1
|
Gestal MC, Oates AE, Akob DM, Criss AK. Perspectives on the future of host-microbe biology from the Council on Microbial Sciences of the American Society for Microbiology. mSphere 2024; 9:e0025624. [PMID: 38920371 PMCID: PMC11288050 DOI: 10.1128/msphere.00256-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Host-microbe biology (HMB) stands on the cusp of redefinition, challenging conventional paradigms to instead embrace a more holistic understanding of the microbial sciences. The American Society for Microbiology (ASM) Council on Microbial Sciences hosted a virtual retreat in 2023 to identify the future of the HMB field and innovations needed to advance the microbial sciences. The retreat presentations and discussions collectively emphasized the interconnectedness of microbes and their profound influence on humans, animals, and environmental health, as well as the need to broaden perspectives to fully embrace the complexity of these interactions. To advance HMB research, microbial scientists would benefit from enhancing interdisciplinary and transdisciplinary research to utilize expertise in diverse fields, integrate different disciplines, and promote equity and accessibility within HMB. Data integration will be pivotal in shaping the future of HMB research by bringing together varied scientific perspectives, new and innovative techniques, and 'omics approaches. ASM can empower under-resourced groups with the goal of ensuring that the benefits of cutting-edge research reach every corner of the scientific community. Thus, ASM will be poised to steer HMB toward a future that champions inclusivity, innovation, and accessible scientific progress.
Collapse
Affiliation(s)
- Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | | | - Denise M. Akob
- U.S. Geological Survey, Geology, Energy and Minerals Science Center, Reston, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Host-Microbe Retreat Planning CommitteeFidel, Jr.Paul L.1WatnickPaula I.2YoungVincent B.3ZackularJoseph4Department of Oral and Craniofacial Biology, Louisiana State University Health, New Orleans, Louisiana, USADivision of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USADepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USAInstitute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
- American Society for Microbiology, Washington, DC, USA
- U.S. Geological Survey, Geology, Energy and Minerals Science Center, Reston, Virginia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Host-Microbe Retreat SpeakersCasadevallArturo1GibbonsSean M.2HuffnagleGary B.3McFall-NgaiMargaret4NewmanDianne K.5NickersonCheryl A.6Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USAInstitute for Systems Biology, Seattle, Washington, USADepartment of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USAPacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USADivision of Biology and Biological Engineering, Caltech, Pasadena, California, USASchool of Life Sciences, Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
- American Society for Microbiology, Washington, DC, USA
- U.S. Geological Survey, Geology, Energy and Minerals Science Center, Reston, Virginia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Dasgupta S, Das S, Chakraborty D. Prediction equations for detecting COVID-19 infection using basic laboratory parameters. J Family Med Prim Care 2024; 13:2683-2691. [PMID: 39071025 PMCID: PMC11272021 DOI: 10.4103/jfmpc.jfmpc_1862_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/06/2024] [Accepted: 02/04/2024] [Indexed: 07/30/2024] Open
Abstract
Objectives Coronavirus disease 2019 (COVID-19) emerged as a global pandemic during 2019 to 2022. The gold standard method of detecting this disease is reverse transcription-polymerase chain reaction (RT-PCR). However, RT-PCR has a number of shortcomings. Hence, the objective is to propose a cheap and effective method of detecting COVID-19 infection by using machine learning (ML) techniques, which encompasses five basic parameters as an alternative to the costly RT-PCR. Materials and Methods Two machine learning-based predictive models, namely, Artificial Neural Network (ANN) and Multivariate Adaptive Regression Splines (MARS), are designed for predicting COVID-19 infection as a cheaper and simpler alternative to RT-PCR utilizing five basic parameters [i.e., age, total leucocyte count, red blood cell count, platelet count, C-reactive protein (CRP)]. Each of these parameters was studied, and correlation is drawn with COVID-19 diagnosis and progression. These laboratory parameters were evaluated in 171 patients who presented with symptoms suspicious of COVID-19 in a hospital at Kharagpur, India, from April to August 2022. Out of a total of 171 patients, 88 and 83 were found to be COVID-19-negative and COVID-19-positive, respectively. Results The accuracies of the predicted class are found to be 97.06% and 91.18% for ANN and MARS, respectively. CRP is found to be the most significant input parameter. Finally, two predictive mathematical equations for each ML model are provided, which can be quite useful to detect the COVID-19 infection easily. Conclusion It is expected that the present study will be useful to the medical practitioners for predicting the COVID-19 infection in patients based on only five very basic parameters.
