1
|
Atanasoff‐Kardjalieff AK, Seidl B, Steinert K, Daniliuc CG, Schuhmacher R, Humpf H, Kalinina S, Studt‐Reinhold L. Biosynthesis of the Isocoumarin Derivatives Fusamarins is Mediated by the PKS8 Gene Cluster in Fusarium. Chembiochem 2023; 24:e202200342. [PMID: 36137261 PMCID: PMC10947347 DOI: 10.1002/cbic.202200342] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/19/2022] [Indexed: 11/11/2022]
Abstract
Fusarium mangiferae causes the mango malformation disease (MMD) on young mango trees and seedlings resulting in economically significant crop losses. In addition, F. mangiferae produces a vast array of secondary metabolites (SMs), including mycotoxins that may contaminate the harvest. Their production is tightly regulated at the transcriptional level. Here, we show that lack of the H3 K9-specific histone methyltransferase, FmKmt1, influences the expression of the F. mangiferae polyketide synthase (PKS) 8 (FmPKS8), a so far cryptic PKS. By a combination of reverse genetics, untargeted metabolomics, bioinformatics and chemical analyses including structural elucidation, we determined the FmPKS8 biosynthetic gene cluster (BGC) and linked its activity to the production of fusamarins (FMN), which can be structurally classified as dihydroisocoumarins. Functional characterization of the four FMN cluster genes shed light on the biosynthetic pathway. Cytotoxicity assays revealed moderate toxicities with IC50 values between 1 and 50 μM depending on the compound.
Collapse
Affiliation(s)
- Anna K. Atanasoff‐Kardjalieff
- Institute of Microbial GeneticsDepartment of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 243430Tulln an der DonauAustria
| | - Bernhard Seidl
- Institute of Bioanalytics and Agro-MetabolomicsDepartment of Agrobiotechnology (IFA-Tulln)University of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 203430Tulln an der DonauAustria
| | - Katharina Steinert
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-MetabolomicsDepartment of Agrobiotechnology (IFA-Tulln)University of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 203430Tulln an der DonauAustria
| | - Hans‐Ulrich Humpf
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Svetlana Kalinina
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Lena Studt‐Reinhold
- Institute of Microbial GeneticsDepartment of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 243430Tulln an der DonauAustria
| |
Collapse
|
2
|
Steinert K, Berg N, Kalinin DV, Jagels A, Würthwein EU, Humpf HU, Kalinina S. Semisynthetic Approach toward Biologically Active Derivatives of Phenylspirodrimanes from S. chartarum. ACS OMEGA 2022; 7:45215-45230. [PMID: 36530258 PMCID: PMC9753195 DOI: 10.1021/acsomega.2c05681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The phenylspirodrimanes (PSDs) from Stachybotrys chartarum represent a structurally diverse group of meroterpenoids, which, on the one hand, exhibit a structural exclusivity since their occurrence is not known for any other species and, on the other hand, offer access to chemically and biologically active compounds. In this study, phenylspirodrimanes 1-3 were isolated from S. chartarum and their water-mediated Cannizzaro-type transformation was investigated using quantum chemical DFT calculations substantiated by LC-MS and NMR experiments. Considering the inhibitory activity of PSDs against proteolytic enzymes and their modulatory effect on plasminogen, PSDs 1-3 were used as a starting material for the synthesis of their corresponding biologically active lactams. To access the library of the PSD derivatives and screen them against physiologically relevant serine proteases, a microscale semisynthetic approach was developed. This allowed us to generate the library of 35 lactams, some of which showed the inhibitory activity against physiologically relevant serine proteases such as thrombin, FXIIa, FXa, and trypsin. Among them, the agmatine-derived lactam 16 showed the highest inhibitory activity against plasma coagulation factors and demonstrated the anticoagulant activity in two plasma coagulation tests. The semisynthetic lactams were significantly less toxic compared to their parental natural PSDs.
Collapse
Affiliation(s)
- Katharina Steinert
- Institut
für Lebensmittelchemie, Westfälische
Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Nina Berg
- Institut
für Lebensmittelchemie, Westfälische
Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Dmitrii V. Kalinin
- Institut
für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Annika Jagels
- The
Whitney Laboratory for Marine Bioscience, Department of Chemistry, University of Florida, St. Augustine, Florida 32080, United States
| | - Ernst-Ulrich Würthwein
- Organisch-Chemisches
Institut and Center for Multiscale Theory and Computation (CMTC), Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institut
für Lebensmittelchemie, Westfälische
Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Svetlana Kalinina
- Institut
für Lebensmittelchemie, Westfälische
Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| |
Collapse
|
3
|
Lindemann V, Schmidt J, Cramer B, Humpf HU. Detection of Mycotoxins in Highly Matrix-Loaded House-Dust Samples by QTOF-HRMS, IM-QTOF-HRMS, and TQMS: Advantages and Disadvantages. Anal Chem 2022; 94:4209-4217. [PMID: 35231175 PMCID: PMC8928151 DOI: 10.1021/acs.analchem.1c04254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/17/2022] [Indexed: 12/28/2022]
Abstract
The analysis of (trace) contaminants in environmental samples represents an important tool for exposure assessment and for the evaluation of potential risks to human health. Currently, mass spectrometric detection using triple quadrupole (TQMS) systems is the established method of choice. However, screening methods using high resolution mass spectrometry (HRMS) find increasing application as they provide advantages such as enhanced selectivity. A complex composition of environmental samples is known to have enormous effects on mass analyzers. The present work therefore compares the impact of a highly matrix-loaded sample material like house-dust on the performance of mass spectrometric detection of the emerging indoor contaminant group of mycotoxins by quadrupole time-of-flight (QTOF) and TQMS after ultrahigh-performance liquid chromatographic separation. Furthermore, the role of ionization efficiencies of different ion sources in instrument sensitivity was compared using an electrospray ionization source and a newly developed heated electrospray ion source (Bruker VIP-HESI) during QTOF experiments. Finally, it was evaluated whether an additional dimension of separation enables increased sensitivity in QTOF-HRMS detection by applying mycotoxins in house-dust to an (trapped) ion mobility spectrometry instrument. The sensitivity of the QTOF detection was positively influenced by the application of the VIP-HESI ion source, and overall HRMS instruments provided enhanced selectivity resulting in simplified data evaluation compared to the TQMS. However, all performed experiments revealed strong signal suppression due to matrix components. QTOF results showed more severe effects, enabling a more sensitive detection of mycotoxins in house-dust by applying TQMS detection.
