1
|
Mahachi K, Kessels J, Boateng K, Jean Baptiste AE, Mitula P, Ekeman E, Nic Lochlainn L, Rosewell A, Sodha SV, Abela-Ridder B, Gabrielli AF. Zero- or missed-dose children in Nigeria: Contributing factors and interventions to overcome immunization service delivery challenges. Vaccine 2022; 40:5433-5444. [PMID: 35973864 PMCID: PMC9485449 DOI: 10.1016/j.vaccine.2022.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/11/2022] [Accepted: 07/24/2022] [Indexed: 11/28/2022]
Abstract
'Zero-dose' refers to a person who does not receive a single dose of any vaccine in the routine national immunization schedule, while 'missed dose' refers to a person who does not complete the schedule. These peopleremain vulnerable to vaccine-preventable diseases, and are often already disadvantaged due to poverty, conflict, and lack of access to basic health services. Globally, more 22.7 million children are estimated to be zero- or missed-dose, of which an estimated 3.1 million (∼14 %) reside in Nigeria.We conducted a scoping review tosynthesize recent literature on risk factors and interventions for zero- and missed-dosechildren in Nigeria. Our search identified 127 papers, including research into risk factors only (n = 66); interventions only (n = 34); both risk factors and interventions (n = 18); and publications that made recommendations only (n = 9). The most frequently reported factors influencing childhood vaccine uptake were maternal factors (n = 77), particularly maternal education (n = 22) and access to ante- and perinatal care (n = 19); heterogeneity between different types of communities - including location, region, wealth, religion, population composition, and other challenges (n = 50); access to vaccination, i.e., proximity of facilities with vaccines and vaccinators (n = 37); and awareness about immunization - including safety, efficacy, importance, and schedules (n = 18).Literature assessing implementation of interventions was more scattered, and heavily skewed towards vaccination campaigns and polio eradication efforts. Major evidence gaps exist in how to deliver effective and sustainable routine childhood immunization. Overall, further work is needed to operationalise the learnings from these studies, e.g. through applying findings to Nigeria's next review of vaccination plans, and using this summary as a basis for further investigation and specific recommendations on effective interventions.
Collapse
Affiliation(s)
- Kurayi Mahachi
- College of Public Health, University of Iowa, Iowa City, Iowa, United States
| | | | - Kofi Boateng
- Nigeria Country Office, World Health Organization, Abuja, Nigeria
| | | | - Pamela Mitula
- Inter-Country Support Team, Regional Office for Africa, World Health Organization, Ouagadougou, Burkina Faso
| | - Ebru Ekeman
- Department of Immunization, Vaccines and Biologicals (IVB), World Health Organization, Geneva, Switzerland
| | - Laura Nic Lochlainn
- Department of Immunization, Vaccines and Biologicals (IVB), World Health Organization, Geneva, Switzerland
| | - Alexander Rosewell
- Department of Immunization, Vaccines and Biologicals (IVB), World Health Organization, Geneva, Switzerland
| | - Samir V Sodha
- Department of Immunization, Vaccines and Biologicals (IVB), World Health Organization, Geneva, Switzerland
| | - Bernadette Abela-Ridder
- Department of Control of Neglected Tropical Diseases (NTD), World Health Organization, Geneva, Switzerland
| | - Albis Francesco Gabrielli
- Department of Control of Neglected Tropical Diseases (NTD), World Health Organization, Geneva, Switzerland.
| |
Collapse
|
2
|
van Heugten M, van Onzenoort-Bokken L. Sildenafil Citrate Overdose in a 3-Month Postterm Premature Infant With Pulmonary Artery Hypertension. Pediatr Emerg Care 2021; 37:e866-e867. [PMID: 34101683 DOI: 10.1097/pec.0000000000002472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We aimed to describe a case of prematurely born infant with accidental sildenafil overdose. METHODS This was a retrospective case report followed with chart and literature review. MAIN FINDINGS A prematurely born infant with moderate bronchopulmonary dysplasia, corrected congenital heart disease, and pulmonary hypertension presented with an accidental sildenafil overdose. Despite the relatively high dose in this medically frail infant and the long elimination half-life of sildenafil in infants, the symptoms of sildenafil overdose in our patient were only mild. After a short and uneventful period of observation in the hospital, the patient was discharged home. CONCLUSIONS Sildenafil overdose can cause serious symptoms such as hypotension. However, in our case, the sildenafil overdose was well tolerated, even by a young patient with underlying heart and lung disease. We show that choices in the management of sildenafil intoxication can be made based on the knowledge of sildenafil pharmacokinetics in young children.