Collapse
Affiliation(s)
- Shirin Dasgupta
- Dr. B. C. Roy Multi Speciality Medical Research Centre, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Shuvankar Das
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Debarghya Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, India
| |
Collapse
|
3
|
Ramón A, Bas A, Herrero S, Blasco P, Suárez M, Mateo J. Personalized Assessment of Mortality Risk and Hospital Stay Duration in Hospitalized Patients with COVID-19 Treated with Remdesivir: A Machine Learning Approach. J Clin Med 2024; 13:1837. [PMID: 38610602 PMCID: PMC11013017 DOI: 10.3390/jcm13071837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Despite advancements in vaccination, early treatments, and understanding of SARS-CoV-2, its impact remains significant worldwide. Many patients require intensive care due to severe COVID-19. Remdesivir, a key treatment option among viral RNA polymerase inhibitors, lacks comprehensive studies on factors associated with its effectiveness. Methods: We conducted a retrospective study in 2022, analyzing data from 252 hospitalized COVID-19 patients treated with remdesivir. Six machine learning algorithms were compared to predict factors influencing remdesivir's clinical benefits regarding mortality and hospital stay. Results: The extreme gradient boost (XGB) method showed the highest accuracy for both mortality (95.45%) and hospital stay (94.24%). Factors associated with worse outcomes in terms of mortality included limitations in life support, ventilatory support needs, lymphopenia, low albumin and hemoglobin levels, flu and/or coinfection, and cough. For hospital stay, factors included vaccine doses, lung density, pulmonary radiological status, comorbidities, oxygen therapy, troponin, lactate dehydrogenase levels, and asthenia. Conclusions: These findings underscore XGB's effectiveness in accurately categorizing COVID-19 patients undergoing remdesivir treatment.
Collapse
Affiliation(s)
- Antonio Ramón
- Department of Pharmacy, University General Hospital, 46014 Valencia, Spain; (A.R.); (A.B.); (S.H.); (P.B.)
- Medical Analysis Expert Group, Institute of Technology, University of Castilla-La Mancha, 16002 Cuenca, Spain
| | - Andrés Bas
- Department of Pharmacy, University General Hospital, 46014 Valencia, Spain; (A.R.); (A.B.); (S.H.); (P.B.)
| | - Santiago Herrero
- Department of Pharmacy, University General Hospital, 46014 Valencia, Spain; (A.R.); (A.B.); (S.H.); (P.B.)
| | - Pilar Blasco
- Department of Pharmacy, University General Hospital, 46014 Valencia, Spain; (A.R.); (A.B.); (S.H.); (P.B.)
- Medical Analysis Expert Group, Institute of Technology, University of Castilla-La Mancha, 16002 Cuenca, Spain
| | - Miguel Suárez
- Medical Analysis Expert Group, Institute of Technology, University of Castilla-La Mancha, 16002 Cuenca, Spain
- Department of Gastroenterology, Virgen de la Luz Hospital, 16002 Cuenca, Spain
| | - Jorge Mateo
- Medical Analysis Expert Group, Institute of Technology, University of Castilla-La Mancha, 16002 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| |
Collapse
|
4
|
Ameri A, Ameri A, Salmanizadeh F, Bahaadinbeigy K. Clinical decision support systems (CDSS) in assistance to COVID-19 diagnosis: A scoping review on types and evaluation methods. Health Sci Rep 2024; 7:e1919. [PMID: 38384976 PMCID: PMC10879639 DOI: 10.1002/hsr2.1919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Background and Aims Due to the COVID-19 pandemic, a precise and reliable diagnosis of this disease is critical. The use of clinical decision support systems (CDSS) can help facilitate the diagnosis of COVID-19. This scoping review aimed to investigate the role of CDSS in diagnosing COVID-19. Methods We searched four databases (Web of Science, PubMed, Scopus, and Embase) using three groups of keywords related to CDSS, COVID-19, and diagnosis. To collect data from studies, we utilized a data extraction form that consisted of eight fields. Three researchers selected relevant articles and extracted data using a data collection form. To resolve any disagreements, we consulted with a fourth researcher. Results A search of the databases retrieved 2199 articles, of which 68 were included in this review after removing duplicates and irrelevant articles. The studies used nonknowledge-based CDSS (n = 52) and knowledge-based CDSS (n = 16). Convolutional Neural Networks (CNN) (n = 33) and Support Vector Machine (SVM) (n = 8) were employed to design the CDSS in most of the studies. Accuracy (n = 43) and sensitivity (n = 35) were the most common metrics for evaluating CDSS. Conclusion CDSS for COVID-19 diagnosis have been developed mainly through machine learning (ML) methods. The greater use of these techniques can be due to their availability of public data sets about chest imaging. Although these studies indicate high accuracy for CDSS based on ML, their novelty and data set biases raise questions about replacing these systems as clinician assistants in decision-making. Further studies are needed to improve and compare the robustness and reliability of nonknowledge-based and knowledge-based CDSS in COVID-19 diagnosis.
