1
|
Fakhri Y, Ranaei V, Pilevar Z, Moradi M, Mahmoudizeh A, Hemmati F, Mousavi Khaneghah A. The prevalence and concentration of aflatoxins in beers: a global systematic review and meta-analysis and probabilistic health risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:521-539. [PMID: 38842007 DOI: 10.1080/09603123.2024.2362816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Mycotoxins have been identified as considerable contaminants in beer. The current investigation's concentration and prevalence of aflatoxins (AFs) in beer were meta-analyzed. The health risk of consumers was estimated through MOEs in the Monte Carlo simulation (MCS) model. The rank order of AFs in beer based on pooled prevalence was AFB1 (26.00%) > AFG1 (14.93%) > AFB2 (7.69%) > AFG2 (7.52%), In addition, the rank order of AFs in beer based on their pooled concentration was AFG1 (0.505 µg/l) > AFB1 (0.469 µg/l) > AFB2 (0.134 µg/l) > AFG2 (0.071 µg/l). The prevalence and concentration of AFs in beer in Malawi were higher than in other countries. The health risk assessment shows consumers in all countries, especially Malawi, Brazil, and Cameroon, are exposed to unacceptably health risks (MOEs <10,000). It is recommended to monitor levels of AFs in beer efficiently and implement control plans in order to decrease health risk of exposed population.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vahid Ranaei
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Pilevar
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Mahboobeh Moradi
- Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Hemmati
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University, Saint Petersburg, Russia
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
2
|
Nji QN, Babalola OO, Mwanza M. Climatic effects on aflatoxin contamination of maize. Toxicol Rep 2024; 13:101711. [PMID: 39262848 PMCID: PMC11388663 DOI: 10.1016/j.toxrep.2024.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
Aflatoxins are frequent contaminants of maize especially in the face of climate change with deleterious health and socio-economic impacts. South Africa is ranked 9th maize exporter globally; hence, insights need to be gained in terms of the maize value chain in South Africa with respect to aflatoxin contamination to evaluate consumers' exposure. High-performance liquid chromatography (HPLC) technique was used in this study to quantify aflatoxins in South African commercial maize. One thousand and twenty-eight (1028) maize samples were collected across six distinct agro-climatic regions over five harvest seasons (2017 - 2021). A total of 205 samples (19.94 %) were found to be contaminated with aflatoxins, with mean total aflatoxin concentration of 64.17 ppb amongst the contaminated samples, which is above the SA regulatory limit of 20 ppb for animal consumption. The year 2018 recorded the highest mean total aflatoxin value while North-West agro-climatic region had the highest mean total aflatoxin value. Drastic reduction in average rainfall significantly influence aflatoxin contamination of South African maize.
Collapse
Affiliation(s)
- Queenta Ngum Nji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
3
|
Matusse C, Lucamba Z, Bila J, Macuamule C, Sampaio A, Afonso S, Venâncio A, Rodrigues P. Aflatoxin Contamination of Various Staple Foods from Angola and Mozambique. Toxins (Basel) 2024; 16:516. [PMID: 39728774 PMCID: PMC11728502 DOI: 10.3390/toxins16120516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Aflatoxins constitute a significant risk in staple foods produced in African countries. This research aimed to analyze the total aflatoxin (AFT) contamination of various staple foods in Angola and Mozambique. A total of 233 samples of corn, peanuts, beans, rice, and cassava flour collected from farmers or local markets from the province of Cuanza Sul, Angola, and the provinces of Gaza and Inhambane, South Mozambique, were analyzed for the presence of AFT using the lateral flow strip method via AgraStrip® Pro WATEX® (Romer). The results showed that, from all matrices, the highest incidence and level of AFT were found in corn produced in Mozambique, with medians ranging from 6.5 to 66.5 µg/kg, with the samples showing values as high as 9200 µg/kg. Levels higher than the maximum admissible levels recommended by the Codex Alimentarius Commission for cereals and pulses (15 µg/kg) were observed in up to 90% of the corn samples, depending on the province. Corn produced in Angola showed lower amounts of AFT, with medians ranging from 1.2 to 7.7 µg/kg. Considering the maximum admissible levels for AFT recommended by the European Commission and the Codex Alimentarius Commission for cereals and pulses, the level of AFT contamination in staple food produced and consumed in the studied provinces is high and constitutes a public health risk for the population. Therefore, risk mitigation strategies are urgently needed.