Collapse
Affiliation(s)
- Marjolein van Heugten
- From the Department of Paediatrics, Máxima Medical Centre, Veldhoven, the Netherlands
| | | |
Collapse
|
3
|
Abstract
Almost 50% of prescription drugs lack age-appropriate dosing guidelines and therefore are used "off-label." Only ~10% drugs prescribed to neonates and infants have been studied for safety or efficacy. Immaturity of drug metabolism in children is often associated with drug toxicity. This chapter summarizes data on the ontogeny of major human metabolizing enzymes involved in oxidation, reduction, hydrolysis, and conjugation of drugs. The ontogeny data of individual drug-metabolizing enzymes are important for accurate prediction of drug pharmacokinetics and toxicity in children. This information is critical for designing clinical studies to appropriately test pharmacological hypotheses and develop safer pediatric drugs, and to replace the long-standing practice of body weight- or surface area-normalized drug dosing. The application of ontogeny data in physiologically based pharmacokinetic model and regulatory submission are discussed.
Collapse
|
4
|
Mukherjee D, Konduri GG. Pediatric Pulmonary Hypertension: Definitions, Mechanisms, Diagnosis, and Treatment. Compr Physiol 2021; 11:2135-2190. [PMID: 34190343 PMCID: PMC8289457 DOI: 10.1002/cphy.c200023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pediatric pulmonary hypertension (PPH) is a multifactorial disease with diverse etiologies and presenting features. Pulmonary hypertension (PH), defined as elevated pulmonary artery pressure, is the presenting feature for several pulmonary vascular diseases. It is often a hidden component of other lung diseases, such as cystic fibrosis and bronchopulmonary dysplasia. Alterations in lung development and genetic conditions are an important contributor to pediatric pulmonary hypertensive disease, which is a distinct entity from adult PH. Many of the causes of pediatric PH have prenatal onset with altered lung development due to maternal and fetal conditions. Since lung growth is altered in several conditions that lead to PPH, therapy for PPH includes both pulmonary vasodilators and strategies to restore lung growth. These strategies include optimal alveolar recruitment, maintaining physiologic blood gas tension, nutritional support, and addressing contributing factors, such as airway disease and gastroesophageal reflux. The outcome for infants and children with PH is highly variable and largely dependent on the underlying cause. The best outcomes are for neonates with persistent pulmonary hypertension (PPHN) and reversible lung diseases, while some genetic conditions such as alveolar capillary dysplasia are lethal. © 2021 American Physiological Society. Compr Physiol 11:2135-2190, 2021.
Collapse
Affiliation(s)
- Devashis Mukherjee
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| | - Girija G. Konduri
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| |
Collapse
|
5
|
Scott BL, Bonadonna D, Ozment CP, Rehder KJ. Extracorporeal membrane oxygenation in critically ill neonatal and pediatric patients with acute respiratory failure: a guide for the clinician. Expert Rev Respir Med 2021; 15:1281-1291. [PMID: 34010072 DOI: 10.1080/17476348.2021.1932469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Intro: Extracorporeal membrane oxygenation for neonatal and pediatric respiratory failure continues to demonstrate improving outcomes, largely due to advances in technology along with refined management strategies despite mounting patient acuity and complexity. Successful use of ECMO requires thoughtful initiation and candidacy strategies, along with reducing the risk of ventilator induced lung injury and the progression to multiorgan failure.Areas Covered: This review describes current ECMO management strategies for neonatal and pediatric patients with acute refractory respiratory failure and summarizes relevant published literature. ECMO initiation and candidacy, along with ventilator and sedation management, are highlighted. Additionally, rapidly expanding areas of interest such as anticoagulation strategies, transfusion thresholds, rehabilitation on ECMO, and drug pharmacokinetics are described.Expert Opinion: Over the last few decades, published studies supporting ECMO use for acute refractory respiratory failure, along with institutional experience, have resulted in increased utilization although more randomized-controlled trials are needed. Future research should focus on filling the knowledge gaps that remain regarding anticoagulation, transfusion thresholds, ventilator strategies, sedation, and approaches to rehabilitation to subsequently implement into clinical practice. Additionally, efforts should focus on well-designed trials, including population pharmacokinetic studies, to develop dosing recommendations.