Collapse
Affiliation(s)
- Arefeh Ameri
- Health Information Sciences Department, Faculty of Management and Medical Information SciencesKerman University of Medical SciencesKermanIran
| | - Atefeh Ameri
- Pharmaceutical Sciences and Cosmetic Products Research CenterKerman University of Medical SciencesKermanIran
| | - Farzad Salmanizadeh
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
| | - Kambiz Bahaadinbeigy
- Digital Health TeamAustralian College of Rural and Remote MedicineBrisbaneQueenslandAustralia
| |
Collapse
|
5
|
Casillas N, Ramón A, Torres AM, Blasco P, Mateo J. Predictive Model for Mortality in Severe COVID-19 Patients across the Six Pandemic Waves. Viruses 2023; 15:2184. [PMID: 38005862 PMCID: PMC10675561 DOI: 10.3390/v15112184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/21/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
The impact of SARS-CoV-2 infection remains substantial on a global scale, despite widespread vaccination efforts, early therapeutic interventions, and an enhanced understanding of the disease's underlying mechanisms. At the same time, a significant number of patients continue to develop severe COVID-19, necessitating admission to intensive care units (ICUs). This study aimed to provide evidence concerning the most influential predictors of mortality among critically ill patients with severe COVID-19, employing machine learning (ML) techniques. To accomplish this, we conducted a retrospective multicenter investigation involving 684 patients with severe COVID-19, spanning from 1 June 2020 to 31 March 2023, wherein we scrutinized sociodemographic, clinical, and analytical data. These data were extracted from electronic health records. Out of the six supervised ML methods scrutinized, the extreme gradient boosting (XGB) method exhibited the highest balanced accuracy at 96.61%. The variables that exerted the greatest influence on mortality prediction encompassed ferritin, fibrinogen, D-dimer, platelet count, C-reactive protein (CRP), prothrombin time (PT), invasive mechanical ventilation (IMV), PaFi (PaO2/FiO2), lactate dehydrogenase (LDH), lymphocyte levels, activated partial thromboplastin time (aPTT), body mass index (BMI), creatinine, and age. These findings underscore XGB as a robust candidate for accurately classifying patients with COVID-19.
Collapse
Affiliation(s)
- Nazaret Casillas
- Department of Internal Medicine, Hospital Virgen De La Luz, 16002 Cuenca, Spain
- Medical Analysis Expert Group, Institute of Technology, University of Castilla-La Mancha, 16002 Cuenca, Spain
| | - Antonio Ramón
- Department of Pharmacy, General University Hospital, 46014 Valencia, Spain
| | - Ana María Torres
- Medical Analysis Expert Group, Institute of Technology, University of Castilla-La Mancha, 16002 Cuenca, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Pilar Blasco
- Department of Pharmacy, General University Hospital, 46014 Valencia, Spain
| | - Jorge Mateo
- Medical Analysis Expert Group, Institute of Technology, University of Castilla-La Mancha, 16002 Cuenca, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| |
Collapse
|
6
|
Alscher A, Schnellbächer B, Wissing C. Adoption of Digital Vaccination Services: It Is the Click Flow, Not the Value—An Empirical Analysis of the Vaccination Management of the COVID-19 Pandemic in Germany. Vaccines (Basel) 2023; 11:vaccines11040750. [PMID: 37112662 PMCID: PMC10145467 DOI: 10.3390/vaccines11040750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
This research paper examines the adoption of digital services for the vaccination during the COVID-19 pandemic in Germany. Based on a survey in Germany’s federal state with the highest vaccination rate, which used digital vaccination services, its platform configuration and adoption barriers are analyzed to understand existing and future levers for optimizing vaccination success. Though technological adoption and resistance models have been originally developed for consumer-goods markets, this study gives empirical evidence especially for the applicability of an adjusted model explaining platform adoption for vaccination services and for digital health services in general. In this model, the configuration areas of personalization, communication, and data management have a remarkable effect to lower adoption barriers, but only functional and psychological factors affect the adoption intention. Above all, the usability barrier stands out with the strongest effect, while the often-cited value barrier is not significant at all. Personalization is found to be the most important factor for managing the usability barrier and thus for addressing the needs, preferences, situation, and, ultimately, the adoption of the citizens as users. Implications are given for policy makers and managers in such a pandemic crisis to focus on the click flow and server-to-human interaction rather than emphasizing value messages or touching traditional factors.
Collapse
|
7
|
Berdahl CT, Baker L, Mann S, Osoba O, Girosi F. Strategies to Improve the Impact of Artificial Intelligence on Health Equity: Scoping Review. JMIR AI 2023; 2:e42936. [PMID: 38875587 PMCID: PMC11041459 DOI: 10.2196/42936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 06/16/2024]
Abstract
BACKGROUND Emerging artificial intelligence (AI) applications have the potential to improve health, but they may also perpetuate or exacerbate inequities. OBJECTIVE This review aims to provide a comprehensive overview of the health equity issues related to the use of AI applications and identify strategies proposed to address them. METHODS We searched PubMed, Web of Science, the IEEE (Institute of Electrical and Electronics Engineers) Xplore Digital Library, ProQuest U.S. Newsstream, Academic Search Complete, the Food and Drug Administration (FDA) website, and ClinicalTrials.gov to identify academic and gray literature related to AI and health equity that were published between 2014 and 2021 and additional literature related to AI and health equity during the COVID-19 pandemic from 2020 and 2021. Literature was eligible for inclusion in our review if it identified at least one equity issue and a corresponding strategy to address it. To organize and synthesize equity issues, we adopted a 4-step AI application framework: Background Context, Data Characteristics, Model Design, and Deployment. We then created a many-to-many mapping of the links between issues and strategies. RESULTS In 660 documents, we identified 18 equity issues and 15 strategies to address them. Equity issues related to Data Characteristics and Model Design were the most common. The most common strategies recommended to improve equity were improving the quantity and quality of data, evaluating the disparities introduced by an application, increasing model reporting and transparency, involving the broader community in AI application development, and improving governance. CONCLUSIONS Stakeholders should review our many-to-many mapping of equity issues and strategies when planning, developing, and implementing AI applications in health care so that they can make appropriate plans to ensure equity for populations affected by their products. AI application developers should consider adopting equity-focused checklists, and regulators such as the FDA should consider requiring them. Given that our review was limited to documents published online, developers may have unpublished knowledge of additional issues and strategies that we were unable to identify.