Collapse
Affiliation(s)
- Cláudio Matusse
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Department of Agriculture, College of Business and Entrepreneurship of Chibuto, UEM-Eduardo Mondlane University, Gaza 1200, Mozambique
- University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Zelda Lucamba
- Instituto Superior Politécnico de Cuanza Sul, Rua 12 de Novembro, Sumbe, Cuanza Sul CP 82, Angola; (Z.L.); (S.A.)
| | - João Bila
- Department of Crop Protection, Faculty of Agronomy and Forestry Engineering, UEM-Eduardo Mondlane University, Maputo 1102, Mozambique;
- Centre of Excellence in Agri-Food Systems and Nutrition (CE-AFSN), UEM-Eduardo Mondlane University, Maputo 1102, Mozambique
| | - Custódia Macuamule
- Department of Animal Production and Food Technology, Faculty of Veterinary, UEM-Eduardo Mondlane University, Maputo 1102, Mozambique;
| | - Ana Sampaio
- University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD) Quinta de Prados, 5000-801 Vila Real, Portugal
- Laboratório Associado Instituto Para a Inovação, Capacitação e Sustentabilidade da Produção Agroalimentar (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Sandra Afonso
- Instituto Superior Politécnico de Cuanza Sul, Rua 12 de Novembro, Sumbe, Cuanza Sul CP 82, Angola; (Z.L.); (S.A.)
- Centro Nacional de Investigação Científica, Rua Avenida Ho Chi Minh, 201, Maianga, Luanda CP 34, Angola
| | - Armando Venâncio
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory, 4800-058 Guimarães, Portugal
| | - Paula Rodrigues
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| |
Collapse
|
4
|
Wang P, Wang H, Wang X, Li Y, Sun J, Wang X, Zhang G. Mycotoxins in grains (products), Gansu province, China and risk assessment. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:101-109. [PMID: 38234288 DOI: 10.1080/19393210.2023.2300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
This study aimed to estimate the dietary exposure towards mycotoxins of residents in Gansu province, China, from 2014-2020 through surveillance data on mycotoxins in grains and grain products. Fumonisin B1 (FB1), Deoxynivalenol (DON), 3- and 15-Acetyl-deoxynivalenol (3-ADON and 15-ADON), Tentoxin (TEN), Tenuazonic acid (TeA) and Zearalenone (ZEN) in 863 grains and grain products were detected by HPLC-MS and UPLC-MS. DON was the most detected mycotoxin of all samples. For women, the average dietary exposure to DON was 1.49 μg/kg bw/day, with 55.8% of the individuals eating dried noodles exceeding tolerable daily intake. The hazard quotient values were 1.24-12.60, so greater than 1 for DON at the average, 90th percentile, 95th percentile, and maximum levels: 44.6% of the HQ values for men and 45.7% for women were greater than 1.