Collapse
Affiliation(s)
- Viktoria Lindemann
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Jessica Schmidt
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
4
|
Lünne F, Köhler J, Stroh C, Müller L, Daniliuc CG, Mück-Lichtenfeld C, Würthwein EU, Esselen M, Humpf HU, Kalinina SA. Insights into Ergochromes of the Plant Pathogen Claviceps purpurea. JOURNAL OF NATURAL PRODUCTS 2021; 84:2630-2643. [PMID: 34553942 DOI: 10.1021/acs.jnatprod.1c00264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Claviceps purpurea is an ergot fungus known for its neurotropic alkaloids, which have been identified as the main cause of ergotism, a livestock and human disease triggered by ergot consumption. Tetrahydroxanthone dimers, the so-called ergopigments, presumably also contribute to this toxic effect. Overexpression of the cluster-specific transcription factor responsible for the formation of these pigments in C. purpurea led to the isolation of three new metabolites (8-10). The new pigments were characterized utilizing HRMS, NMR techniques, and CD spectroscopy and shown to be xanthone dimers. Secalonic acid A and its 2,4'- and 4,4'-linked isomers were also isolated, and their absolute configuration was investigated. The contribution of secalonic acid A, its isomers, and new metabolites to the toxicity of C. purpurea was investigated in HepG2 and CCF-STTG1 cells. Along with cytotoxic properties, secalonic acid A was found to inhibit topoisomerase I and II activity.
Collapse
Affiliation(s)
- Friederike Lünne
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Jens Köhler
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Christina Stroh
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Lena Müller
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Ernst-Ulrich Würthwein
- Organisch-chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Melanie Esselen
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Svetlana A Kalinina
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| |
Collapse
|
5
|
Behrens M, Hüwel S, Galla HJ, Humpf HU. Efflux at the Blood-Brain Barrier Reduces the Cerebral Exposure to Ochratoxin A, Ochratoxin α, Citrinin and Dihydrocitrinone. Toxins (Basel) 2021; 13:toxins13050327. [PMID: 33946578 PMCID: PMC8147254 DOI: 10.3390/toxins13050327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies have implied that environmental toxins, such as mycotoxins, are risk factors for neurodegenerative diseases. To act directly as neurotoxins, mycotoxins need to penetrate or affect the integrity of the blood-brain barrier, which protects the mammalian brain from potentially harmful substances. As common food and feed contaminants of fungal origin, the interest in the potential neurotoxicity of ochratoxin A, citrinin and their metabolites has recently increased. Primary porcine brain capillary endothelial cells were used to investigate cytotoxic or barrier-weakening effects of ochratoxin A, ochratoxin α, citrinin and dihydrocitrinone. The transfer and transport properties of the mycotoxins across the barrier formed by porcine brain capillary endothelial cell monolayers were analysed using HPLC-MS/MS. High levels of Ochratoxin A caused cytotoxic and barrier-weakening effects, whereas ochratoxin α, citrinin and dihydrocitrinone showed no adverse effects up to 10 µM. Likely due to efflux transporter proteins, the transfer to the brain compartment was much slower than expected from their high lipophilicity. Due to their slow transfer across the blood-brain barrier, cerebral exposure of ochratoxin A, ochratoxin α, citrinin and dihydrocitrinone is low and neurotoxicity is likely to play a subordinate role in their toxicity at common physiological concentrations.
Collapse
Affiliation(s)
- Matthias Behrens
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany;
| | - Sabine Hüwel
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany; (S.H.); (H.-J.G.)
| | - Hans-Joachim Galla
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany; (S.H.); (H.-J.G.)
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany;
- Correspondence:
| |
Collapse
|
6
|
Dried urine spots as sampling technique for multi-mycotoxin analysis in human urine. Mycotoxin Res 2021; 37:129-140. [PMID: 33638099 PMCID: PMC8163710 DOI: 10.1007/s12550-021-00423-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
A simple and effective approach for HPLC-MS/MS based multi-mycotoxin analysis in human urine samples was developed by application of dried urine spots (DUS) as alternative on-site sampling strategy. The newly developed method enables the detection and quantitation of 14 relevant mycotoxins and mycotoxin metabolites, including citrinin (CIT), dihydrocitrinone (DH-CIT), deoxynivalenol (DON), fumonisin B1 (FB1), T-2 Toxin (T-2), HT-2 Toxin (HT-2), ochratoxin A (OTA), 2′R-ochratoxin A (2′R-OTA), ochratoxin α (OTα), tenuazonic acid and allo-tenuazonic acid (TeA + allo-TeA), zearalenone (ZEN), zearalanone (ZAN), α-zearalenol (α-ZEL), and β-zearalenol (β-ZEL). Besides the spotting procedure, sample preparation includes enzymatic cleavage of glucuronic acid conjugates and stable isotope dilution analysis. Method validation revealed low limits of detection in the range of pg/mL urine and excellent apparent recovery rates for most analytes. Stability investigation of DUS displayed no or only slight decrease of the analyte concentration over a period of 28 days at room temperature. The new method was applied to the analysis of a set of urine samples (n = 91) from a Swedish cohort. The four analytes, DH-CIT, DON, OTA, and TeA + allo-TeA, could be detected and quantified in amounts ranging from 0.06 to 0.97 ng/mL, 3.03 to 136 ng/mL, 0.013 to 0.434 ng/mL and from 0.36 to 47 ng/mL in 38.5%, 70.3%, 68.1%, and 94.5% of the samples, respectively. Additional analysis of these urine samples with an established dilute and shoot (DaS) approach displayed a high consistency of the results obtained with both methods. However, due to higher sensitivity, a larger number of positive samples were observed using the DUS method consequently providing a suitable approach for human biomonitoring of mycotoxin exposure.