Collapse
Affiliation(s)
- Carl Thomas Berdahl
- RAND Corporation, Santa Monica, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Emergency Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | - Sean Mann
- RAND Corporation, Santa Monica, CA, United States
| | - Osonde Osoba
- RAND Corporation, Santa Monica, CA, United States
| | | |
Collapse
|
8
|
Vinod DN, Prabaharan SRS. COVID-19-The Role of Artificial Intelligence, Machine Learning, and Deep Learning: A Newfangled. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:2667-2682. [PMID: 36685135 PMCID: PMC9843670 DOI: 10.1007/s11831-023-09882-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 01/05/2023] [Indexed: 05/29/2023]
Abstract
The absolute previously infected novel coronavirus (COVID-19) was found in Wuhan, China, in December 2019. The COVID-19 epidemic has spread to more than 220 nations and territories globally and has altogether influenced each part of our day-to-day lives. As of 9th March 2022, a total aggregate of 44,78,82,185 (60,07,317) contaminated (dead) COVID-19 cases were accounted for all over the world. The quantities of contaminated cases passing despite everything increment essentially and do not indicate a controlled circumstance. The scope of this paper is to address this issue by presenting a comprehensive and comparative analysis of the existing Machine Learning (ML), Deep Learning (DL) and Artificial Intelligence (AI) based approaches used in significance in reacting to the COVID-19 epidemic and diagnosing the severe impacts. The paper provides, firstly, an overview of COVID-19 infection and highlights of this article; Secondly, an overview of exploring various executive innovations by utilizing different resources to stop the spread of COVID-19; Thirdly, a comparison of existing predicting methods of COVID-19 in the literature, with focus on ML, DL and AI-driven techniques with performance metrics; and finally, a discussion on the results of the work as well as future scope.
Collapse
Affiliation(s)
- Dasari Naga Vinod
- Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu 600062 India
| | - S. R. S. Prabaharan
- Sathyabama Centre for Advanced Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai, Tamil Nadu 600119 India
| |
Collapse
|
9
|
Ho ML, Arnold CW, Decker SJ, Hazle JD, Krupinski EA, Mankoff DA. Institutional Strategies to Maintain and Grow Imaging Research During the COVID-19 Pandemic. Acad Radiol 2023; 30:631-639. [PMID: 36764883 PMCID: PMC9816088 DOI: 10.1016/j.acra.2022.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023]
Abstract
Understanding imaging research experiences, challenges, and strategies for academic radiology departments during and after COVID-19 is critical to prepare for future disruptive events. We summarize key insights and programmatic initiatives at major academic hospitals across the world, based on literature review and meetings of the Radiological Society of North America Vice Chairs of Research (RSNA VCR) group. Through expert discussion and case studies, we provide suggested guidelines to maintain and grow radiology research in the postpandemic era.
Collapse
Affiliation(s)
- Mai-Lan Ho
- Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio.
| | | | | | - John D. Hazle
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | |
Collapse
|
10
|
Xie G, Xu H, Li J, Gu G, Sun Y, Lin Z, Zhu Y, Wang W, Wang Y, Shao J. DRPADC: A novel drug repositioning algorithm predicting adaptive drugs for COVID-19. Comput Chem Eng 2022; 166:107947. [PMID: 35942213 PMCID: PMC9349049 DOI: 10.1016/j.compchemeng.2022.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/13/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022]
Abstract
Given that the usual process of developing a new vaccine or drug for COVID-19 demands significant time and funds, drug repositioning has emerged as a promising therapeutic strategy. We propose a method named DRPADC to predict novel drug-disease associations effectively from the original sparse drug-disease association adjacency matrix. Specifically, DRPADC processes the original association matrix with the WKNKN algorithm to reduce its sparsity. Furthermore, multiple types of similarity information are fused by a CKA-MKL algorithm. Finally, a compressed sensing algorithm is used to predict the potential drug-disease (virus) association scores. Experimental results show that DRPADC has superior performance than several competitive methods in terms of AUC values and case studies. DRPADC achieved the AUC value of 0.941, 0.955 and 0.876 in Fdataset, Cdataset and HDVD dataset, respectively. In addition, the conducted case studies of COVID-19 show that DRPADC can predict drug candidates accurately.
