1
|
Cybulska AM, Schneider-Matyka D, Walaszek I, Panczyk M, Ćwiek D, Lubkowska A, Grochans E, Rachubińska K, Malewicz K, Chabowski M. Predictive biomarkers for cardiometabolic risk in postmenopausal women: insights into visfatin, adropin, and adiponectin. Front Endocrinol (Lausanne) 2025; 16:1527567. [PMID: 39991740 PMCID: PMC11842235 DOI: 10.3389/fendo.2025.1527567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Background Visfatin, adropin, and adiponectin are involved in many changes associated with obesity and metabolic disorders, and may be related to metabolic syndrome and cardiovascular disease. The selection of visfatin, adropin, and adiponectin as biomarkers is based on their significant roles in metabolic regulation and inflammation, which are critical factors in cardiometabolic risk. Visfatin is known for its pro-inflammatory properties and its ability to modulate insulin resistance. Adropin is involved in energy homeostasis and metabolic health, while adiponectin has anti-inflammatory and insulin-sensitizing effects. During the perimenopausal period, the risk of obesity, and consequently cardiometabolic diseases increases. Therefore, the aim of this study was to assess the relationship between cardiometabolic parameters and circulating levels of visfatin, adropin, and adiponectin in perimenopausal women with regard to their obesity status. Materials and methods This study of 168 perimenopausal women utilized a cross-sectional design with non-random sampling. It involved the use of questionnaires, as well as anthropometric and blood pressure measurements. Blood samples were collected to determine the levels of visfatin, adropin, and adiponectin. Statistical analyses, including correlation coefficients, were performed to evaluate the relationship between these biomarkers and cardiometabolic risk factors, such as insulin resistance, lipid profiles, and inflammatory markers. Results In our study, visceral adiposity index and lipid accumulation product negatively correlated with adiponectin levels. Preliminary multivariate linear regression analysis revealed a positive correlation between circulating visfatin and IL-6 levels. Circulating adropin negatively correlated with HbA1C, fasting blood glucose, and insulin. Adiponectin negatively correlated with HbA1C, fasting blood glucose, insulin, and triglycerides. Furthermore, circulating adiponectin positively correlated with HDL, and negatively with HOMA-IR. Conclusions Adiponectin is a promising biomarker for predicting cardiometabolic risk in postmenopausal women.
Collapse
Affiliation(s)
- Anna Maria Cybulska
- Department of Nursing, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Ireneusz Walaszek
- Department of Nursing, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Mariusz Panczyk
- Department of Education and Research in Health Sciences, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Ćwiek
- Department of Obstetrics and Pathology of Pregnancy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Elżbieta Grochans
- Department of Nursing, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Kamila Rachubińska
- Department of Nursing, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Katarzyna Malewicz
- Geriatrics and Long-Term Care Department, Department of Nursing, Faculty of Nursing and Midwifery, Wroclaw Medical University, Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Clinical Hospital, Wroclaw, Poland
- Department of Clinical Surgical Sciences, Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
2
|
Hasanpour-Segherlou Z, Butler AA, Candelario-Jalil E, Hoh BL. Role of the Unique Secreted Peptide Adropin in Various Physiological and Disease States. Biomolecules 2024; 14:1613. [PMID: 39766320 PMCID: PMC11674490 DOI: 10.3390/biom14121613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Adropin, a secreted peptide hormone identified in 2008, plays a significant role in regulating energy homeostasis, glucose metabolism, and lipid metabolism. Its expression is linked to dietary macronutrient intake and is influenced by metabolic syndrome, obesity, diabetes, and cardiovascular diseases. Emerging evidence suggests that adropin might be a biomarker for various conditions, including metabolic syndrome, coronary artery disease, and hypertensive disorders complicating pregnancy. In cerebrovascular diseases, adropin demonstrates protective effects by reducing blood-brain barrier permeability, brain edema, and infarct size while improving cognitive and sensorimotor functions in ischemic stroke models. The protective effects of adropin extend to preventing endothelial damage, promoting angiogenesis, and mitigating inflammation, making it a promising therapeutic target for cardiovascular and neurodegenerative diseases. This review provides a comprehensive overview of adropin's multifaceted roles in physiological and pathological conditions, as well as our recent work demonstrating adropin's role in subarachnoid hemorrhage-mediated neural injury and delayed cerebral infarction.