Collapse
|
7
|
Lünne F, Niehaus EM, Lipinski S, Kunigkeit J, Kalinina SA, Humpf HU. Identification of the polyketide synthase PKS7 responsible for the production of lecanoric acid and ethyl lecanorate in Claviceps purpurea. Fungal Genet Biol 2020; 145:103481. [DOI: 10.1016/j.fgb.2020.103481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022]
|
8
|
Korff M, Imberg L, Will JM, Bückreiß N, Kalinina SA, Wenzel BM, Kastner GA, Daniliuc CG, Barth M, Ovsepyan RA, Butov KR, Humpf HU, Lehr M, Panteleev MA, Poso A, Karst U, Steinmetzer T, Bendas G, Kalinin DV. Acylated 1H-1,2,4-Triazol-5-amines Targeting Human Coagulation Factor XIIa and Thrombin: Conventional and Microscale Synthesis, Anticoagulant Properties, and Mechanism of Action. J Med Chem 2020; 63:13159-13186. [DOI: 10.1021/acs.jmedchem.0c01635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marvin Korff
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Lukas Imberg
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Jonas M. Will
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149 Münster, Germany
| | - Nico Bückreiß
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Svetlana A. Kalinina
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Benjamin M. Wenzel
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Gregor A. Kastner
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Institute for Organic Chemistry, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Maximilian Barth
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Ruzanna A. Ovsepyan
- Laboratory of Translational Medicine, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Samory Mashela str. 1, GSP-7, 117997 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, 119991 Moscow, Russia
| | - Kirill R. Butov
- Laboratory of Translational Medicine, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Samory Mashela str. 1, GSP-7, 117997 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, 119991 Moscow, Russia
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Mikhail A. Panteleev
- Laboratory of Translational Medicine, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Samory Mashela str. 1, GSP-7, 117997 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie gory, 119991 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, 119991 Moscow, Russia
- Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, 9 Institutskii per., 141700 Dolgoprudnyi, Russia
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Internal Medicine VIII, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149 Münster, Germany
| | - Torsten Steinmetzer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Gerd Bendas
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Dmitrii V. Kalinin
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| |
Collapse
|
9
|
Kasimir M, Behrens M, Schulz M, Kuchenbuch H, Focke C, Humpf HU. Intestinal Metabolism of α- and β-Glucosylated Modified Mycotoxins T-2 and HT-2 Toxin in the Pig Cecum Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5455-5461. [PMID: 32298583 DOI: 10.1021/acs.jafc.0c00576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The type A trichothecene mycotoxins T-2 and HT-2 toxin are fungal secondary metabolites produced by Fusarium fungi, which contaminate food and feed worldwide. Especially as a result of the high toxicity of T-2 toxin and their occurrence together with glucosylated forms in cereal crops, these mycotoxins are of human health concern. Particularly, it is unknown whether and how these modified mycotoxins are metabolized in the gastrointestinal tract and, thus, contribute to the overall toxicity. Therefore, the comparative intestinal metabolism of T-2 and HT-2 toxin glucosides in α and β configuration was investigated using the ex vivo pig cecum model, which mimics the human intestinal metabolism. Regardless of its configuration, the C-3 glycosidic bond was hydrolyzed within 10-20 min, releasing T-2 and HT-2 toxin, which were further metabolized to HT-2 toxin and T-2 triol, respectively. We conclude that T-2 and HT-2 toxin should be evaluated together with their modified forms for risk assessment.
Collapse
Affiliation(s)
- Matthias Kasimir
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Mareike Schulz
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Henning Kuchenbuch
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Christine Focke
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
10
|
Kuchenbuch HS, Schulz M, Becker S, Cramer B, Humpf HU. Thermal Reactions and the Formation of Degradation Products of T-2 and HT-2 Toxin during Processing of Oats. ACTA ACUST UNITED AC 2019. [DOI: 10.1021/bk-2019-1306.ch007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- H. S. Kuchenbuch
- Westfälische Wilhelms-Universität Münster, Institute of Food Chemistry, Corrensstrasse 45, 48149 Münster, Germany
| | - M. Schulz
- Westfälische Wilhelms-Universität Münster, Institute of Food Chemistry, Corrensstrasse 45, 48149 Münster, Germany
| | - S. Becker
- Westfälische Wilhelms-Universität Münster, Institute of Food Chemistry, Corrensstrasse 45, 48149 Münster, Germany
| | - B. Cramer
- Westfälische Wilhelms-Universität Münster, Institute of Food Chemistry, Corrensstrasse 45, 48149 Münster, Germany
| | - H.-U. Humpf
- Westfälische Wilhelms-Universität Münster, Institute of Food Chemistry, Corrensstrasse 45, 48149 Münster, Germany
| |
Collapse
|
11
|
Kuchenbuch HS, Cramer B, Humpf HU. Matrix binding of T-2 toxin: structure elucidation of reaction products and indications on the fate of a relevant food-borne toxin during heating. Mycotoxin Res 2019; 35:261-270. [PMID: 30903560 DOI: 10.1007/s12550-019-00350-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 01/09/2023]
Abstract
This study deals with the influence of food matrix components on the degradation of the mycotoxins T-2 toxin (T-2) and HT-2 toxin (HT-2) and with the binding of T-2 to starch during thermal food processing. Both mycotoxins were heated in a simulated food environment and subsequently analyzed via HPLC-HRMS to generate degradation curves and to draw conclusions regarding the thermal degradation under food processing conditions. Thermal degradation increased generally with increasing time and temperature with a maximum degradation rate of 93% (T-2) and 99% (HT-2). Furthermore, HRMS data were exploited to screen the samples for degradation products. In model heating experiments, T-2 was bound to 1-O-methyl-α-D-glucopyranoside, a model compound that was used to simulate starch. The formed reaction products were isolated and identified by NMR, giving detailed insights into a potential binding of T-2 to starch. In the next step, further model heating experiments were performed, which proved the covalent binding of T-2 to starch. Finally, the amount of matrix-bound T-2 was estimated roughly in a semi-quantitative approach in the model heating experiments as well as during cookie-making via GC-MS analysis of the isovaleric acid ester moiety of T-2, released after alkaline hydrolysis.