Collapse
Affiliation(s)
- Guobo Xie
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Haojie Xu
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianming Li
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Guosheng Gu
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China,Corresponding author
| | - Yuping Sun
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiyi Lin
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Yinting Zhu
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiming Wang
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Youfu Wang
- Huaneng Qinghai Power Generation Co., Ltd. New Energy Branch, Xining 810000, China
| | - Jiang Shao
- School of Architecture & Design, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
11
|
Chiappelli F, Penhaskashi J. Toward a fractalomic idiotype/anti-idiotypic paradigm. Bioinformation 2022; 18:730-733. [PMID: 37426493 PMCID: PMC10326330 DOI: 10.6026/97320630018730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 10/28/2023] Open
Abstract
The CoViD-19 pandemic has demonstrated the need for future developments in anti-viral immunology. We propose that artificial intelligence (AI) and machine learning, and in particular fractal analysis could play a crucial role in that context. Fractals - never-ending repeats of self-similar shapes whose composite tend to resemble the whole - are found in most natural biological structures including immunoglobulin and antigenic epitopes. Increased knowledge of the fractalomic properties of the idiotype/anti-idiotypic paradigm should help develop a novel and improved simplified artificial model of the immune system. Case in point, the regulation and dampening of antibodies as well as the synergetic recognition of an antigen by multiple idiotypes are both immune mechanisms that require further analysis. An enhanced understanding of these complexities could lead to better data analysis for novel vaccines to improve their sensitivity and specificity as well as open other new doors in the field of immunology.
Collapse
Affiliation(s)
| | - Jaden Penhaskashi
- West Valley Dental Implant Center, Encino, CA 91316 (minimallyinvasiveperio.com)
| |
Collapse
|
12
|
Adadi A, Lahmer M, Nasiri S. Artificial Intelligence and COVID-19: A Systematic umbrella review and roads ahead. JOURNAL OF KING SAUD UNIVERSITY. COMPUTER AND INFORMATION SCIENCES 2022; 34:5898-5920. [PMID: 37520766 PMCID: PMC8831917 DOI: 10.1016/j.jksuci.2021.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/21/2021] [Accepted: 07/11/2021] [Indexed: 12/15/2022]
Abstract
Artificial Intelligence (AI) has played a substantial role in the response to the challenges posed by the current pandemic. The growing interest in using AI to handle Covid-19 issues has accelerated the pace of AI research and resulted in an exponential increase in articles and review studies within a very short period of time. Hence, it is becoming challenging to explore the large corpus of academic publications dedicated to the global health crisis. Even with the presence of systematic review studies, given their number and diversity, identifying trends and research avenues beyond the pandemic should be an arduous task. We conclude therefore that after the one-year mark of the declaration of Covid-19 as a pandemic, the accumulated scientific contribution lacks two fundamental aspects: Knowledge synthesis and Future projections. In contribution to fill this void, this paper is a (i) synthesis study and (ii) foresight exercise. The synthesis study aims to provide the scholars a consolidation of findings and a knowledge synthesis through a systematic review of the reviews (umbrella review) studying AI applications against Covid-19. Following the PRISMA guidelines, we systematically searched PubMed, Scopus, and other preprint sources from 1st December 2019 to 1st June 2021 for eligible reviews. The literature search and screening process resulted in 45 included reviews. Our findings reveal patterns, relationships, and trends in the AI research community response to the pandemic. We found that in the space of few months, the research objectives of the literature have developed rapidly from identifying potential AI applications to evaluating current uses of intelligent systems. Only few reviews have adopted the meta-analysis as a study design. Moreover, a clear dominance of the medical theme and the DNN methods has been observed in the reported AI applications. Based on its constructive systematic umbrella review, this work conducts a foresight exercise that tries to envision the post-Covid-19 research landscape of the AI field. We see seven key themes of research that may be an outcome of the present crisis and which advocate a more sustainable and responsible form of intelligent systems. We set accordingly a post-pandemic research agenda articulated around these seven drivers. The results of this study can be useful for the AI research community to obtain a holistic view of the current literature and to help prioritize research needs as we are heading toward the new normal.
Collapse
Affiliation(s)
- Amina Adadi
- ISIC Research Team of High School of Technology, LMMI Laboratory, Moulay Ismail University, Meknes, Morocco
| | - Mohammed Lahmer
- ISIC Research Team of High School of Technology, LMMI Laboratory, Moulay Ismail University, Meknes, Morocco
| | - Samia Nasiri
- ISIC Research Team of High School of Technology, LMMI Laboratory, Moulay Ismail University, Meknes, Morocco
| |
Collapse
|
13
|
Intelligent Facemask Coverage Detector in a World of Chaos. Processes (Basel) 2022. [DOI: 10.3390/pr10091710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The recent outbreak of COVID-19 around the world has caused a global health catastrophe along with economic consequences. As per the World Health Organization (WHO), this devastating crisis can be minimized and controlled if humans wear facemasks in public; however, the prevention of spreading COVID-19 can only be possible only if they are worn properly, covering both the nose and mouth. Nonetheless, in public places or in chaos, a manual check of persons wearing the masks properly or not is a hectic job and can cause panic. For such conditions, an automatic mask-wearing system is desired. Therefore, this study analyzed several deep learning pre-trained networks and classical machine learning algorithms that can automatically detect whether the person wears the facemask or not. For this, 40,000 images are utilized to train and test 9 different models, namely, InceptionV3, EfficientNetB0, EfficientNetB2, DenseNet201, ResNet152, VGG19, convolutional neural network (CNN), support vector machine (SVM), and random forest (RF), to recognize facemasks in images. Besides just detecting the mask, the trained models also detect whether the person is wearing the mask properly (covering nose and mouth), partially (mouth only), or wearing it inappropriately (not covering nose and mouth). Experimental work reveals that InceptionV3 and EfficientNetB2 outperformed all other methods by attaining an overall accuracy of around 98.40% and a precision, recall, and F1-score of 98.30%.