Collapse
Affiliation(s)
| | - Andrew A. Butler
- Department of Pharmacology and Physiological Sciences, Saint Louis University, Saint Louis, MO 63104, USA;
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Brian L. Hoh
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
3
|
Xiao S, Nai‐dong W, Jin‐Xiang Y, Long T, Xiu‐Rong L, Hong G, Jie‐Cheng Y, Fei Z. ANGPTL4 regulate glutamine metabolism and fatty acid oxidation in nonsmall cell lung cancer cells. J Cell Mol Med 2022; 26:1876-1885. [PMID: 35285130 PMCID: PMC8980907 DOI: 10.1111/jcmm.16879] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023] Open
Abstract
Angiopoietin‐like protein (ANGPTL) 4 is a key factor in the regulation of lipid and glucose metabolism in metabolic diseases. ANGPTL4 is highly expressed in various cancers, but the regulation of energy metabolism in tumours remains to be determined. This study explored the role of ANGPTL4 in aerobic glycolysis, glutamine consumption and fatty acid oxidation in nonsmall cell lung cancer (NSCLC) cells. Two NSCLC cell lines (A549 and H1299) were used to investigate the role of ANGPTL4 in energy metabolism by tracer techniques and with Seahorse XF technology in ANGPTLs4 knockdown cells. RNA microarrays and specific inhibitors were used to identify targets in ANGPTLs4‐overexpressing cells. The results showed that knockdown of ANGPTLs4 could inhibit energy metabolism and proliferation in NSCLC. ANGPTLs4 had no significant effect on glycolysis but affected glutamine consumption and fatty acid oxidation. Knockdown of ANGPTLs4 also significantly inhibited tumour metastasis and energy metabolism in mice and had a weak effect on glycolysis. RNA microarray analysis showed that ANGPTLs4 significantly affected glutaminase (GLS) and carnitine palmitoyl transferase 1 (CPT1). ANGPTLs4‐overexpressing cells were exposed to a glutamine deprivation environment, and cell proliferation and energy metabolism were significantly decreased but still differed from normal NSCLC cells. Treatment of ANGPTLs4‐overexpressing cells with GLS and CPT1 inhibitors simultaneously prevented the regulatory effects on cell proliferation and energy metabolism. ANGPTLs4 could promote glutamine consumption and fatty acid oxidation but not glycolysis or accelerate energy metabolism in NSCLC.
Collapse
Affiliation(s)
- Song Xiao
- Radiotherapy Department the First Affiliated Hospital of Hebei North University Zhangjiakou China
| | | | - Yan Jin‐Xiang
- Neurosurgery Department Ningyang NO.1 People's Hospital Ningyang China
| | - Tian Long
- Radiotherapy Department the First Affiliated Hospital of Hebei North University Zhangjiakou China
| | - Lu Xiu‐Rong
- Radiotherapy Department the First Affiliated Hospital of Hebei North University Zhangjiakou China
| | - Gao Hong
- Radiotherapy Department Beijing Hospital Beijing China
| | - Yan Jie‐Cheng
- Radiotherapy Department the First Affiliated Hospital of Hebei North University Zhangjiakou China
| | - Zhang Fei
- Radiotherapy Department the First Affiliated Hospital of Hebei North University Zhangjiakou China
| |
Collapse
|
4
|
Soltani S, Kolahdouz-Mohammadi R, Aydin S, Yosaee S, Clark CCT, Abdollahi S. Circulating levels of adropin and overweight/obesity: a systematic review and meta-analysis of observational studies. Hormones (Athens) 2022; 21:15-22. [PMID: 34897581 DOI: 10.1007/s42000-021-00331-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
The association between circulating adropin levels and overweight/obesity is currently unclear. The aim of this study was thus to investigate and seek to determine the association between circulating adropin levels and overweight/obesity using the meta-analysis approach of observational studies. A comprehensive literature search was carried out through the PubMed, Web of Science, and SCOPUS databases to identify relevant observational studies that assessed the relationship between circulating adropin levels and overweight/obesity up to September 2020. A random-effects model was used to compute the pooled weighted mean difference (WMD) with 95% confidence intervals (CI). The meta-analysis of five studies (n = 643 participants) showed that circulating adropin levels were significantly lower in the overweight/obese vs. the normal-weight participants (WMD = - 0.96 ng/ml, 95% CI = - 1.72 to - 0.19, P = 0.01; I2 = 88.4%). In subgroup analyses, lower circulating adropin levels in obese participants compared with normal-weight were observed in Asians (WMD = - 1.58 ng/ml, 95% CI = - 1.96 to - 1.21, P < 0.001; I2 = 0.00%), and in patients with metabolic disorders (WMD = - 1.26 ng/ml, 95% CI = - 1.76 to - 0.77, P < 0.001; I2 = 44.6%), respectively. Circulating adropin levels were significantly lower in overweight/obese vs. normal-weight participants, suggesting a possible role of this hormone in the development of obesity. However, the present research indicates that further studies are needed to conclusively confirm whether adropin is a viable marker of obesity.