Collapse
Affiliation(s)
- Briana L Scott
- Division of Pediatric Critical Care Medicine, Duke University Health System, Durham, NC, USA
| | | | - Caroline P Ozment
- Division of Pediatric Critical Care Medicine, Duke University Health System, Durham, NC, USA
| | - Kyle J Rehder
- Division of Pediatric Critical Care Medicine, Duke University Health System, Durham, NC, USA
| |
Collapse
|
6
|
Oya Y, Watahiki D, Matsunaga M, Hirono K, Ichida F, Aoki M, Yoshimura N, Taguchi M. The Pharmacokinetics of Sildenafil May Be Affected by Intestinal Absorption Rate in Children Admitted to the Intensive Care Unit. Biol Pharm Bull 2020; 43:1917-1923. [DOI: 10.1248/bpb.b20-00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukino Oya
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Daisuke Watahiki
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Mitsuki Matsunaga
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Keiichi Hirono
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Fukiko Ichida
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Masaya Aoki
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Naoki Yoshimura
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Masato Taguchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
7
|
Wu F, Zhou Y, Li L, Shen X, Chen G, Wang X, Liang X, Tan M, Huang Z. Computational Approaches in Preclinical Studies on Drug Discovery and Development. Front Chem 2020; 8:726. [PMID: 33062633 PMCID: PMC7517894 DOI: 10.3389/fchem.2020.00726] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Because undesirable pharmacokinetics and toxicity are significant reasons for the failure of drug development in the costly late stage, it has been widely recognized that drug ADMET properties should be considered as early as possible to reduce failure rates in the clinical phase of drug discovery. Concurrently, drug recalls have become increasingly common in recent years, prompting pharmaceutical companies to increase attention toward the safety evaluation of preclinical drugs. In vitro and in vivo drug evaluation techniques are currently more mature in preclinical applications, but these technologies are costly. In recent years, with the rapid development of computer science, in silico technology has been widely used to evaluate the relevant properties of drugs in the preclinical stage and has produced many software programs and in silico models, further promoting the study of ADMET in vitro. In this review, we first introduce the two ADMET prediction categories (molecular modeling and data modeling). Then, we perform a systematic classification and description of the databases and software commonly used for ADMET prediction. We focus on some widely studied ADMT properties as well as PBPK simulation, and we list some applications that are related to the prediction categories and web tools. Finally, we discuss challenges and limitations in the preclinical area and propose some suggestions and prospects for the future.
Collapse
Affiliation(s)
- Fengxu Wu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Yuquan Zhou
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Langhui Li
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xianhuan Shen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ganying Chen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Xiaoqing Wang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xianyang Liang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Mengyuan Tan
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| |
Collapse
|
8
|
Sutiman N, Koh JC, Watt K, Hornik C, Murphy B, Chan YH, Lee JH. Pharmacokinetics Alterations in Critically Ill Pediatric Patients on Extracorporeal Membrane Oxygenation: A Systematic Review. Front Pediatr 2020; 8:260. [PMID: 32670992 PMCID: PMC7332755 DOI: 10.3389/fped.2020.00260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives: This study aimed to identify alterations in pharmacokinetics in children on extracorporeal membrane oxygenation (ECMO), identify knowledge gaps, and inform future pharmacology studies. Data Sources: We systematically searched the databases MEDLINE, CINAHL, and Embase from earliest publication until November 2018 using a controlled vocabulary and keywords related to "ECMO" and "pharmacokinetics," "pharmacology," "drug disposition," "dosing," and "pediatrics." Study Selection: Inclusion criteria were as follows: study population aged <18 years, supported on ECMO for any indications, received any medications while on ECMO, and reported pharmacokinetic data. Data Extraction: Clearance and/or volume of distribution values were extracted from included studies. Data Synthesis: Forty-one studies (total patients = 574) evaluating 23 drugs met the inclusion criteria. The most common drugs studied were antimicrobials (n = 13) and anticonvulsants (n = 3). Twenty-eight studies (68%) were conducted in children <1 year of age. Thirty-three studies (80%) were conducted without intra-study comparisons to non-ECMO controls. Increase in volume of distribution attributable to ECMO was demonstrated for nine (56%) drugs: cefotaxime, gentamicin, piperacillin/tazobactam, fluconazole, micafungin, levetiracetam, clonidine, midazolam, and sildenafil (range: 23-345% increase relative to non-ECMO controls), which may suggest the need for higher initial dosing. Decreased volume of distribution was reported for two drugs: acyclovir and ribavirin (50 and 69%, respectively). Decreased clearance was reported for gentamicin, ticarcillin/clavulanate, bumetanide, and ranitidine (range: 26-95% decrease relative to non-ECMO controls). Increased clearance was reported for caspofungin, micafungin, clonidine, midazolam, morphine, and sildenafil (range: 25-455% increase relative to non-ECMO controls). Conclusions: There were substantial pharmacokinetic alterations in 70% of drugs studied in children on ECMO. However, studies evaluating pharmacokinetic changes of many drug classes and those that allow direct comparisons between ECMO and non-ECMO patients are still lacking. Systematic evaluations of pharmacokinetic alterations of drugs on ECMO that incorporate multidrug opportunistic trials, physiologically based pharmacokinetic modeling, and other methods are necessary for definitive dose recommendations. Trial Registration Prospero Identifier: CRD42019114881.