Collapse
|
14
|
Ramón A, Zaragozá M, Torres AM, Cascón J, Blasco P, Milara J, Mateo J. Application of Machine Learning in Hospitalized Patients with Severe COVID-19 Treated with Tocilizumab. J Clin Med 2022; 11:jcm11164729. [PMID: 36012968 PMCID: PMC9410189 DOI: 10.3390/jcm11164729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Among the IL-6 inhibitors, tocilizumab is the most widely used therapeutic option in patients with SARS-CoV-2-associated severe respiratory failure (SRF). The aim of our study was to provide evidence on predictors of poor outcome in patients with COVID-19 treated with tocilizumab, using machine learning (ML) techniques. We conducted a retrospective study, analyzing the clinical, laboratory and sociodemographic data of patients admitted for severe COVID-19 with SRF, treated with tocilizumab. The extreme gradient boost (XGB) method had the highest balanced accuracy (93.16%). The factors associated with a worse outcome of tocilizumab use in terms of mortality were: baseline situation at the start of tocilizumab treatment requiring invasive mechanical ventilation (IMV), elevated ferritin, lactate dehydrogenase (LDH) and glutamate-pyruvate transaminase (GPT), lymphopenia, and low PaFi [ratio between arterial oxygen pressure and inspired oxygen fraction (PaO2/FiO2)] values. The factors associated with a worse outcome of tocilizumab use in terms of hospital stay were: baseline situation at the start of tocilizumab treatment requiring IMV or supplemental oxygen, elevated levels of ferritin, glutamate-oxaloacetate transaminase (GOT), GPT, C-reactive protein (CRP), LDH, lymphopenia, and low PaFi values. In our study focused on patients with severe COVID-19 treated with tocilizumab, the factors that were weighted most strongly in predicting worse clinical outcome were baseline status at the start of tocilizumab treatment requiring IMV and hyperferritinemia.
Collapse
Affiliation(s)
- Antonio Ramón
- Department of Pharmacy, General University Hospital, 46014 Valencia, Spain
| | - Marta Zaragozá
- Department of Pharmacy, General University Hospital, 46014 Valencia, Spain
| | - Ana María Torres
- Institute of Technology, University of Castilla-La Mancha, 16002 Cuenca, Spain
| | - Joaquín Cascón
- Institute of Technology, University of Castilla-La Mancha, 16002 Cuenca, Spain
| | - Pilar Blasco
- Department of Pharmacy, General University Hospital, 46014 Valencia, Spain
| | - Javier Milara
- Department of Pharmacy, General University Hospital, 46014 Valencia, Spain
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- Centre for Biomedical Research Network on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
- Correspondence:
| | - Jorge Mateo
- Institute of Technology, University of Castilla-La Mancha, 16002 Cuenca, Spain
| |
Collapse
|
15
|
Jalil Z, Abbasi A, Javed AR, Khan MB, Abul Hasanat MH, AlTameem A, AlKhathami M, Jilani Saudagar AK. A Novel Benchmark Dataset for COVID-19 Detection during Third Wave in Pakistan. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6354579. [PMID: 35990145 PMCID: PMC9391128 DOI: 10.1155/2022/6354579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
Coronavirus (COVID-19) is a highly severe infection caused by the severe acute respiratory coronavirus 2 (SARS-CoV-2). The polymerase chain reaction (PCR) test is essential to confirm the COVID-19 infection, but it has certain limitations, including paucity of reagents, is computationally time-consuming, and requires expert clinicians. Clinicians suggest that the PCR test is not a reliable automated COVID-19 patient detection system. This study proposed a machine learning-based approach to evaluate the PCR role in COVID-19 detection. We collect real data containing 603 COVID-19 samples from the Pakistan Institute of Medical Sciences (PIMS) Hospital in Islamabad, Pakistan, during the third COVID-19 wave. The experiments are separated into two sets. The first set comprises 24 features, including PCR test results, whereas the second comprises 24 features without PCR test. The findings demonstrate that the decision tree achieves the best detection rate for positive and negative COVID-19 patients in both scenarios. The findings reveal that PCR does not contribute to detecting COVID-19 patients. The findings also aid in the early detection of COVID-19, mainly when PCR test results are insufficient for diagnosing COVID-19 and help developing countries with a paucity of PCR tests and specialist facilities.
