1
|
In Vitro and In Silico Evaluations of Boswellia carterii Resin Dermocosmetic Activities. COSMETICS 2022. [DOI: 10.3390/cosmetics9060131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Boswellia carterii is a plant species belonging to the Burseraceae family. It grows up in trees or shrubs, and it is known for producing an aromatic resin commonly named frankincense or olibanum. This resin has been used in traditional medicine to treat various conditions such as inflammations, gastrointestinal disorders and traumatic injuries. Virtual screening and molecular docking are two in silico approaches used to predict potential interactions between ligands and the active site of a protein. These approaches are mainly used in natural product chemistry and pharmacology as a screening tool to select plant extracts or fractions for in vitro testing, as well as for the prediction of mechanisms of action. The aim of this research is the in silico and in vitro evaluations of the potential collagenase and elastase inhibitory activities of Boswellia carterii resin organic extracts (viz., methanol, n-hexane and ethyl acetate). The obtained results revealed that methanol and n-hexane exhibited the best collagenase inhibitory activity with values superior to 85%, whereas the methanol and ethyl acetate showed the highest elastase inhibition activity with inhibition values ranging between 40 and 60%. The molecular docking prediction confirmed the experimental results; moreover, the visualization of the ligand–protein interactions showed that the main compounds of the organic extracts may have mechanisms of action similar to the positive controls. Those findings are very promising and open new perspectives for the exploitation of Boswellia carterii resin as active agents for the development of anti-aging cosmeceuticals.
Collapse
|
2
|
Sheikh SY, Hassan F, Khan MF, Ahamad T, Ansari WA, Akhter Y, Khafagy ES, Khan AR, Nasibullah M. Drug Repurposing to Discover Novel Anti-Inflammatory Agents Inhibiting JAK3/STAT Signaling. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s106816202205020x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
3
|
Priyamvada P, Debroy R, Anbarasu A, Ramaiah S. A comprehensive review on genomics, systems biology and structural biology approaches for combating antimicrobial resistance in ESKAPE pathogens: computational tools and recent advancements. World J Microbiol Biotechnol 2022; 38:153. [PMID: 35788443 DOI: 10.1007/s11274-022-03343-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022]
Abstract
In recent decades, antimicrobial resistance has been augmented as a global concern to public health owing to the global spread of multidrug-resistant strains from different ESKAPE pathogens. This alarming trend and the lack of new antibiotics with novel modes of action in the pipeline necessitate the development of non-antibiotic ways to treat illnesses caused by these isolates. In molecular biology, computational approaches have become crucial tools, particularly in one of the most challenging areas of multidrug resistance. The rapid advancements in bioinformatics have led to a plethora of computational approaches involving genomics, systems biology, and structural biology currently gaining momentum among molecular biologists since they can be useful and provide valuable information on the complex mechanisms of AMR research in ESKAPE pathogens. These computational approaches would be helpful in elucidating the AMR mechanisms, identifying important hub genes/proteins, and their promising targets together with their interactions with important drug targets, which is a crucial step in drug discovery. Therefore, the present review aims to provide holistic information on currently employed bioinformatic tools and their application in the discovery of multifunctional novel therapeutic drugs to combat the current problem of AMR in ESKAPE pathogens. The review also summarizes the recent advancement in the AMR research in ESKAPE pathogens utilizing the in silico approaches.
Collapse
Affiliation(s)
- P Priyamvada
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India.,Department of Bio-Sciences, SBST, VIT, 632014, Vellore, India
| | - Reetika Debroy
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India.,Department of Bio-Medical Sciences, SBST, VIT, 632014, Vellore, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India.,Department of Biotechnology, SBST, VIT, 632014, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India. .,Department of Bio-Sciences, SBST, VIT, 632014, Vellore, India. .,School of Biosciences and Technology VIT, 632014, Vellore, Tamil Nadu, India.