Collapse
Affiliation(s)
- Henning S Kuchenbuch
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany.
| |
Collapse
|
12
|
Kuchenbuch HS, Becker S, Schulz M, Cramer B, Humpf HU. Thermal stability of T-2 and HT-2 toxins during biscuit- and crunchy muesli-making and roasting. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2158-2167. [PMID: 30352008 DOI: 10.1080/19440049.2018.1530456] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The mycotoxins T-2 and HT-2 toxin are frequently occurring food contaminants which are produced by Fusarium species. Humans and animals are mainly exposed to these substances by the consumption of contaminated oats, maize and wheat. For the production of crunchy muesli, bread and bakery products, these cereals undergo multiple processing steps, including baking, roasting and extrusion cooking. However, the influence of food processing on T-2 and HT-2 toxin levels is to date poorly understood. Thus, the effects of baking and roasting on both mycotoxins were evaluated during biscuit-, crunchy muesli- and toasted oat flakes-production under precise variation of various parameters: heating time and temperature as well as recipe formulation were varied in the range they are applied in the food processing industry. Therefore, oatmeal or flaked oats were artificially contaminated individually with both toxins and processed at the laboratory scale. T-2 toxin generally showed a higher degradation rate than HT-2 toxin. During biscuit-making up to 45% of T-2 toxin and 20% of HT-2 toxin were thermally degraded, showing a dependency on water content, baking time and temperature. The preparation of crunchy muesli yielded no significant toxin degradation which is probably due to the low temperatures applied. Roasting led to a degradation of 32% of T-2 toxin and 24% of HT-2 toxin. Taken together, both mycotoxins are partially degraded during thermal food processing; the degradation rates are influenced by the food composition and processing parameters.
Collapse
Affiliation(s)
- Henning Sören Kuchenbuch
- a Department of Chemistry and Pharmacy, Institute of Food Chemistry , Westfälische Wilhelms-Universität Münster , Münster , Germany
| | - Stefanie Becker
- a Department of Chemistry and Pharmacy, Institute of Food Chemistry , Westfälische Wilhelms-Universität Münster , Münster , Germany
| | - Mareike Schulz
- a Department of Chemistry and Pharmacy, Institute of Food Chemistry , Westfälische Wilhelms-Universität Münster , Münster , Germany
| | - Benedikt Cramer
- a Department of Chemistry and Pharmacy, Institute of Food Chemistry , Westfälische Wilhelms-Universität Münster , Münster , Germany
| | - Hans-Ulrich Humpf
- a Department of Chemistry and Pharmacy, Institute of Food Chemistry , Westfälische Wilhelms-Universität Münster , Münster , Germany
| |
Collapse
|
13
|
Schmidt HS, Schulz M, Focke C, Becker S, Cramer B, Humpf HU. Glucosylation of T-2 and HT-2 toxins using biotransformation and chemical synthesis: Preparation, stereochemistry, and stability. Mycotoxin Res 2018; 34:159-172. [PMID: 29511991 PMCID: PMC6061246 DOI: 10.1007/s12550-018-0310-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 11/27/2022]
Abstract
Plant-derived phase II metabolites of T-2 toxin (T2) and HT-2 toxin (HT2) were first described in 2011 and further characterized in the following years. Since then, some efforts have been made to understand their biosynthesis, occurrence, toxicity, toxicokinetics, and finally relevance for consumers. Thus, the probably most important question is whether and how these metabolites contribute to toxicity upon hydrolysis either during food processing or the gastrointestinal passage. To answer this question, firstly, knowledge on the correct stereochemistry of T2 and HT2 glucosides is important as this affects hydrolysis and chemical behavior. So far, contradictory results have been published concerning the number and anomericity of occurring glucosides. For this reason, we set up different strategies for the synthesis of mg-amounts of T2, HT2, and T2 triol glucosides in both α and ß configuration. All synthesized glucosides were fully characterized by NMR spectroscopy as well as mass spectrometry and used as references for the analysis of naturally contaminated food samples to validate or invalidate their natural occurrence. Generally, 3-O-glucosylation was observed with two anomers of HT2 glucoside being present in contaminated oats. In contrast, only one anomer of T2 glucoside was found. The second aspect of this study addresses the stability of the glucosides during thermal food processing. Oat flour was artificially contaminated with T2 and HT2 glucosides individually and extruded at varying initial moisture content and temperature. All four glucosides appear to be more stable during food extrusion than the parent compounds with the glucosidic bond not being hydrolyzed.
Collapse
Affiliation(s)
- Henning Sören Schmidt
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149, Münster, Germany
| | - Mareike Schulz
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149, Münster, Germany
| | - Christine Focke
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149, Münster, Germany
| | - Stefanie Becker
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149, Münster, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149, Münster, Germany.
| |
Collapse
|
14
|
Schmidt HS, Becker S, Cramer B, Humpf HU. Impact of Mechanical and Thermal Energies on the Degradation of T-2 and HT-2 Toxins during Extrusion Cooking of Oat Flour. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4177-4183. [PMID: 28457133 DOI: 10.1021/acs.jafc.7b01484] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The type A trichothecenes T-2 toxin (T-2) and HT-2 toxin (HT-2) are naturally occurring toxic food contaminants, with the highest concentrations found in contaminated oats. The influence of thermal food processing on these toxins is poorly understood, and only a few publications address the degradation rates. Therefore, we systematically investigated the degradation of T-2 and HT-2 during both laboratory and industrial-scale extrusion cooking of oats. Extrusion cooking under laboratory conditions was performed with oats fortified with T-2 or HT-2 as well as with naturally contaminated oat flour dust. The experiments were designed according to industrial conditions in terms of temperature, water content, pressure, residence time, and oat content. Flour mixtures containing naturally contaminated oats were used for industrial-scale processing. Degradation rates under laboratory conditions were up to 59.6 ± 1.51 and 47.2 ± 0.53% for T-2 and HT-2, respectively, in fortified extrudates but were decreased to 35.1 ± 1.55 and 22.0 ± 4.68% when naturally contaminated flour samples were used. The results show a higher degradation of T-2 during extrusion cooking than of HT-2. Moisture content, mechanical shear, and temperature showed an impact on the toxin degradation and can be optimized to counteract food contamination.