Collapse
Affiliation(s)
- Zunera Jalil
- Department of Cyber Security, PAF Complex E-9, Air University, Islamabad, Pakistan
| | - Ahmed Abbasi
- Department of Cyber Security, PAF Complex E-9, Air University, Islamabad, Pakistan
| | - Abdul Rehman Javed
- Department of Cyber Security, PAF Complex E-9, Air University, Islamabad, Pakistan
| | - Muhammad Badruddin Khan
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mozaherul Hoque Abul Hasanat
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdullah AlTameem
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed AlKhathami
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdul Khader Jilani Saudagar
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Clinical and Laboratory Approach to Diagnose COVID-19 Using Machine Learning. Interdiscip Sci 2022; 14:452-470. [PMID: 35133633 PMCID: PMC8846962 DOI: 10.1007/s12539-021-00499-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
Coronavirus 2 (SARS-CoV-2), often known by the name COVID-19, is a type of acute respiratory syndrome that has had a significant influence on both economy and health infrastructure worldwide. This novel virus is diagnosed utilising a conventional method known as the RT-PCR (Reverse Transcription Polymerase Chain Reaction) test. This approach, however, produces a lot of false-negative and erroneous outcomes. According to recent studies, COVID-19 can also be diagnosed using X-rays, CT scans, blood tests and cough sounds. In this article, we use blood tests and machine learning to predict the diagnosis of this deadly virus. We also present an extensive review of various existing machine-learning applications that diagnose COVID-19 from clinical and laboratory markers. Four different classifiers along with a technique called Synthetic Minority Oversampling Technique (SMOTE) were used for classification. Shapley Additive Explanations (SHAP) method was utilized to calculate the gravity of each feature and it was found that eosinophils, monocytes, leukocytes and platelets were the most critical blood parameters that distinguished COVID-19 infection for our dataset. These classifiers can be utilized in conjunction with RT-PCR tests to improve sensitivity and in emergency situations such as a pandemic outbreak that might happen due to new strains of the virus. The positive results indicate the prospective use of an automated framework that could help clinicians and medical personnel diagnose and screen patients.
Collapse
|
17
|
Insights in paediatric virology during the COVID-19 era (Review). MEDICINE INTERNATIONAL 2022; 2:17. [PMID: 36698505 PMCID: PMC9829203 DOI: 10.3892/mi.2022.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/13/2022] [Indexed: 01/28/2023]
Abstract
The present article provides an overview of the key messages of the topics discussed at the '7th Workshop on Paediatric Virology', which was organised virtually on December 20, 2021 by the Institute of Paediatric Virology, located on the Island of Euboea in Greece. The workshop's plenary lectures were on: i) viral pandemics and epidemics in the ancient Mediterranean; ii) the impact of obesity on the outcome of viral infections in children and adolescents; and iii) COVID-19 and artificial intelligence. Despite the scarcity of evidence from fossils and remnants, viruses have been recognised as significant causes of several epidemics in the ancient Mediterranean. Paediatric obesity, a modifiable critical health risk factor, has been shown to impact on the development, progression and severity of viral infections. Thus, the prevention of paediatric obesity should be included in formulating public health policies and decision-making strategies against emerging global viral threats. During the current COVID-19 pandemic, artificial intelligence has been used to facilitate the identification, monitoring and prevention of SARS-CoV-2. In the future, it will play a fundamental role in the surveillance of epidemic-prone infectious diseases, in the repurposing of older therapies and in the design of novel therapeutic agents against viral infections. The collaboration between different medical specialties and other diverse scientific fields, including archaeology, history, epidemiology, nutritional technologies, mathematics, computer technology, engineering, medical law and ethics is essential for the successful management of paediatric viral infections. The current COVID-19 pandemic has underscored this need, which should be further encouraged in modern medical education.
Collapse
|
18
|
The application of a deep learning system developed to reduce the time for RT-PCR in COVID-19 detection. Sci Rep 2022; 12:1234. [PMID: 35075153 PMCID: PMC8786863 DOI: 10.1038/s41598-022-05069-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/06/2022] [Indexed: 01/02/2023] Open
Abstract
Reducing the time to diagnose COVID-19 helps to manage insufficient isolation-bed resources and adequately accommodate critically ill patients. There is currently no alternative method to real-time reverse transcriptase polymerase chain reaction (RT-PCR), which requires 40 cycles to diagnose COVID-19. We propose a deep learning (DL) model to improve the speed of COVID-19 RT-PCR diagnosis. We developed and tested a DL model using the long short-term memory method with a dataset of fluorescence values measured in each cycle of 5810 RT-PCR tests. Among the DL models developed here, the diagnostic performance of the 21st model showed an area under the receiver operating characteristic (AUROC), sensitivity, and specificity of 84.55%, 93.33%, and 75.72%, respectively. The diagnostic performance of the 24th model showed an AUROC, sensitivity, and specificity of 91.27%, 90.00%, and 92.54%, respectively.