| |
Collapse
|
4
|
Magpantay HD, Malaluan IN, Manzano JAH, Quimque MT, Pueblos KR, Moor N, Budde S, Bangcaya PS, Lim-Valle D, Dahse HM, Khan A, Wei DQ, Alejandro GJD, Macabeo APG. Antibacterial and COX-2 Inhibitory Tetrahydrobisbenzylisoquinoline Alkaloids from the Philippine Medicinal Plant Phaeanthus ophthalmicus. PLANTS (BASEL, SWITZERLAND) 2021; 10:462. [PMID: 33804446 PMCID: PMC7999448 DOI: 10.3390/plants10030462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022]
Abstract
Phaeanthus ophthalmicus (Roxb. ex G.Don) J.Sinclair (previously known as P. ebracteolatus (Presl) Merr) is a Philippine medicinal plant occurring as evergreen shrub in the lowland forests of Luzon islands. It is used traditionally by Filipinos to treat bacterial conjunctivitis, ulcer and wound infections. Based on previous investigations where cyclooxygenase-2 (COX-2) functions as immune-linked factor in infectious sensitivities to bacterial pathogens by triggering pro-inflammatory immune-associated reactions, we investigated the antimicrobial and COX inhibitory activities of the extracts and tetrahydrobisbenzylisoquinoline alkaloids of P. ophthalmicus in vitro and in silico to validate its ethnomedicinal uses. Thus, the dichloromethane-methanol (DCM-MeOH) crude extract and alkaloid extracts exhibiting antibacterial activities against drug-resistant bacterial strains such as methicillin-resistance Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Klebsiella pneumoniae + CRE and Pseudomonas aeruginosa + MBL afforded (+)-tetrandrine (1) and (+)-limacusine (2) as the major biologically active tetrahydrobisbenzylisoquinoline alkaloidal constituents after purification. Both tetrahydrobisbenzylisoquinoline alkaloids 1 and 2 showed broad spectrum antibacterial activity with strongest inhibition against the Gram-negative bacteria MβL-Pseudomonas aeruginosa Klebsiella pneumoniae + CRE. Interestingly, the alkaloid limacusine (2) showed selective inhibition against ovine COX-2 in vitro. These results were ascertained by molecular docking and molecular dynamics simulation experiments where alkaloid 2 showed strong affinity in the catalytic sites of Gram-negative bacterial enzymes P. aeruginosa elastase and K. pneumoniae KPC-2 carbapenemase (enzymes involved in infectivity mechanisms), and of ovine COX-2. Overall, our study provides credence on the ethnomedicinal use of the Philippine medicinal plant P. ophthalmicus as traditional plant-based adjuvant to treat bacterial conjunctivitis and other related infections. The antibacterial activities and selective COX-2 inhibition observed for limacusine (2) point to its role as the biologically active constituent of P. ophthalmicus. A limited number of drugs with COX-2 inhibitory properties like celecoxib also confer antibacterial activity. Thus, tetrahydrobisbenzyl alkaloids, especially 2, are promising pharmaceutical inspirations for developing treatments of bacterial/inflammation-related infections.
Collapse
Affiliation(s)
- Hilbert D. Magpantay
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines;
| | - Ivane N. Malaluan
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines; (I.N.M.); (J.A.H.M.); (M.T.Q.); (K.R.P.)
- Chemistry Department, College of Science, Bicol University, Rizal St., Legazpi City 4500, Philippines
| | - Joe Anthony H. Manzano
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines; (I.N.M.); (J.A.H.M.); (M.T.Q.); (K.R.P.)
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines
| | - Mark Tristan Quimque
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines; (I.N.M.); (J.A.H.M.); (M.T.Q.); (K.R.P.)
- Chemistry Department, College of Science, MSU-Iligan State University, Iligan City 9200, Philippines
| | - Kirstin Rhys Pueblos
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines; (I.N.M.); (J.A.H.M.); (M.T.Q.); (K.R.P.)
- Chemistry Department, College of Science, MSU-Iligan State University, Iligan City 9200, Philippines
| | - Natalija Moor
- Institut für Organische Chemie, Universität Regensburg, Universitätstrasse 31, D-93053 Regensburg, Germany; (N.M.); (S.B.)
| | - Simon Budde
- Institut für Organische Chemie, Universität Regensburg, Universitätstrasse 31, D-93053 Regensburg, Germany; (N.M.); (S.B.)
| | - Porferio S. Bangcaya
- Biological Science Department, College of Teacher Education—University of Antique, Tario-Lim Memorial Campus, Tibiao, Antique 5707, Philippines;
| | - Demi Lim-Valle
- Clinical Microbiology Laboratory, Department of Pathology and Laboratories, Makati Medical Center, Amorsolo St., Legaspi Village, Makati City 1229, Philippines;
| | - Hans-Martin Dahse
- Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (HKI), D-07745 Jena, Germany;
| | - Abbas Khan
- Department of Bioinformatics and Biostatistics, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (D.-Q.W.)
| | - Dong-Qing Wei
- Department of Bioinformatics and Biostatistics, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (D.-Q.W.)