Collapse
Affiliation(s)
- Henning Sören Schmidt
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstrasse 45, 48149 Münster, Germany
| | - Stefanie Becker
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstrasse 45, 48149 Münster, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstrasse 45, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstrasse 45, 48149 Münster, Germany
| |
Collapse
|
15
|
Multi-mycotoxin analysis using dried blood spots and dried serum spots. Anal Bioanal Chem 2017; 409:3369-3382. [PMID: 28299415 PMCID: PMC5395583 DOI: 10.1007/s00216-017-0279-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/08/2017] [Accepted: 02/24/2017] [Indexed: 11/03/2022]
Abstract
In this study, a rapid multi-mycotoxin approach was developed for biomonitoring and quantification of 27 important mycotoxins and mycotoxin metabolites in human blood samples. HPLC-MS/MS detection was used for the analysis of dried serum spots (DSS) and dried blood spots (DBS). Detection of aflatoxins (AFB1, AFB2, AFG1, AFG2, AFM1), trichothecenes (deoxynivalenol, DON; DON-3-glucoronic acid, DON-3-GlcA; T-2; HT-2; and HT-2-4-GlcA), fumonisin B1 (FB1), ochratoxins (OTA and its thermal degradation product 2'R-OTA; OTα; 10-hydroxychratoxin A, 10-OH-OTA), citrinin (CIT and its urinary metabolite dihydrocitrinone, DH-CIT), zearalenone and zearalanone (ZEN, ZAN), altenuene (ALT), alternariols (AOH; alternariol monomethyl ether, AME), enniatins (EnA, EnA1, EnB, EnB1) and beauvericin (Bea) was validated for two matrices, serum (DSS), and whole blood (DBS). HPLC-MS/MS analysis showed signal suppression as well as signal enhancement due to matrix effects. However, for most analytes LOQs in the lower pg/mL range and excellent recovery rate were achieved using matrix-matched calibration. Besides validation of the method, the analyte stability in DBS and DSS was also investigated. Stability is a main issue for some analytes when the dried samples are stored under common conditions at room temperature. Nevertheless, the developed method was applied to DBS samples of a German cohort (n = 50). Besides positive findings of OTA and 2'R-OTA, all samples were positive for EnB. This methodical study establishes a validated multi-mycotoxin approach for the detection of 27 mycotoxins and metabolites in dried blood/serum spots based on a fast sample preparation followed by sensitive HPLC-MS/MS analysis. Graphical Abstract ᅟ.
Collapse
|
16
|
Wang X, Wang Y, Qiu M, Sun L, Wang X, Li C, Xu D, Gooneratne R. Cytotoxicity of T-2 and modified T-2 toxins: induction of JAK/STAT pathway in RAW264.7 cells by hepatopancreas and muscle extracts of shrimp fed with T-2 toxin. Toxicol Res (Camb) 2017; 6:144-151. [PMID: 30090484 DOI: 10.1039/c6tx00392c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
T-2 can be biotransformed in animal tissues to modified T-2s (mT-2s). Food contaminated with T-2 and/or mT-2s is a hazard to both animals and humans, including the immune system. In this study, Litopenaeus vannamei were fed T-2 orally for 20 d, and hepatopancreas and muscle extracts, T-2, and T-2-glucuronide (T-2-GluA) were added to RAW264.7 in vitro and their effects on the JAK/STAT pathway were examined. STAT2 mRNA gene expression induced by hepatopancreas and muscle extracts was markedly higher compared with that of T-2 or T-2-GluA group. SCOSs, IL-6 and IL-1β mRNA gene expressions induced by hepatopancreas extract were greater than those induced by muscle extract. Muscle extract significantly activated STAT3 phosphorylation but inhibited STAT1 phosphorylation. Activation of the JAK/STAT pathway by hepatopancreas mT-2s was significantly higher than that by muscle extracts. Muscle and hepatopancreas extracts and T-2 also significantly induced IL-6 mRNA gene expression. With reference to phosphorylation levels, significant activation of JAK1 and STAT2 occurred with T-2 and JAK3 by muscle extract, JAK2 by hepatopancreas extract and STAT1 by T-2-GluA. This study showed that both T-2 and mT-2s are cytotoxic but the activation of the JAK/STAT pathway in RAW264.7 cells by T-2 was greater than that by mT-2s in hepatopancreas and muscle extracts from T-2-fed Litopenaeus vannamei.
