comparison with those from other Mediterranean plants, such as oregano EO. More work is needed to establish authenticity and activity methods, whereas the interest for using it for the preparation of flavored olive oil or for the aromatization and preservation of table oils must be further encouraged.
Collapse
|
40
|
Essential oils as natural antimicrobials for application in edible coatings for minimally processed apple and melon: A review on antimicrobial activity and characteristics of food models. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Kawhena TG, Opara UL, Fawole OA. Effects of Gum Arabic Coatings Enriched with Lemongrass Essential Oil and Pomegranate Peel Extract on Quality Maintenance of Pomegranate Whole Fruit and Arils. Foods 2022; 11:593. [PMID: 35206069 PMCID: PMC8871292 DOI: 10.3390/foods11040593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
The effects of gum arabic coatings combined with lemongrass oil and/or pomegranate peel extract on freshly harvested mature 'Wonderful' pomegranate fruit were studied. Fruit were coated with gum arabic (GA) (1.5% w/v) alone or enriched with lemongrass oil (LM) (0.1% v/v) and/or pomegranate peel extract (PP) (1% w/v). Fruit were packed into standard open top ventilated cartons (dimensions: 0.40 m long, 0.30 m wide and 0.12 m high), and stored for 6 weeks at 5 ± 1 °C (90% RH). Evaluations were made every 2 weeks of cold storage and after 5 d of shelf life (20 °C and 65% RH). Fruit coated with GA + PP (4.09%) and GA + PP + LM (4.21%) coatings recorded the least cumulative weight loss compared to the uncoated control (9.87%). After 6 weeks, uncoated control and GA + PP + LM recorded the highest (24.55 mg CO2Kg-1h-1) and lowest (10.76 mg CO2Kg-1h-1) respiration rate, respectively. Coating treatments reduced the incidence of decay and treatments GA + LM + PP and GA + PP recorded the highest total flavonoid content between 2 and 6 weeks of storage. The findings suggest that GA coatings with/without LM and PP can be a beneficial postharvest treatment for 'Wonderful' pomegranates to reduce weight loss and decay development during cold storage.
Collapse
Affiliation(s)
- Tatenda Gift Kawhena
- Department of Horticultural Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa;
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
- UNESCO International Centre for Biotechnology, Nsukka 410001, Enugu State, Nigeria
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
42
|
Bansal K, Webster D, Quadir M. Self-Assembled Nanostructures from Amphiphilic Sucrose-Soyates for Solubilizing Hydrophobic Guest Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2066-2075. [PMID: 35119869 DOI: 10.1021/acs.langmuir.1c03033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We studied self-assembly and colloidal properties of poly(ethylene glycol) (pEG) conjugated sucrose soyate polyols (PSSP). These molecular platforms were synthesized by covalently connecting PEGs of different molecular weights (Mn) (12 and 16 ethylene oxide units) to epoxidized sucrose soyate (ESS). The synthesized PSSP products showed amphiphilicity, reduced water surface tension, and exhibited critical Aggregation Concentration (CAC) within the range of 0.3-0.4 mg/mL. We observed that PSSP self-assembles in water in the form of nanoparticles without the need of any cosolvents. These nanoparticles exhibited number-average hydrodynamic diameter of 120 ± 8 nm with a polydispersity index (PDI) of <0.3, and negatively charged surfaces. We also found out that PSSP nanoparticles can encapsulate and homogeneously distribute a hydrophobic model compound, such as a phthalocyanine dye, Solvent Blue-70 (BL-70), on a metal surface. Collectively, our studies explored and demonstrated the possibility of molecular diversification of biobased starting materials to form amphiphilic nanoparticles with industrially relevant colloidal and surface properties.
Collapse
Affiliation(s)
- Karan Bansal
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo North Dakota 58108, United States
| | - Dean Webster
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo North Dakota 58108, United States
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo North Dakota 58108, United States
| |
Collapse
|
43
|
Abd El-Hack ME, El-Saadony MT, Saad AM, Salem HM, Ashry NM, Abo Ghanima MM, Shukry M, Swelum AA, Taha AE, El-Tahan AM, AbuQamar SF, El-Tarabily KA. Essential oils and their nanoemulsions as green alternatives to antibiotics in poultry nutrition: a comprehensive review. Poult Sci 2022; 101:101584. [PMID: 34942519 PMCID: PMC8695362 DOI: 10.1016/j.psj.2021.101584] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Increasing market pressure to reduce the use of antibiotics and the Veterinary Feed Directive of 2019 have led to expanded research on alternate antibiotic solutions. This review aimed to assess the benefits of using essential oils (EOs) and their nanoemulsions (NEs) as feed supplements for poultry and their potential use as antibiotic alternatives in organic poultry production. Antibiotics are commonly used to enhance the growth and prevent diseases in poultry animals due to their antimicrobial activities. EOs are a complex mixture of volatile compounds derived from plants and manufactured via various fermentation, extraction, and steam distillation methods. EOs are categorized into 2 groups of compounds: terpenes and phenylpropenes. Differences among various EOs depend on the source plant type, physical and chemical soil conditions, harvest time, plant maturity, drying technology used, storage conditions, and extraction time. EOs can be used for therapeutic purposes in various situations in broiler production as they possess antibacterial, antifungal, antiparasitic, and antiviral activities. Several studies have been conducted using various combinations of EOs or crude extracts of their bioactive compounds to investigate their complexity and applications in organic poultry production. NEs are carrier systems that can be used to overcome the volatile nature of EOs, which is a major factor limiting their application. NEs are being progressively used to improve the bioavailability of the volatile lipophilic components of EOs. This review discusses the use of these nonantibiotic alternatives as antibiotics for poultry feed in organic poultry production.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza,12211, Egypt
| | - Noha M Ashry
- Agricultural Microbiology Department, Faculty of Agriculture, Benha University, Toukh, 13736, Egypt
| | - Mahmoud M Abo Ghanima
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Borg El Arab, Alexandria, Egypt
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia.