Collapse
Affiliation(s)
| | - Janine Cynthia Koh
- Children's Intensive Care Unit, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Kevin Watt
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Duke Clinical Research Institute, Durham, NC, United States
| | - Christoph Hornik
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Duke Clinical Research Institute, Durham, NC, United States
| | - Beverly Murphy
- Duke University Medical Center Library and Archives, Durham, NC, United States
| | - Yoke Hwee Chan
- Duke-NUS Medical School, Singapore, Singapore
- Children's Intensive Care Unit, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jan Hau Lee
- Duke-NUS Medical School, Singapore, Singapore
- Children's Intensive Care Unit, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
9
|
Gonzalez D, Laughon MM, Smith PB, Ge S, Ambalavanan N, Atz A, Sokol GM, Hornik CD, Stewart D, Mundakel G, Poindexter BB, Gaedigk R, Mills M, Cohen‐Wolkowiez M, Martz K, Hornik CP. Population pharmacokinetics of sildenafil in extremely premature infants. Br J Clin Pharmacol 2019; 85:2824-2837. [PMID: 31475367 PMCID: PMC6955411 DOI: 10.1111/bcp.14111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 11/30/2022] Open
Abstract
AIMS To characterize the population pharmacokinetics (PK) of sildenafil and its active metabolite, N-desmethyl sildenafil (DMS), in premature infants. METHODS We performed a multicentre, open-label trial to characterize the PK of sildenafil in infants ≤28 weeks gestation and < 365 postnatal days (cohort 1) or < 32 weeks gestation and 3-42 postnatal days (cohort 2). In cohort 1, we obtained PK samples from infants receiving sildenafil as ordered per the local standard of care (intravenous [IV] or enteral). In cohort 2, we administered a single IV dose of sildenafil and performed PK sampling. We performed a population PK analysis and dose-exposure simulations using the software NONMEM®. RESULTS We enrolled 34 infants (cohort 1 n = 25; cohort 2 n = 9) and collected 109 plasma PK samples. Sildenafil was given enterally (0.42-2.09 mg/kg) in 24 infants in cohort 1 and via IV (0.125 or 0.25 mg/kg) in all infants in cohort 2. A 2-compartment PK model for sildenafil and 1-compartment model for DMS, with presystemic conversion of sildenafil to DMS, characterized the data well. Coadministration of fluconazole (n = 4), a CYP3A inhibitor, resulted in an estimated 59% decrease in sildenafil clearance. IV doses of 0.125, 0.5 and 1 mg/kg every 8 hours (in the absence of fluconazole) resulted in steady-state maximum sildenafil concentrations that were generally within the range of those reported to inhibit phosphodiesterase type 5 activity in vitro. CONCLUSIONS We successfully characterized the PK of sildenafil and DMS in premature infants and applied the model to inform dosing for a follow-up, phase II study.