Collapse
Affiliation(s)
- Xing Wang
- College of Food Science and Technology , Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety , Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China
| | - Yaling Wang
- College of Food Science and Technology , Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety , Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China
| | - Mei Qiu
- College of Food Science and Technology , Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety , Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China.,National Marine Products Quality Supervision & Inspection Center , Zhanjiang 524000 , China
| | - Lijun Sun
- College of Food Science and Technology , Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety , Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China
| | - Xiaobo Wang
- College of Food Science and Technology , Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety , Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China
| | - Caihong Li
- Institute of Biochemistry and Molecular Biology of Guangdong Medical University , Dongguan , 523808 , China
| | - Defeng Xu
- College of Food Science and Technology , Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety , Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China
| | - Ravi Gooneratne
- Centre for Food Research and Innovation Centre for Food Research and Innovations , PO Box 85084 , Lincoln University , Lincoln 7647 , New Zealand
| |
Collapse
|
17
|
Bernhardt K, Valenta H, Kersten S, Humpf HU, Dänicke S. Determination of T-2 toxin, HT-2 toxin, and three other type A trichothecenes in layer feed by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS)—comparison of two sample preparation methods. Mycotoxin Res 2016; 32:89-97. [DOI: 10.1007/s12550-016-0244-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 10/22/2022]
|
18
|
Behrens M, Hüwel S, Galla HJ, Humpf HU. Blood-Brain Barrier Effects of the Fusarium Mycotoxins Deoxynivalenol, 3 Acetyldeoxynivalenol, and Moniliformin and Their Transfer to the Brain. PLoS One 2015; 10:e0143640. [PMID: 26600019 PMCID: PMC4658139 DOI: 10.1371/journal.pone.0143640] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/07/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Secondary metabolites produced by Fusarium fungi frequently contaminate food and feed and have adverse effects on human and animal health. Fusarium mycotoxins exhibit a wide structural and biosynthetic diversity leading to different toxicokinetics and toxicodynamics. Several studies investigated the toxicity of mycotoxins, focusing on very specific targets, like the brain. However, it still remains unclear how fast mycotoxins reach the brain and if they impair the integrity of the blood-brain barrier. This study investigated and compared the effects of the Fusarium mycotoxins deoxynivalenol, 3-acetyldeoxynivalenol and moniliformin on the blood-brain barrier. Furthermore, the transfer properties to the brain were analyzed, which are required for risk assessment, including potential neurotoxic effects. METHODS Primary porcine brain capillary endothelial cells were cultivated to study the effects of the examined mycotoxins on the blood-brain barrier in vitro. The barrier integrity was monitored by cellular impedance spectroscopy and 14C radiolabeled sucrose permeability measurements. The distribution of the applied toxins between blood and brain compartments of the cell monolayer was analyzed by high performance liquid chromatography-mass spectrometry to calculate transfer rates and permeability coefficients. RESULTS Deoxynivalenol reduced the barrier integrity and caused cytotoxic effects at 10 μM concentrations. Slight alterations of the barrier integrity were also detected for 3-acetyldeoxynivalenol. The latter was transferred very quickly across the barrier and additionally cleaved to deoxynivalenol. The transfer of deoxynivalenol and moniliformin was slower, but clearly exceeded the permeability of the negative control. None of the compounds was enriched in one of the compartments, indicating that no efflux transport protein is involved in their transport.
Collapse
Affiliation(s)
- Matthias Behrens
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Sabine Hüwel
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, 48149, Münster, Germany
| | - Hans-Joachim Galla
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
- * E-mail:
| |
Collapse
|
19
|
Friesen JB, McAlpine JB, Chen SN, Pauli GF. Countercurrent Separation of Natural Products: An Update. JOURNAL OF NATURAL PRODUCTS 2015; 78:1765-96. [PMID: 26177360 PMCID: PMC4517501 DOI: 10.1021/np501065h] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Indexed: 05/02/2023]
Abstract
This work assesses the current instrumentation, method development, and applications in countercurrent chromatography (CCC) and centrifugal partition chromatography (CPC), collectively referred to as countercurrent separation (CCS). The article provides a critical review of the CCS literature from 2007 since our last review (J. Nat. Prod. 2008, 71, 1489-1508), with a special emphasis on the applications of CCS in natural products research. The current state of CCS is reviewed in regard to three continuing topics (instrumentation, solvent system development, theory) and three new topics (optimization of parameters, workflow, bioactivity applications). The goals of this review are to deliver the necessary background with references for an up-to-date perspective of CCS, to point out its potential for the natural product scientist, and thereby to induce new applications in natural product chemistry, metabolome, and drug discovery research involving organisms from terrestrial and marine sources.
Collapse
Affiliation(s)
- J. Brent Friesen
- Department
of Medicinal Chemistry and Pharmacognosy and Institute for Tuberculosis Research,
College of Pharmacy, University of Illinois
at Chicago, Chicago, Illinois 60612, United
States
- Physical
Sciences Department, Rosary College of Arts and Sciences, Dominican University, River Forest, Illinois 60305, United States
| | - James B. McAlpine
- Department
of Medicinal Chemistry and Pharmacognosy and Institute for Tuberculosis Research,
College of Pharmacy, University of Illinois
at Chicago, Chicago, Illinois 60612, United
States
| | - Shao-Nong Chen
- Department
of Medicinal Chemistry and Pharmacognosy and Institute for Tuberculosis Research,
College of Pharmacy, University of Illinois
at Chicago, Chicago, Illinois 60612, United
States
| | - Guido F. Pauli
- Department
of Medicinal Chemistry and Pharmacognosy and Institute for Tuberculosis Research,
College of Pharmacy, University of Illinois
at Chicago, Chicago, Illinois 60612, United
States
| |
Collapse
|
20
|
A comparative study of the human urinary mycotoxin excretion patterns in Bangladesh, Germany, and Haiti using a rapid and sensitive LC-MS/MS approach. Mycotoxin Res 2015; 31:127-36. [PMID: 25957672 DOI: 10.1007/s12550-015-0223-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
Abstract
An improved "dilute and shoot" LC-MS/MS multibiomarker approach was used to monitor urinary excretion of 23 mycotoxins and their metabolites in human populations from Asia (Bangladesh), Europe (Germany), and the Caribbean region (Haiti). Deoxynivalenol (DON), deoxynivalenol-3-glucuronide (DON-3-GlcA), T-2-toxin (T-2), HT-2-toxin (HT-2), HT-2-toxin-4-glucuronide (HT-2-4-GlcA), fumonisin B1 (FB1), aflatoxins (AFB1, AFB2, AFG1, AFG2, AFM1), zearalenone (ZEA), zearalanone (ZAN), their urinary metabolites α-zearalanol (α-ZEL) and β-zearalanol (β-ZEL), and corresponding 14-O-glucuronic acid conjugates (ZEA-14-GlcA, ZAN-14-GlcA, β-ZEL, α/β-ZEL-14-GlcA), ochratoxin A (OTA), and ochratoxin alpha (OTα) as well as enniatin B (EnB) and dihydrocitrinone (DH-CIT) were among these compounds. Eight urinary mycotoxin biomarkers were detected (AFM1, DH-CIT, DON, DON-GLcA, EnB, FB1, OTA, and α-ZEL). DON and DON-GlcA were exclusively detected in urines from Germany and Haiti whereas urinary OTA and DH-CIT concentrations were significantly higher in Bangladeshi samples. AFM1 was present in samples from Bangladesh and Haiti only. Exposure was estimated by the calculation of probable daily intakes (PDI), and estimates suggested occasional instances of toxin intakes that exceed established tolerable daily intakes (TDI). The detection of individual mycotoxin exposure by biomarker-based approaches is a meaningful addition to the classical monitoring of the mycotoxin content of the food supply.