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Bldg. 8, Xili St., Nashan District, Shenzhen 518055, China
| | - Grecebio Jonathan D. Alejandro
- Plant Sciences Laboratory, Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines; (I.N.M.); (J.A.H.M.); (M.T.Q.); (K.R.P.)
| |
Collapse
|
5
|
Abstract
Background: The dawn of the year 2020 witnessed the spread of the highly infectious and communicable disease coronavirus disease 2019 (COVID-19) globally since it was first reported in 2019. Severe acute respiratory syndrome coronavirus-2 is the main causative agent. In total, 3,096,626 cases and 217,896 deaths owing to COVID-19 were reported by 30th April, 2020 by the World Health Organization. This means infection and deaths show an exponential growth globally. In order to tackle this pandemic, it is necessary to find possible easily accessible therapeutic agents till an effective vaccine is developed. Methods: In this study, we present the results of molecular docking processes through high throughput virtual screening to analyze drugs recommended for the treatment of COVID-19. Results: Atovaquone, fexofenadine acetate (Allegra), ethamidindole, baicalin, glycyrrhetic acid, justicidin D, euphol, and curine are few of the lead molecules found after docking 129 known antivirals, antimalarial, antiparasitic drugs and 992 natural products. Conclusions: These molecules could act as an effective inhibitory drug against COVID-19.
Collapse
Affiliation(s)
- Sweta Singh
- Savitribai Phule Pune University, Pune, India
| | - Hector Florez
- Universidad Distrital Francisco Jose de Caldas, Bogota, Colombia
| |
Collapse
|
6
|
Farhadi Z, Farhadi T, Hashemian SM. Virtual screening for potential inhibitors of β(1,3)-D-glucan synthase as drug candidates against fungal cell wall. J Drug Assess 2020; 9:52-59. [PMID: 32284908 PMCID: PMC7144292 DOI: 10.1080/21556660.2020.1734010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/07/2020] [Indexed: 01/17/2023] Open
Abstract
Background To enhance the outcome in patients with invasive candidiasis, initiation of an efficient antifungal treatment in a suitable dosage is necessary. Echinocandins (e.g. caspofungin) inhibit the enzyme β(1,3)-D-glucan synthase of the fungal cell wall. Compared to azoles and other antifungal agents, echinocandins have lower adverse effects and toxicity in humans. Echinocandins are available in injectable (intravenous) form. Methods In this study, to identify the novel oral drug-like compounds that affect the fungal cell wall, downloaded oral drug-like compounds from the ZINC database were processed with a virtual screening procedure. The docking free energies were calculated and compared with the known inhibitor caspofungin. Four molecules were selected as the most potent ligands and subjected to hydrogen bonds analysis. Results Considering the hydrogen bond analysis, two compounds (ZINC71336662 and ZINC40910772) were predicted to better interact with the active site of β(1,3)-D-glucan synthase compared with caspofungin. Conclusion The introduced compound in this study may be valuable to analyze experimentally as a novel oral drug candidate targeting fungal cell walls.