Collapse
MESH Headings
- Administration, Oral
- Cohort Studies
- Cytochrome P-450 CYP3A/blood
- Cytochrome P-450 CYP3A/genetics
- Fluconazole/administration & dosage
- Fluconazole/pharmacokinetics
- Gestational Age
- Humans
- Hypertension, Pulmonary/blood
- Hypertension, Pulmonary/drug therapy
- Infant
- Infant, Newborn
- Infant, Premature/blood
- Infant, Premature, Diseases/blood
- Infant, Premature, Diseases/drug therapy
- Injections, Intravenous
- Models, Biological
- Phosphodiesterase 5 Inhibitors/administration & dosage
- Phosphodiesterase 5 Inhibitors/blood
- Phosphodiesterase 5 Inhibitors/pharmacokinetics
- Phosphodiesterase 5 Inhibitors/therapeutic use
- Sildenafil Citrate/administration & dosage
- Sildenafil Citrate/blood
- Sildenafil Citrate/pharmacokinetics
- Sildenafil Citrate/therapeutic use
Collapse
Affiliation(s)
- Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - Matthew M. Laughon
- Department of Pediatrics, School of MedicineThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - P. Brian Smith
- Department of PediatricsDuke University School of MedicineDurhamNCUSA
- Duke Clinical Research InstituteDurhamNCUSA
| | - Shufan Ge
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - Namasivayam Ambalavanan
- Division of Neonatology, School of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
| | - Andrew Atz
- Department of PediatricsMedical University of South Carolina Children's HospitalCharlestonSCUSA
| | - Gregory M. Sokol
- Section of Neonatal‐Perinatal MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Chi D. Hornik
- Department of PediatricsDuke University School of MedicineDurhamNCUSA
- Duke Clinical Research InstituteDurhamNCUSA
- Department of PharmacyDuke University Medical CenterDurhamNCUSA
| | - Dan Stewart
- University of Louisville Norton Children's HospitalLouisvilleKYUSA
| | - Gratias Mundakel
- Kings County Hospital Center/SUNY Downstate Medical CenterBrooklynNYUSA
| | | | - Roger Gaedigk
- Department of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy‐Kansas CityUniversity of Missouri‐Kansas City School of MedicineKansas CityMOUSA
| | - Mary Mills
- Duke Clinical Research InstituteDurhamNCUSA
| | - Michael Cohen‐Wolkowiez
- Department of PediatricsDuke University School of MedicineDurhamNCUSA
- Duke Clinical Research InstituteDurhamNCUSA
| | | | - Christoph P. Hornik
- Department of PediatricsDuke University School of MedicineDurhamNCUSA
- Duke Clinical Research InstituteDurhamNCUSA
| | | |
Collapse
|
10
|
Beghetti M, Gorenflo M, Ivy DD, Moledina S, Bonnet D. Treatment of pediatric pulmonary arterial hypertension: A focus on the NO-sGC-cGMP pathway. Pediatr Pulmonol 2019; 54:1516-1526. [PMID: 31313530 PMCID: PMC6771736 DOI: 10.1002/ppul.24442] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/28/2019] [Indexed: 11/20/2022]
Abstract
OBJECTIVE While pulmonary arterial hypertension (PAH) is rare in infants and children, it results in substantial morbidity and mortality. In recent years, prognosis has improved, coinciding with the introduction of new PAH-targeted therapies, although much of their use in children is off-label. Evidence to guide the treatment of children with PAH is less extensive than for adults. The goal of this review is to discuss the treatment recommendations for children with PAH, as well as the evidence supporting the use of prostanoids, endothelin receptor antagonists (ERAs), and phosphodiesterase type 5 inhibitors (PDE5i) in this setting. DATA SOURCES Nonsystematic PubMed literature search and authors' expertise. STUDY SELECTION Articles were selected concentrating on the nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway in PAH. The methodology of an ongoing study evaluating the sGC stimulator riociguat in children with PAH is also described. RESULTS Despite recent medical advances, improved therapeutic strategies for pediatric PAH are needed. The efficacy and tolerability of riociguat in adults with PAH have been well trialed. CONCLUSION The pooling of data across trials, supplemented by registry data, will help to confirm the safety and tolerability of prostanoids, ERAs, and PDE5i in children. Ongoing studies will clarify the place of sGC stimulators in the treatment strategy for pediatric PAH.