Collapse
Affiliation(s)
- Sepideh Soltani
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Roya Kolahdouz-Mohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Suleyman Aydin
- Department of Medical Biochemistry, Firat Hormone Research Group), School of Medicine, Firat University, Elazig, Turkey
| | - Somaye Yosaee
- Department of Nutrition Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Shima Abdollahi
- Department of Nutrition and Public Health, School of Public Health, North Khorasan University of Medical Sciences, 74877-94149, Bojnurd, Iran.
| |
Collapse
|
5
|
Czerwińska M, Czarzasta K, Cudnoch-Jędrzejewska A. New Peptides as Potential Players in the Crosstalk Between the Brain and Obesity, Metabolic and Cardiovascular Diseases. Front Physiol 2021; 12:692642. [PMID: 34497533 PMCID: PMC8419452 DOI: 10.3389/fphys.2021.692642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/03/2021] [Indexed: 01/09/2023] Open
Abstract
According to the World Health Organization report published in 2016, 650 million people worldwide suffer from obesity, almost three times more than in 1975. Obesity is defined as excessive fat accumulation which may impair health with non-communicable diseases such as diabetes, cardiovascular diseases (hypertension, coronary artery disease, stroke), and some cancers. Despite medical advances, cardiovascular complications are still the leading causes of death arising from obesity. Excessive fat accumulation is caused by the imbalance between energy intake and expenditure. The pathogenesis of this process is complex and not fully understood, but current research is focused on the role of the complex crosstalk between the central nervous system (CNS), neuroendocrine and immune system including the autonomic nervous system, adipose tissue, digestive and cardiovascular systems. Additionally, special attention has been paid to newly discovered substances: neuropeptide 26RFa, preptin, and adropin. It was shown that the above peptides are synthesized both in numerous structures of the CNS and in many peripheral organs and tissues, such as the heart, adipose tissue, and the gastrointestinal tract. Recently, particular attention has been paid to the role of the presented peptides in the pathogenesis of obesity, metabolic and cardiovascular system diseases. This review summarizes the role of newly investigated peptides in the crosstalk between brain and peripheral organs in the pathogenesis of obesity, metabolic, and cardiovascular diseases.
Collapse
|
6
|
Zhang C, Yan Y, Zhang Q, Jiang Q. Molecular cloning and characterization of the novel adropin from tilapia (Oreochromis niloticus): Involvement in the control of food intake. Neuropeptides 2021; 88:102165. [PMID: 34126542 DOI: 10.1016/j.npep.2021.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 11/19/2022]
Abstract
Adropin has been shown to be involved in the regulation of food intake in mice. However, the mechanism of adropin in feeding regulation is still largely unknown. Using the tilapia, Oreochromis niloticus, we identified and characterized a novel form of adropin (designated adropin-b) encoding a 68-amino acid precursor. Although adropin-b shared low amino acid identities with its tilapia paralog (designated adropin-a), synteny analysis proved that tilapia adropin is orthologous to its human counterpart. The transcripts of adropin-b were ubiquitously expressed in various tissues with the highest levels in the olfactory bulb. A decrease in adropin-b mRNA levels was observed 1 h following a meal in the olfactory bulb, hypothalamus, and optic tectum, whereas fasting for 7 days induced an increase in adropin-b mRNA levels in the olfactory bulb, hypothalamus, and optic tectum of tilapia brain. However, no changes in adropin-a mRNA levels were observed in the postprandial and fasting state. Intraperitoneal injection of tilapia adropin-b was shown to increase food consumption, but adropin-a did not affect feeding. Co-treatment of the fish with adropin-b and neuropeptide Y (NPY) had no additive effects on appetite. The appetite stimulatory effects of adropin-b appeared to be mediated by upregulating the orexigenic Npy, Orexin, and Proapelin gene expression, paralleled by inhibition of the mRNA levels of anorexigenic proopiomelanocortin (Pomc) and cocaine-amphetamine-regulated transcript (Cart) in vivo and in vitro. These observations suggested that adropin-b participated in appetite control and gene regulation of central orexigenic and anorexigenic factors in a fish model.