Collapse
Affiliation(s)
- Ping Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Haixia Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Xin Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Yongjun Li
- Gansu Provincial Centre for Disease Control and Prevention, Lanzhou, People's Republic of China
| | - Jianyun Sun
- Gansu Provincial Centre for Disease Control and Prevention, Lanzhou, People's Republic of China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Gexiang Zhang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
5
|
Saleh I, Zeidan R, Abu-Dieyeh M. The characteristics, occurrence, and toxicological effects of alternariol: a mycotoxin. Arch Toxicol 2024; 98:1659-1683. [PMID: 38662238 PMCID: PMC11106155 DOI: 10.1007/s00204-024-03743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Alternaria species are mycotoxin-producing fungi known to infect fresh produce and to cause their spoilage. Humans get exposed to fungal secondary metabolites known as mycotoxin via the ingestion of contaminated food. Alternariol (AOH) (C14H10O5) is an isocoumarins produced by different species of Alternaria including Alternaria alternata. AOH is often found in grain, fruits and fruits-based food products with high levels in legumes, nuts, and tomatoes. AOH was first discovered in 1953, and it is nowadays linked to esophagus cancer and endocrine disruption due to its similarity to estrogen. Although considered as an emerging mycotoxin with no regulated levels in food, AOH occurs in highly consumed dietary products and has been detected in various masked forms, which adds to its occurrence. Therefore, this comprehensive review was developed to give an overview on recent literature in the field of AOH. The current study summarizes published data on occurrence levels of AOH in different food products in the last ten years and evaluates those levels in comparison to recommended levels by the regulating entities. Such surveillance facilitates the work of health risk assessors and highlights commodities that are most in need of AOH levels regulation. In addition, the effects of AOH on cells and animal models were summarized in two tables; data include the last two-year literature studies. The review addresses also the main characteristics of AOH and the possible human exposure routes, the populations at risk, and the effect of anthropogenic activities on the widespread of the mycotoxin. The commonly used detection and control methods described in the latest literature are also discussed to guide future researchers to focus on mitigating mycotoxins contamination in the food industry. This review aims mainly to serve as a guideline on AOH for mycotoxin regulation developers and health risk assessors.
Collapse
Affiliation(s)
- Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Randa Zeidan
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
6
|
Chen X, Abdallah MF, Landschoot S, Audenaert K, De Saeger S, Chen X, Rajkovic A. Aspergillus flavus and Fusarium verticillioides and Their Main Mycotoxins: Global Distribution and Scenarios of Interactions in Maize. Toxins (Basel) 2023; 15:577. [PMID: 37756003 PMCID: PMC10534665 DOI: 10.3390/toxins15090577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Maize is frequently contaminated with multiple mycotoxins, especially those produced by Aspergillus flavus and Fusarium verticillioides. As mycotoxin contamination is a critical factor that destabilizes global food safety, the current review provides an updated overview of the (co-)occurrence of A. flavus and F. verticillioides and (co-)contamination of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) in maize. Furthermore, it summarizes their interactions in maize. The gathered data predict the (co-)occurrence and virulence of A. flavus and F. verticillioides would increase worldwide, especially in European cold climate countries. Studies on the interaction of both fungi regarding their growth mainly showed antagonistic interactions in vitro or in planta conditions. However, the (co-)contamination of AFB1 and FB1 has risen worldwide in the last decade. Primarily, this co-contamination increased by 32% in Europe (2010-2020 vs. 1992-2009). This implies that fungi and mycotoxins would severely threaten European-grown maize.
Collapse
Affiliation(s)
- Xiangrong Chen
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Sofie Landschoot
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Kris Audenaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium;
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng 2028, South Africa
| | - Xiangfeng Chen
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, China;
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
| |
Collapse
|
7
|
Bacteriological Quality and Biotoxin Profile of Ready-to-Eat Foods Vended in Lagos, Nigeria. Foods 2023; 12:foods12061224. [PMID: 36981151 PMCID: PMC10048420 DOI: 10.3390/foods12061224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
A comprehensive study of bacterial and biotoxin contaminants of ready-to-eat (RTE) foods in Nigeria is yet to be reported. Hence, this study applied 16S rRNA gene sequencing and a dilute-and-shoot LC-MS/MS method to profile bacteria and biotoxins, respectively, in 199 RTE food samples comprising eko (n = 30), bread (n = 30), shawarma (n = 35), aadun (n = 35), biscuits (n = 34), and kokoro (n = 35). A total of 631 bacterial isolates, clustered into seven operational taxonomic units, namely Acinetobacter, Bacillus, Klebsiella, Proteus and Kosakonia, Kurthia, and Yokenella, that are reported for the first time were recovered from the foods. One hundred and eleven metabolites comprising mycotoxins and other fungal metabolites, phytoestrogenic phenols, phytotoxins, and bacterial metabolites were detected in the foods. Aflatoxins, fumonisins, and ochratoxins contaminated only the artisanal foods (aadun, eko, and kokoro), while deoxynivalenol and zearalenone were found in industrially-processed foods (biscuit, bread, and shawarma), and citrinin was present in all foods except eko. Mean aflatoxin (39.0 µg/kg) in artisanal foods exceeded the 10 µg/kg regulatory limit adopted in Nigeria by threefold. Routine surveillance, especially at the informal markets; food hygiene and safety education to food processors and handlers; and sourcing of high-quality raw materials are proposed to enhance RTE food quality and safeguard consumer health.