Collapse
|
21
|
A new approach using micro HPLC-MS/MS for multi-mycotoxin analysis in maize samples. Mycotoxin Res 2015; 31:109-15. [DOI: 10.1007/s12550-015-0221-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 11/26/2022]
|
22
|
Gerding J, Cramer B, Humpf H. Determination of mycotoxin exposure in Germany using an LC‐MS/MS multibiomarker approach. Mol Nutr Food Res 2014; 58:2358-68. [DOI: 10.1002/mnfr.201400406] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Johannes Gerding
- Institute of Food Chemistry Westfälische Wilhelms‐Universität Münster Münster Germany
- NRW Graduate School of Chemistry Münster Germany
| | - Benedikt Cramer
- Institute of Food Chemistry Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Hans‐Ulrich Humpf
- Institute of Food Chemistry Westfälische Wilhelms‐Universität Münster Münster Germany
- NRW Graduate School of Chemistry Münster Germany
| |
Collapse
|
23
|
Influence of T-2 and HT-2 toxin on the blood-brain barrier in vitro: new experimental hints for neurotoxic effects. PLoS One 2013; 8:e60484. [PMID: 23544145 PMCID: PMC3609806 DOI: 10.1371/journal.pone.0060484] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/27/2013] [Indexed: 12/23/2022] Open
Abstract
The trichothecene mycotoxin T-2 toxin is a common contaminant of food and feed and is also present in processed cereal derived products. Cytotoxic effects of T-2 toxin and its main metabolite HT-2 toxin are already well described with apoptosis being a major mechanism of action. However, effects on the central nervous system were until now only reported rarely. In this study we investigated the effects of T-2 and HT-2 toxin on the blood-brain barrier (BBB) in vitro. Besides strong cytotoxic effects on the BBB as determined by the CCK-8 assay, impairment of the barrier function starting at low nanomolar concentrations were observed for T-2 toxin. HT-2 toxin, however, caused barrier disruption at higher concentrations compared to T-2 toxin. Further, the influence on the tight junction protein occludin was studied and permeability of both toxins across the BBB was detected when applied from the apical (blood) or the basolateral (brain) side respectively. These results clearly indicate the ability of both toxins to enter the brain via the BBB.
Collapse
|
24
|
Weidner M, Lenczyk M, Schwerdt G, Gekle M, Humpf HU. Neurotoxic Potential and Cellular Uptake of T-2 Toxin in Human Astrocytes in Primary Culture. Chem Res Toxicol 2013; 26:347-55. [DOI: 10.1021/tx3004664] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Maria Weidner
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149 Münster, Germany
| | - Marlies Lenczyk
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149 Münster, Germany
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of
Physiology, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Strasse 6, 06097 Halle (Saale), Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of
Physiology, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Strasse 6, 06097 Halle (Saale), Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149 Münster, Germany
| |
Collapse
|
25
|
Mulac D, Lepski S, Ebert F, Schwerdtle T, Humpf HU. Cytotoxicity and fluorescence visualization of ergot alkaloids in human cell lines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:462-471. [PMID: 23256872 DOI: 10.1021/jf304569q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The ergot alkaloids as secondary metabolites from fungi of the genus Claviceps are the focus of many investigations because of their pharmacological and toxicological properties. The main effects of ergot alkaloids are referred to an interaction with several receptor systems in the human body. It is well-known that ergot alkaloids are able to isomerize with one isomer being biologically active and one being only weakly active, whereas the activity is restricted to receptor interactions. Latest investigations have proven that ergot alkaloids also show cytotoxic effects and induce apoptosis in human primary cells. These effects seem to correlate with accumulation properties. It was the aim of our current study to determine such effects in cancer cell lines, because ergot derivatives are also used in tumor therapy. Our results confirm the apoptotic effects in two cancer cell lines (HepG2 and HT-29) in a high range, and accumulation measurements show an interesting correlation between the alkaloid concentration in the cell lysate of the receptor-inactive isomers and cytotoxicity. In addition, the strong accumulative effects were first visualized by fluorescence microscopy by taking advantage of the natural fluorescence properties of ergot alkaloids.
Collapse
Affiliation(s)
- Dennis Mulac
- Northrhine Westphalia (NRW) Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
26
|
Welsch T, Humpf HU. HT-2 toxin 4-glucuronide as new T-2 toxin metabolite: enzymatic synthesis, analysis, and species specific formation of T-2 and HT-2 toxin glucuronides by rat, mouse, pig, and human liver microsomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10170-10178. [PMID: 22967261 DOI: 10.1021/jf302571y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Glucuronides of the mycotoxin T-2 toxin and its phase I metabolite HT-2 toxin are important phase II metabolites under in vivo and in vitro conditions. Since standard substances are essential for the direct quantitation of these glucuronides, a method for the enzymatic synthesis of T-2 and HT-2 toxin glucuronides employing liver microsomes was optimized. Structure elucidation by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry revealed that besides T-2 toxin glucuronide and HT-2 toxin 3-glucuronide also the newly identified isomer HT-2 toxin 4-glucuronide was formed. Glucuronidation of T-2 and HT-2 toxin in liver microsomes of rat, mouse, pig, and human was compared and metabolites were analyzed directly by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). A distinct, species specific pattern of glucuronidation of T-2 and HT-2 toxin was observed with interesting interindividual differences. Until recently, glucuronides have frequently been analyzed indirectly by quantitation of the aglycone after enzymatic cleavage of the glucuronides by β-glucuronidase. Therefore, the hydrolysis efficiencies of T-2 and HT-2 toxin glucuronides using β-glucuronidases from Helix pomatia, bovine liver, and Escherichia coli were compared.