Collapse
|
19
|
Data-Driven Analytics Leveraging Artificial Intelligence in the Era of COVID-19: An Insightful Review of Recent Developments. Symmetry (Basel) 2021. [DOI: 10.3390/sym14010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This paper presents the role of artificial intelligence (AI) and other latest technologies that were employed to fight the recent pandemic (i.e., novel coronavirus disease-2019 (COVID-19)). These technologies assisted the early detection/diagnosis, trends analysis, intervention planning, healthcare burden forecasting, comorbidity analysis, and mitigation and control, to name a few. The key-enablers of these technologies was data that was obtained from heterogeneous sources (i.e., social networks (SN), internet of (medical) things (IoT/IoMT), cellular networks, transport usage, epidemiological investigations, and other digital/sensing platforms). To this end, we provide an insightful overview of the role of data-driven analytics leveraging AI in the era of COVID-19. Specifically, we discuss major services that AI can provide in the context of COVID-19 pandemic based on six grounds, (i) AI role in seven different epidemic containment strategies (a.k.a non-pharmaceutical interventions (NPIs)), (ii) AI role in data life cycle phases employed to control pandemic via digital solutions, (iii) AI role in performing analytics on heterogeneous types of data stemming from the COVID-19 pandemic, (iv) AI role in the healthcare sector in the context of COVID-19 pandemic, (v) general-purpose applications of AI in COVID-19 era, and (vi) AI role in drug design and repurposing (e.g., iteratively aligning protein spikes and applying three/four-fold symmetry to yield a low-resolution candidate template) against COVID-19. Further, we discuss the challenges involved in applying AI to the available data and privacy issues that can arise from personal data transitioning into cyberspace. We also provide a concise overview of other latest technologies that were increasingly applied to limit the spread of the ongoing pandemic. Finally, we discuss the avenues of future research in the respective area. This insightful review aims to highlight existing AI-based technological developments and future research dynamics in this area.
Collapse
|
20
|
Imami AS, McCullumsmith RE, O’Donovan SM. Strategies to identify candidate repurposable drugs: COVID-19 treatment as a case example. Transl Psychiatry 2021; 11:591. [PMID: 34785660 PMCID: PMC8594646 DOI: 10.1038/s41398-021-01724-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
Drug repurposing is an invaluable strategy to identify new uses for existing drug therapies that overcome many of the time and financial costs associated with novel drug development. The COVID-19 pandemic has driven an unprecedented surge in the development and use of bioinformatic tools to identify candidate repurposable drugs. Using COVID-19 as a case study, we discuss examples of machine-learning and signature-based approaches that have been adapted to rapidly identify candidate drugs. The Library of Integrated Network-based Signatures (LINCS) and Connectivity Map (CMap) are commonly used repositories and have the advantage of being amenable to use by scientists with limited bioinformatic training. Next, we discuss how these recent advances in bioinformatic drug repurposing approaches might be adapted to identify repurposable drugs for CNS disorders. As the development of novel therapies that successfully target the cause of neuropsychiatric and neurological disorders has stalled, there is a pressing need for innovative strategies to treat these complex brain disorders. Bioinformatic approaches to identify repurposable drugs provide an exciting avenue of research that offer promise for improved treatments for CNS disorders.
Collapse
Affiliation(s)
- Ali S. Imami
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo, Toledo, OH USA
| | - Robert E. McCullumsmith
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo, Toledo, OH USA ,grid.422550.40000 0001 2353 4951Neurosciences Institute, Promedica, Toledo, OH USA
| | - Sinead M. O’Donovan
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo, Toledo, OH USA
| |
Collapse
|
21
|
Zhang W, Zhang Y, Min Z, Mo J, Ju Z, Guan W, Zeng B, Liu Y, Chen J, Zhang Q, Li H, Zeng C, Wei Y, Chan GCF. COVID19db: a comprehensive database platform to discover potential drugs and targets of COVID-19 at whole transcriptomic scale. Nucleic Acids Res 2021; 50:D747-D757. [PMID: 34554255 PMCID: PMC8728200 DOI: 10.1093/nar/gkab850] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/26/2022] Open
Abstract
Many open access transcriptomic data of coronavirus disease 2019 (COVID-19) were generated, they have great heterogeneity and are difficult to analyze. To utilize these invaluable data for better understanding of COVID-19, additional software should be developed. Especially for researchers without bioinformatic skills, a user-friendly platform is mandatory. We developed the COVID19db platform (http://hpcc.siat.ac.cn/covid19db & http://www.biomedical-web.com/covid19db) that provides 39 930 drug–target–pathway interactions and 95 COVID-19 related datasets, which include transcriptomes of 4127 human samples across 13 body sites associated with the exposure of 33 microbes and 33 drugs/agents. To facilitate data application, each dataset was standardized and annotated with rich clinical information. The platform further provides 14 different analytical applications to analyze various mechanisms underlying COVID-19. Moreover, the 14 applications enable researchers to customize grouping and setting for different analyses and allow them to perform analyses using their own data. Furthermore, a Drug Discovery tool is designed to identify potential drugs and targets at whole transcriptomic scale. For proof of concept, we used COVID19db and identified multiple potential drugs and targets for COVID-19. In summary, COVID19db provides user-friendly web interfaces to freely analyze, download data, and submit new data for further integration, it can accelerate the identification of effective strategies against COVID-19.
Collapse
Affiliation(s)
- Wenliang Zhang
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen, China
| | - Yan Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China
| | - Zhuochao Min
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jing Mo
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen, China
| | - Zhen Ju
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wen Guan
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen, China.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Binghui Zeng
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen, China.,Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yang Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China
| | - Jianliang Chen
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China
| | - Qianshen Zhang
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China
| | - Hanguang Li
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China
| | - Chunxia Zeng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yanjie Wei
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China.,Department of Pediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong 999077, China
| |
Collapse
|