Collapse
|
8
|
Aasa A, Fru F, Adelusi O, Oyeyinka S, Njobeh P. A review of toxigenic fungi and mycotoxins in feeds and food commodities in West Africa. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fungal contamination is a threat to food safety in West Africa with implications for food and feed due to their climate, which is characterised by high temperatures and high relative humidity, which are environmental favourable for fast fungal growth and mycotoxin production. This report gives perspective on studies on toxigenic fungi (Aspergillus, Fusarium and Penicillium) and their toxins, mainly aflatoxins, fumonisins and ochratoxins commonly found in some West African countries, including Benin, Burkina Faso, Gambia, Ghana, Ivory Coast, Mali, Nigeria, Senegal, Sierra Leone, and Togo. Only four of these countries have mycotoxins regulations in place for feeds and food products (Ghana, Ivory Coast, Nigeria, and Senegal). Food commodities that are widely consumed and were thoroughly investigated in this region include cereals, peanuts, cassava chips (flakes), cassava flour, chilies, peanuts, locust beans, melon, and yam products. In conclusion, authorities and scientists needed to consider research and approaches to monitor mycotoxins in foods and feeds produced and consumed in West Africa.
Collapse
Affiliation(s)
- A.O. Aasa
- Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - F.F. Fru
- Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - O.A. Adelusi
- Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - S.A. Oyeyinka
- Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - P.B. Njobeh
- Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
9
|
Chilaka CA, Obidiegwu JE, Chilaka AC, Atanda OO, Mally A. Mycotoxin Regulatory Status in Africa: A Decade of Weak Institutional Efforts. Toxins (Basel) 2022; 14:442. [PMID: 35878180 PMCID: PMC9321388 DOI: 10.3390/toxins14070442] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/16/2023] Open
Abstract
Food safety problems are a major hindrance to achieving food security, trade, and healthy living in Africa. Fungi and their secondary metabolites, known as mycotoxins, represent an important concern in this regard. Attempts such as agricultural, storage, and processing practices, and creation of awareness to tackle the menace of fungi and mycotoxins have yielded measurable outcomes especially in developed countries, where there are comprehensive mycotoxin legislations and enforcement schemes. Conversely, most African countries do not have mycotoxin regulatory limits and even when available, are only applied for international trade. Factors such as food insecurity, public ignorance, climate change, poor infrastructure, poor research funding, incorrect prioritization of resources, and nonchalant attitudes that exist among governmental organisations and other stakeholders further complicate the situation. In the present review, we discuss the status of mycotoxin regulation in Africa, with emphasis on the impact of weak mycotoxin legislations and enforcement on African trade, agriculture, and health. Furthermore, we discuss the factors limiting the establishment and control of mycotoxins in the region.