Collapse
Affiliation(s)
- Zinat Farhadi
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Behavioral Disease Counseling Center, Marvdasht Health Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Tayebeh Farhadi
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed MohammadReza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Critical Care Department, Farhikhtegan Hospital, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Farhadi T, Hashemian SM, Farhadi Z. In Silico Designing of Peptidomimetics Enhancing Endoribonucleolytic Activities of Acinetobacter MazF Toxin as the Novel Anti-bacterial Candidates. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09908-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Hashemian SMR, Farhadi Z, Farhadi T. Fosfomycin: the characteristics, activity, and use in critical care. Ther Clin Risk Manag 2019; 15:525-530. [PMID: 30988619 PMCID: PMC6441553 DOI: 10.2147/tcrm.s199119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fosfomycin (C3H7O4P) is a phosphonic acid derivative representing an epoxide class of antibiotics. The drug is a re-emerging bactericidal antibiotic with a wide range of actions against several Gram-positive and Gram-negative bacteria. Among the existing antibacterial agents, fosfomycin has the lowest molecular weight (138 Da), which is not structurally associated with other classes of antibiotics. In intensive care unit (ICU) patients, severe soft tissue infections (STIs) may lead to serious life-threatening problems, and therefore, appropriate antibiotic therapy and often intensive care management (ICM) coupled with surgical intervention are necessary. Fosfomycin is an antibiotic primarily utilized for the treatment of STIs in ICUs. Recently, fosfomycin has attracted renewed interest for the treatment of serious systemic infections caused by multidrug-resistant Enterobacteriaceae. In some countries, intravenous fosfomycin has been prescribed for various serious systemic infections, such as acute osteomyelitis, nosocomial lower respiratory tract infections, complicated urinary tract infections, bacterial meningitis, and bacteremia. Administration of intravenous fosfomycin can result in a sufficient concentration of the drug at different body regions. Dose modification is not required in hepatic deficiency because fosfomycin is not subjected to enterohepatic circulation.
Collapse
Affiliation(s)
- Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran, .,Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zinat Farhadi
- Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Tayebeh Farhadi
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
9
|
Liu CJ, Zhang YL, Shang Y, Wu B, Yang E, Luo YY, Li XR. Intestinal bacteria detected in cancer and adjacent tissue from patients with colorectal cancer. Oncol Lett 2018; 17:1115-1127. [PMID: 30655873 PMCID: PMC6313076 DOI: 10.3892/ol.2018.9714] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022] Open
Abstract
Intestinal bacteria are symbiotic microbiota within the human gut and are implicated in the occurrence and development of colorectal cancer (CRC). The current study investigated the changes in bacterial composition prior to and following surgery, as well as the differences in the bacterial community structure between cancer tissue and adjacent normal tissue. The diversity of the bacterial community and the composition of the bacteria were assessed. In addition, phylogenetic analysis and principle component analysis (PCA) were performed. The results revealed that cancer tissue and adjacent normal tissue exhibited similar bacterial compositions. However, a significant difference was identified in the composition of intestinal bacteria in stool samples collected from patients following surgery compared with stool samples collected prior to surgery. Each patient had their own unique intestinal bacterial community, likely due to a number of factors, including diet, genetic factors and health status. In addition, phylogenetic trees revealed that the most abundant operational taxonomic unit, 0001, was associated with Escherichia coli in all samples. Finally, PCA suggested that the bacterial community structure in all patient stools was similar following surgery. The current study provides information regarding the diversity of the intestinal bacterial community of patients with CRC and provides a basis for postoperative intestinal assessments.
Collapse
Affiliation(s)
- Chen-Jian Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yuan-Lian Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yun Shang
- Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Bian Wu
- Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - En Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yi-Yong Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Xiao-Ran Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
10
|
Hashemian SMR, Farhadi T, Ganjparvar M. Linezolid: a review of its properties, function, and use in critical care. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1759-1767. [PMID: 29950810 PMCID: PMC6014438 DOI: 10.2147/dddt.s164515] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Linezolid can be considered as the first member of the class of oxazolidinone antibiotics. The compound is a synthetic antibiotic that inhibits bacterial protein synthesis through binding to rRNA. It also inhibits the creation of the initiation complex during protein synthesis which can reduce the length of the developed peptide chains, and decrease the rate of reaction of translation elongation. Linezolid has been approved for the treatment of infections caused by vancomycin-resistant Enterococcus faecium, hospital-acquired pneumonia caused by Staphylococcus aureus, complicated skin and skin structure infections (SSSIs), uncomplicated SSSIs caused by methicillin-susceptible S. aureus or Streptococcus pyogenes, and community-acquired pneumonia caused by Streptococcus pneumoniae. Analysis of high-resolution structures of linezolid has demonstrated that it binds a deep cleft of the 50S ribosomal subunit that is surrounded by 23S rRNA nucleotides. Mutation of 23S rRNA was shown to be a linezolid resistance mechanism. Besides, mutations in specific regions of ribosomal proteins uL3 and uL4 are increasingly associated with linezolid resistance. However, these proteins are located further away from the bound drug. The methicillin-resistant S. aureus and vancomycin-resistant enterococci are considered the most common Gram-positive bacteria found in intensive care units (ICUs), and linezolid, as an antimicrobial drug, is commonly utilized to treat infected ICU patients. The drug has favorable in vitro and in vivo activity against the mentioned organisms and is considered as a useful antibiotic to treat infections in the ICU.