Collapse
Affiliation(s)
- Maurice Beghetti
- Pediatric Cardiology Unit and Centre Universitaire de Cardiologie et Chirurgie Cardiaque PédiatriqueChildren's University HospitalGenevaSwitzerland
| | - Matthias Gorenflo
- Department of Pediatrics II, Pediatric Cardiology and Congenital Heart Defects, Center for PediatricsUniversity Hospital HeidelbergGermany
| | - D. Dunbar Ivy
- Children's Hospital Colorado, Heart InstituteUniversity of Colorado School of MedicineDenverColorado
| | - Shahin Moledina
- Cardiology DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Damien Bonnet
- M3C‐Paediatric Cardiology, Necker Enfants Malades, AP‐HPUniversité Paris DescartesParisFrance
| |
Collapse
|
11
|
Brussee JM, Krekels EHJ, Calvier EAM, Palić S, Rostami-Hodjegan A, Danhof M, Barrett JS, de Wildt SN, Knibbe CAJ. A Pediatric Covariate Function for CYP3A-Mediated Midazolam Clearance Can Scale Clearance of Selected CYP3A Substrates in Children. AAPS JOURNAL 2019; 21:81. [PMID: 31250333 PMCID: PMC6597607 DOI: 10.1208/s12248-019-0351-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Recently a framework was presented to assess whether pediatric covariate models for clearance can be extrapolated between drugs sharing elimination pathways, based on extraction ratio, protein binding, and other drug properties. Here we evaluate when a pediatric covariate function for midazolam clearance can be used to scale clearance of other CYP3A substrates. A population PK model including a covariate function for clearance was developed for midazolam in children aged 1–17 years. Commonly used CYP3A substrates were selected and using the framework, it was assessed whether the midazolam covariate function accurately scales their clearance. For eight substrates, reported pediatric clearance values were compared numerically and graphically with clearance values scaled using the midazolam covariate function. For sildenafil, clearance values obtained with population PK modeling based on pediatric concentration-time data were compared with those scaled with the midazolam covariate function. According to the framework, a midazolam covariate function will lead to systemically accurate clearance scaling (absolute prediction error (PE) < 30%) for CYP3A substrates binding to albumin with an extraction ratio between 0.35 and 0.65 when binding < 10% in adults, between 0.05 and 0.55 when binding > 90%, and with an extraction ratio ranging between these values when binding between 10 and 90%. Scaled clearance values for eight commonly used CYP3A substrates were reasonably accurate (PE < 50%). Scaling of sildenafil clearance was accurate (PE < 30%). We defined for which CYP3A substrates a pediatric covariate function for midazolam clearance can accurately scale plasma clearance in children. This scaling approach may be useful for CYP3A substrates with scarce or no available pediatric PK information.
Collapse
Affiliation(s)
- Janneke M Brussee
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Elke H J Krekels
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Elisa A M Calvier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Semra Palić
- Dutch Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.,Simcyp Limited (A Certara Company), Sheffield, UK
| | - Meindert Danhof
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Jeffrey S Barrett
- Bill & Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA.,Department of Pediatrics, Division of Clinical Pharmacology & Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Intensive Care and Department of Pediatric Surgery, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Catherijne A J Knibbe
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands. .,Department of Clinical Pharmacy, St. Antonius Hospital, PO Box 2500, 3430, EM, Nieuwegein, The Netherlands.
| |
Collapse
|
12
|
Kim TH, Shin S, Jeong SW, Lee JB, Shin BS. Physiologically Relevant In Vitro-In Vivo Correlation (IVIVC) Approach for Sildenafil with Site-Dependent Dissolution. Pharmaceutics 2019; 11:pharmaceutics11060251. [PMID: 31159390 PMCID: PMC6631943 DOI: 10.3390/pharmaceutics11060251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 11/16/2022] Open
Abstract
This study aimed to establish a physiologically relevant in vitro-in vivo correlation (IVIVC) model reflecting site-dependent dissolution kinetics for sildenafil based on population-pharmacokinetic (POP-PK) modeling. An immediate release (IR, 20 mg) and three sustained release (SR, 60 mg) sildenafil tablets were prepared by wet granulation method. In vitro dissolutions were determined by the paddle method at pH 1.2, 4.5, and 6.8 media. The in vivo pharmacokinetics were assessed after oral administration of the prepared IR and SR formulations to Beagle dogs (n = 12). The dissolution of sildenafil from SR formulations was incomplete at pH 6.8, which was not observed at pH 1.2 and pH 4.5. The relative bioavailability was reduced with the decrease of the dissolution rate. Moreover, secondary peaks were observed in the plasma concentration-time curves, which may result from site-dependent dissolution. Thus, a POP-PK model was developed to reflect the site-dependent dissolution by separately describing the dissolution and absorption processes, which allowed for estimation of the in vivo dissolution of sildenafil. Finally, an IVIVC was established and validated by correlating the in vitro and in vivo dissolution rates. The present approach may be applied to establish IVIVC for various drugs with complex dissolution kinetics for the development of new formulations.
Collapse
Affiliation(s)
- Tae Hwan Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Korea.
| | - Soyoung Shin
- College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 54538, Korea.
| | - Seok Won Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Korea.
| | - Jong Bong Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Korea.
| |
Collapse
|