Collapse
Affiliation(s)
- Tanja Welsch
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstraße 45, D-48149 Münster, Germany
| | | |
Collapse
|
27
|
Kleigrewe K, Niehaus EM, Wiemann P, Tudzynski B, Humpf HU. New approach via gene knockout and single-step chemical reaction for the synthesis of isotopically labeled fusarin c as an internal standard for the analysis of this fusarium mycotoxin in food and feed samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8350-8355. [PMID: 22877497 DOI: 10.1021/jf302534x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The gold standard for quantitation of contaminants with high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) is the use of isotopically labeled standards. Herein, we report a new strategy for the synthesis of isotopically labeled 21-d3-fusarin C via a genetically modified Fusarium strain, followed by a one-step derivatization reaction. Fusarin C is a Fusarium mycotoxin, which is mutagenic after metabolic activation. Its occurrence has been demonstrated recently in corn-based samples, but up to now, little is known about the contamination of other grain samples. To collect further data, the quantitation method was enhanced by application of the 21-d3-fusarin C and the use of a QTRAP 5500 mass spectrometer. This new method has a limit of detection (LOD) of 1 μg/kg, a limit of quantitation (LOQ) of 4 μg/kg, and a recovery rate of 99%. A total of 21 corn samples and 13 grain samples were analyzed, with resulting fusarin C levels varying from not detectable to 24.7 μg/kg.
Collapse
Affiliation(s)
- Karin Kleigrewe
- Institute of Food Chemistry, and ‡Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster , 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
28
|
Intestinal metabolism of T-2 toxin in the pig cecum model. Mycotoxin Res 2012; 28:191-8. [DOI: 10.1007/s12550-012-0134-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
|
29
|
Weidner M, Welsch T, Hübner F, Schwerdt G, Gekle M, Humpf HU. Identification and apoptotic potential of T-2 toxin metabolites in human cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5676-5684. [PMID: 22551244 DOI: 10.1021/jf300634k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The mycotoxin T-2 toxin, produced by various Fusarium species, is a widespread contaminant of grain and grain products. Knowledge about its toxicity and metabolism in the human body is crucial for any risk assessment as T-2 toxin can be detected in processed and unprocessed food samples. Cell culture studies using cells of human origin represent a potent model system to study the metabolic fate of T-2 toxin as well as the cytotoxicity in vitro. In this study the metabolism of T-2 toxin was analyzed in a cell line derived from human colon carcinoma cells (HT-29) and primary human renal proximal tubule epithelial cells (RPTEC) using high-performance liquid chromatography coupled with Fourier transformation mass spectrometry (HPLC-FTMS). Both cell types metabolized T-2 toxin to a variety of compounds. Furthermore, cell cycle analysis in RPTEC proved the apoptotic effect of T-2 toxin and its metabolites HT-2 toxin and neosolaniol in micromolar concentrations.
Collapse
Affiliation(s)
- Maria Weidner
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Mulac D, Humpf HU. Cytotoxicity and accumulation of ergot alkaloids in human primary cells. Toxicology 2011; 282:112-21. [PMID: 21295106 DOI: 10.1016/j.tox.2011.01.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/21/2010] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
Abstract
Ergot alkaloids are secondary metabolites produced by fungi of the species Claviceps. Toxic effects after consumption of contaminated grains are described since mediaeval times. Of the more than 40 known ergot alkaloids six are found predominantly. These are ergotamine, ergocornine, ergocryptine, ergocristine, ergosine and ergometrine, along with their corresponding isomeric forms (-inine-forms). Toxic effects are known to be induced by an interaction of the ergot alkaloids as neurotransmitters, like dopamine or serotonin. Nevertheless data concerning cytotoxic effects are missing and therefore a screening of the six main ergot alkaloids was performed in human primary cells in order to evaluate the toxic potential. As it is well known that ergot alkaloids isomerize easily the stability was tested in the cell medium. Based on these results factors were calculated to correct the used concentration values to the biologically active lysergic (-ine) form. These factors range from 1.4 for the most stable compound ergometrine to 5.0 for the most unstable ergot alkaloid ergocristine. With these factors, reflecting the instability, several controverse literature data concerning the toxicity could be explained. To evaluate the cytotoxic effects of ergot alkaloids, human cells in primary culture were used. These cells remain unchanged in contrast to cell lines and the data allow a better comparison to the in vivo situation than using immortalized cell lines. To characterize the effects on primary cells, renal proximal tubule epithelial cells (RPTEC) and normal human astrocytes (NHA) were used. The parameters necrosis (LDH-release) and apoptosis (caspase-3-activation, DNA condensation and fragmentation) were distinguished. The results show that depending on the individual structure of the peptide ergot alkaloids the toxic properties change. While ergometrine as a lysergic acid amide did not show any effect, the peptide ergot alkaloids revealed a different toxic potential. Of all tested ergot alkaloids ergocristine was the most cytotoxic compound inducing apoptosis in human kidney cells starting at a concentration of 1μM in RPTEC. Uptake studies underline the cytotoxic properties, with an accumulation of peptide ergot alkaloids and no uptake of ergometrine. The results represent a new description of effects of ergot alkaloids regarding cytotoxicity and accumulation in human primary cells. For the first time apoptosis has been identified besides well described receptor effects. This gives a hint for a more complex mode of action of ergot alkaloids than described in literature so far.
Collapse
Affiliation(s)
- Dennis Mulac
- NRW Graduate School of Chemistry Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster, Germany
| | | |
Collapse
|
31
|
Analysis of Fusarium toxins via HPLC-MS/MS multimethods: matrix effects and strategies for compensation. Mycotoxin Res 2009; 25:201-13. [DOI: 10.1007/s12550-009-0029-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 10/16/2009] [Indexed: 10/20/2022]
|