Collapse
Affiliation(s)
- Chaoyi Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yisha Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qianli Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Quan Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
7
|
Effect of Endurance and Resistance Training on Adropin and Insulin Resistance among Overweight Men: A Randomized Clinical Trial. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.3.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Yuan X, Chen R, Zhang Y, Lin X, Yang X, McCormick KL. Gut Microbiota of Chinese Obese Children and Adolescents With and Without Insulin Resistance. Front Endocrinol (Lausanne) 2021; 12:636272. [PMID: 33815293 PMCID: PMC8018175 DOI: 10.3389/fendo.2021.636272] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The intestinal flora of gut microbiota in obese Chinese children and adolescents with and without insulin resistance (IR) was analyzed, as well as associations between the gut microbiota and two serum cytokines related to glucose metabolism, adropin and angiopoietin-like 4 (ANGPTL4). METHODS Clinical data, fecal bacterial composition, glucose-related hormones, and serum adipokines (adropin and ANGPTL4) were analyzed in 65 Chinese children with exogenous obesity. The composition of the gut microbiota was determined by 16S rRNA-based metagenomics and IR was calculated using the homeostasis model assessment (HOMA). RESULTS The 65 obese subjects were divided into two groups: insulin sensitive (IS) (n=40, 57.5% males) or IR (n=25, 60% males). Principal coordinates analysis revealed that the gut microbiota samples from the IS group clustered together and separated partly from the IR group (p=0.008). By Mann-Whitney U-test, at a phylum level, a reduction of Firmicutes and an increase of Bacteroidetes in the IR subjects was observed. LEfSe analysis revealed that IS subject, when compared to their IR counterparts, harbored members of the order Coriobacteriales, Turicibacterales, Pasteurellales and family Turicibacteraceae, that were significantly more abundant. In contrast, the IR subjects had members of family Peptococcaceae that were significantly more prevalent than the IS subjects (all p<0.05). Spearman's correlation analysis revealed that serum ANGPTL4 was positively associated with genus Bacteroides, Butyricimonas, and Alistipes, and adropin was positively associated with genus Anaerostipes and Alistipes, and negatively associated with genus Blautia (all p<0.05). CONCLUSION In obese children, the gut microbiome in IR subjects was significantly discordant from the IS subjects, and the abundance of some metabolism-related bacteria correlated with the serum concentrations of adropin and ANGPTL4. These observations infer that the gut microbiota may be involved in the regulation of glucose metabolism in obesity.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Ruimin Chen
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Ruimin Chen,
| | - Ying Zhang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Xiangquan Lin
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaohong Yang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Kenneth L. McCormick
- Division of Pediatric Endocrinology and Diabetes, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Mogulkoc R, Dasdelen D, Baltaci SB, Baltaci AK, Sivrikaya A. The effect of thyroid dysfunction and treatment on adropin, asprosin and preptin levels in rats. Horm Mol Biol Clin Investig 2020; 42:37-42. [PMID: 33781005 DOI: 10.1515/hmbci-2020-0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Thyroid hormones have important roles in normal development and energy regulating mechanisms as well as signaling mechanisms that affect energy consumption through central and peripheral pathways. The aim of this study was to determine the effects of thyroid dysfunction on adropin, asprosin and preptin levels in rat. METHODS The study was performed on the 38 male Wistar-albino rats. Experiment groups were designed as follows. 1-Control, 2-Hypothyroidism; To induce hypothyroidism PTU was applied by intraperitoneal as 10 mg/kg/day for 2 weeks. 3-Hypothyroidism + Thyroxine; Previously animals were made with hypothyroidism by 1 week PTU application and then 1 week l-thyroxine was given by intraperitoneal as 1.5 mg/kg/day. 4-Hyperthyroidism; Rats were made with hyperthyroidism by 3 weeks l-thyroxine (0.3 mg/kg/day). 5-Hyperthyroidism + PTU; Animals were made hyperthyroisim by l-thyroxine as groups 4, then 1 week PTU was applied to treatment of hiperthyrodism. At the end of supplementation animals were sacrificed and blood samples were collected for FT3, FT4, adropin, asprosin, preptin analysis. RESULTS FT3 ve FT4 levels were reduced significantly in hypothyroidism while increased in hyperthyroidism (p<0.001). Hipothyrodism led to reduces adropin, asprosin and preptin levels. And also hyperthyroidism reduced adropin and preptin levels (p<0.001). CONCLUSIONS The results of study show that experimental hypothyroidism and hyperthyroidism lead to significantly change to adropin, asprosin and preptin levels. However, correction of thyroid function caused to normals levels in asprosin and preptin.