Collapse
Affiliation(s)
- Seyed Mohammad Reza Hashemian
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebeh Farhadi
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Ganjparvar
- Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Abstract
During the last two decades, the pharmaceutical industry has progressed from detecting small molecules to designing biologic-based therapeutics. Amino acid-based drugs are a group of biologic-based therapeutics that can effectively combat the diseases caused by drug resistance or molecular deficiency. Computational techniques play a key role to design and develop the amino acid-based therapeutics such as proteins, peptides and peptidomimetics. In this study, it was attempted to discuss the various elements for computational design of amino acid-based therapeutics. Protein design seeks to identify the properties of amino acid sequences that fold to predetermined structures with desirable structural and functional characteristics. Peptide drugs occupy a middle space between proteins and small molecules and it is hoped that they can target "undruggable" intracellular protein-protein interactions. Peptidomimetics, the compounds that mimic the biologic characteristics of peptides, present refined pharmacokinetic properties compared to the original peptides. Here, the elaborated techniques that are developed to characterize the amino acid sequences consistent with a specific structure and allow protein design are discussed. Moreover, the key principles and recent advances in currently introduced computational techniques for rational peptide design are spotlighted. The most advanced computational techniques developed to design novel peptidomimetics are also summarized.
Collapse
Affiliation(s)
- Tayebeh Farhadi
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed MohammadReza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Ahmad S, Navid A, Akhtar AS, Azam SS, Wadood A, Pérez-Sánchez H. Subtractive Genomics, Molecular Docking and Molecular Dynamics Simulation Revealed LpxC as a Potential Drug Target Against Multi-Drug Resistant Klebsiella pneumoniae. Interdiscip Sci 2018; 11:508-526. [PMID: 29721784 DOI: 10.1007/s12539-018-0299-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/11/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022]
Abstract
The emergence and dissemination of pan drug resistant clones of Klebsiella pneumoniae are great threat to public health. In this regard new therapeutic targets must be highlighted to pave the path for novel drug discovery and development. Subtractive proteomic pipeline brought forth UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase (LpxC), a Zn+2 dependent cytoplasmic metalloprotein and catalyze the rate limiting deacetylation step of lipid A biosynthesis pathway. Primary sequence analysis followed by 3-dimensional (3-D) structure elucidation of the protein led to the detection of K. pneumoniae LpxC (KpLpxC) topology distinct from its orthologous counterparts in other bacterial species. Molecular docking study of the protein recognized receptor antagonist compound 106, a uridine-based LpxC inhibitory compound, as a ligand best able to fit the binding pocket with a Gold Score of 67.53. Molecular dynamics simulation of docked KpLpxC revealed an alternate binding pattern of ligand in the active site. The ligand tail exhibited preferred binding to the domain I residues as opposed to the substrate binding hydrophobic channel of subdomain II, usually targeted by inhibitory compounds. Comparison with the undocked KpLpxC system demonstrated ligand induced high conformational changes in the hydrophobic channel of subdomain II in KpLpxC. Hence, ligand exerted its inhibitory potential by rendering the channel unstable for substrate binding.
Collapse
Affiliation(s)
- Sajjad Ahmad
- National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Afifa Navid
- National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Amina Saleem Akhtar
- National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Syed Sikander Azam
- National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University-Mardan, Shankar Campus, Mardan, Khyber Pukhtoonkhwa, Pakistan
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| |
Collapse
|
13
|
Farhadi T, Fakharian A, Hashemian SM. Affinity Improvement of a Humanized Antiviral Antibody by Structure-Based Computational Design. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9660-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Constructing novel chimeric DNA vaccine against Salmonella enterica based on SopB and GroEL proteins: an in silico approach. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0360-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Farhadi T. In silico designing of peptide inhibitors against pregnane X receptor: the novel candidates to control drug metabolism. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9627-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|