| |
Collapse
|
44
|
Formulation of Laurus nobilis Essential Oil Nanoemulsion System and Its Application in Fresh-Cut Muskmelons. COATINGS 2022. [DOI: 10.3390/coatings12020159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective was to elucidate the influences of Laurus nobilis essential oil nanoemulsion on the quality properties of fresh-cut muskmelons (Cucumis melo L.) stored at 4 °C for 8 days. The L. nobilis oil nanoemulsion coating can inhibit changes in the browning index and titratable acidity level of muskmelon samples. The browning index in the slices treated with L. nobilis oil nanoemulsion was 0.095 ± 0.007, as compared with that of the control (0.314 ± 0.018). Meanwhile, L. nobilis oil nanoemulsion treatment maintained total phenolic content, with values ranging from 11.13 ± 0.74 mg GAE/g FW to 9.47 ± 0.75 mg GAE/g FW and inhibited the activities of related enzymes, such as polyphenol oxidase, peroxidase and antioxidant enzymes (catalase and peroxidase). Moreover, the application of L. nobilis oil nanoemulsion inhibited the proliferation of spoilage microorganisms. The population of the aerobic bacteria of the muskmelon samples subjected to L. nobilis oil nanoemulsion treatment was 5.14 ± 0.47 log CFU/g FW, whereas that of the control was 9.42 ± 0.88 log CFU/g FW after 8 days. Therefore, the tested L. nobilis oil nanoemulsion may contribute to the inhibition of surface browning and enhancement of the shelf life of fresh-cut muskmelons for eight days at refrigerator temperature.
Collapse
|
45
|
Akbari E, Parastouei K, Abbaszadeh S. Physico-chemical and sensory analysis of walnut coated with rose extract and probiotic: a layer-by-layer approach. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Radi M, Ahmadi H, Amiri S. Effect of Cinnamon Essential Oil-Loaded Nanostructured Lipid Carriers (NLC) Against Penicillium Citrinum and Penicillium Expansum Involved in Tangerine Decay. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02737-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Naqash F, Masoodi F, Ayob O, Parvez S. Effect of active pectin edible coatings on the safety and quality of fresh‐cut apple. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Farah Naqash
- Department of Food Science and Technology University of Kashmir Srinagar J&K 190006 India
| | - F.A. Masoodi
- Department of Food Science and Technology University of Kashmir Srinagar J&K 190006 India
| | - Omeera Ayob
- Department of Food Technology School of Interdisciplinary Sciences and Technology Jamia Hamdard New Delhi 110062 India
| | - Sadaf Parvez
- Department of Food Science and Technology University of Kashmir Srinagar J&K 190006 India
| |
Collapse
|
48
|
Carvalho F, Duarte AP, Ferreira S. Antimicrobial activity of Melissa officinalis and its potential use in food preservation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Improvement of shelf-life of mangoes by chitosan coating enriched with cinnamon oil dissolved in Tween 80 combined with ethanol. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Chaudhary V, Thakur N, Kajla P, Thakur S, Punia S. Application of Encapsulation Technology in Edible Films: Carrier of Bioactive Compounds. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.734921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nutraceuticals, functional foods, immunity boosters, microcapsules, nanoemulsions, edible packaging, and safe food are the new progressive terms, adopted to describe the food industry. Also, the rising awareness among the consumers regarding these has created an opportunity for the food manufacturers and scientists worldwide to use food as a delivery vehicle. Packaging performs a very imminent role in the food supply chain as well as it is a consequential part of the process of food manufacturing. Edible packaging is a swiftly emerging art of science in which edible biopolymers like lipids, polysaccharides, proteins, resins, etc. and other consumable constituents extracted from various non-conventional sources like microorganisms are used alone or imbibed together. These edible packaging are indispensable and are meant to be consumed with the food. This shift in paradigm from traditional food packaging to edible, environment friendly, delivery vehicles for bioactive compounds have opened new avenues for the packaging industry. Bioactive compounds imbibed in food systems are gradually degenerated, or may change their properties due to internal or external factors like oxidation reactions, or they may react with each other thus reducing their bioavailability and ultimately may result in unacceptable color or flavor. A combination of novel edible food-packaging material and innovative technologies can serve as an excellent medium to control the bioavailability of these compounds in food matrices. One promising technology for overcoming the aforesaid problems is encapsulation. It can be used as a method for entrapment of desirable flavors, probiotics, or other additives in order to apprehend the impediments of the conventional edible packaging. This review explains the concept of encapsulation by exploring various encapsulating materials and their potential role in augmenting the performance of edible coatings/films. The techniques, characteristics, applications, scope, and thrust areas for research in encapsulation are discussed in detail with focus on development of sustainable edible packaging.
Collapse
|