Collapse
Affiliation(s)
- Rasim Mogulkoc
- Medical School, Deparment of Physiology, Selcuk University, Konya, Turkey
| | - Dervis Dasdelen
- Medical School, Deparment of Physiology, Selcuk University, Konya, Turkey
| | | | | | - Abdullah Sivrikaya
- Medical School, Deparment of Biochemistry, Selcuk University, Konya, Turkey
| |
Collapse
|
10
|
Jasaszwili M, Wojciechowicz T, Strowski MZ, Nowak KW, Skrzypski M. Adropin stimulates proliferation but suppresses differentiation in rat primary brown preadipocytes. Arch Biochem Biophys 2020; 692:108536. [PMID: 32798458 DOI: 10.1016/j.abb.2020.108536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/21/2020] [Accepted: 08/02/2020] [Indexed: 01/14/2023]
Abstract
Adropin is a peptide hormone encoded by Energy Homeostasis Associated (Enho) gene. Adropin modulates glucose and lipid metabolism, and adiposity. Recently, we found that adropin suppresses differentiation of rodent white preadipocytes into mature fat cells. By contrast, the role of adropin in controlling brown adipogenesis is largely unknown. Therefore, in the present study we evaluated the effects of adropin on proliferation and differentiation of adipocyte precursor cells in rats. Brown adipocyte precursor cells were isolated from male Wistar rats. Cell replication was measured by BrdU incorporation. Gene expression was studied using real time PCR. Protein phosphorylation and production was assessed by Western blot. Lipid accumulation was evaluated by Oil Red O staining. Colorimetric kits were used to evaluate glycerol and free fatty acids release. We report here that adropin stimulates proliferation of brown preadipocytes. Moreover, in brown preadipocytes, adropin suppresses mRNA expression of adipogenic genes (C/ebpα, C/ebpβ, Pgc1α, Pparγ and Prdm16) during differentiation process. In addition, adropin suppresses UCP1 protein production in brown adipocytes. Finally, adropin reduces intracellular lipid content in brown adipocytes. These results indicate that adropin stimulates proliferation of brown preadipocytes and suppresses their differentiation into mature adipocytes.
Collapse
Affiliation(s)
- Mariami Jasaszwili
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637, Poznań, Poland.
| | - Tatiana Wojciechowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637, Poznań, Poland.
| | - Mathias Z Strowski
- Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, 13353, Berlin, Germany; Department of Internal Medicine-Gastroenterology, Park-Klinik Weissensee, 13086, Berlin, Germany.
| | - Krzysztof W Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637, Poznań, Poland.
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637, Poznań, Poland.
| |
Collapse
|
11
|
Jasaszwili M, Billert M, Strowski MZ, Nowak KW, Skrzypski M. Adropin as A Fat-Burning Hormone with Multiple Functions-Review of a Decade of Research. Molecules 2020; 25:molecules25030549. [PMID: 32012786 PMCID: PMC7036858 DOI: 10.3390/molecules25030549] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 01/12/2023] Open
Abstract
Adropin is a unique hormone encoded by the energy homeostasis-associated (Enho) gene. Adropin is produced in the liver and brain, and also in peripheral tissues such as in the heart and gastrointestinal tract. Furthermore, adropin is present in the circulatory system. A decade after its discovery, there is evidence that adropin may contribute to body weight regulation, glucose and lipid homeostasis, and cardiovascular system functions. In this review, we summarize and discuss the physiological, metabolic, and pathophysiological factors regulating Enho as well as adropin. Furthermore, we review the literature addressing the role of adropin in adiposity and type 2 diabetes. Finally, we elaborate on the role of adropin in the context of the cardiovascular system, liver diseases, and cancer.
Collapse
Affiliation(s)
- Mariami Jasaszwili
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.J.); (M.B.); (K.W.N.)
| | - Maria Billert
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.J.); (M.B.); (K.W.N.)
| | - Mathias Z. Strowski
- Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, D-13353 Berlin, Germany;
- Department of Internal Medicine-Gastroenterology, Park-Klinik Weissensee, D-13086 Berlin, Germany
| | - Krzysztof W. Nowak
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.J.); (M.B.); (K.W.N.)
| | - Marek Skrzypski
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.J.); (M.B.); (K.W.N.)
- Correspondence: ; Tel.: +48-618-486-137; Fax: +48-618-487-197
| |
Collapse
|