Collapse
Affiliation(s)
- Cynthia Adaku Chilaka
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany;
| | - Jude Ejikeme Obidiegwu
- National Root Crops Research Institute, Umudike, Km 8 Umuahia-Ikot Ekpene Road, Umuahia P.M.B. 7006, Abia State, Nigeria;
| | - Augusta Chinenye Chilaka
- Department of Nutrition and Forage Science, Michael Okpara University of Agriculture, Umuahia P.M.B. 7267, Abia State, Nigeria;
| | | | - Angela Mally
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany;
| |
Collapse
|
10
|
Mollay C, Kimanya M, Kassim N, Stoltzfus R. Main complementary food ingredients contributing to aflatoxin exposure to infants and young children in Kongwa, Tanzania. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Nji QN, Babalola OO, Ekwomadu TI, Nleya N, Mwanza M. Six Main Contributing Factors to High Levels of Mycotoxin Contamination in African Foods. Toxins (Basel) 2022; 14:318. [PMID: 35622564 PMCID: PMC9146326 DOI: 10.3390/toxins14050318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 01/12/2023] Open
Abstract
Africa is one of the regions with high mycotoxin contamination of foods and continues to record high incidences of liver cancers globally. The agricultural sector of most African countries depends largely on climate variables for crop production. Production of mycotoxins is climate-sensitive. Most stakeholders in the food production chain in Africa are not aware of the health and economic effects of consuming contaminated foods. The aim of this review is to evaluate the main factors and their degree of contribution to the high levels of mycotoxins in African foods. Thus, knowledge of the contributions of different factors responsible for high levels of these toxins will be a good starting point for the effective mitigation of mycotoxins in Africa. Google Scholar was used to conduct a systemic search. Six factors were found to be linked to high levels of mycotoxins in African foods, in varying degrees. Climate change remains the main driving factor in the production of mycotoxins. The other factors are partly man-made and can be manipulated to become a more profitable or less climate-sensitive response. Awareness of the existence of these mycotoxins and their economic as well as health consequences remains paramount. The degree of management of these factors regarding mycotoxins varies from one region of the world to another.
Collapse
Affiliation(s)
- Queenta Ngum Nji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (Q.N.N.); (T.I.E.); (N.N.); (M.M.)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (Q.N.N.); (T.I.E.); (N.N.); (M.M.)
| | - Theodora Ijeoma Ekwomadu
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (Q.N.N.); (T.I.E.); (N.N.); (M.M.)
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Nancy Nleya
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (Q.N.N.); (T.I.E.); (N.N.); (M.M.)
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (Q.N.N.); (T.I.E.); (N.N.); (M.M.)
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
12
|
Garcia-Cela E, Sulyok M, Verheecke-Vaessen C, Medina A, Krska R, Magan N. Interacting Environmental Stress Factors Affect Metabolomics Profiles in Stored Naturally Contaminated Maize. Microorganisms 2022; 10:853. [PMID: 35630299 PMCID: PMC9144858 DOI: 10.3390/microorganisms10050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
There is interest in understanding the relationship between naturally contaminated commodities and the potential for the production of different useful and toxic secondary metabolites (SMs). This study examined the impact of interacting abiotic stress parameters of water availability and temperature of stored naturally contaminated maize on the SM production profiles. Thus, the effect of steady-state storage water activity (aw; 0.80−0.95) and temperature (20−35 °C) conditions on SM production patterns in naturally contaminated maize was examined. The samples were analysed using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) to evaluate (a) the total number of known SMs, (b) their concentrations, and (c) changes under two-way interacting environmental stress conditions. A total of 151 metabolites were quantified. These included those produced by species of the Aspergillus, Fusarium and Penicillium genera and other unspecified ones by other fungi or bacteria. There were significant differences in the numbers of SMs produced under different sets of interacting environmental conditions. The highest total number of SMs (80+) were present in maize stored at 20−25 °C and 0.95 aw. In addition, there was a gradation of SM production with the least number of SMs (20−30) produced under the driest conditions of 0.80 aw at 20−30 °C. The only exception was at 35 °C, where different production patterns occurred. There were a total of 38 Aspergillus-related SMs, with most detected at >0.85 aw, regardless of the temperature in the 50−500 ng/g range. For Fusarium-related SMs, the pattern was different, with approx. 10−12 SMs detected under all aw × temperature conditions with >50% produced at 500 ng/g. A total of 40−45 Penicillium-related SMs (50−500 ng/g) were detected in the stored maize but predominantly at 20−25 °C and 0.95 aw. Fewer numbers of SMs were found under marginal interacting abiotic stress storage conditions in naturally contaminated maize. There were approx. eight other known fungal SM present, predominantly in low concentrations (<50 ng/g), regardless of interacting abiotic conditions. Other unspecified SMs present consisted of <20 in low concentrations. The effect of interacting abiotic stress factors for the production of different suites of SMs to take account of the different ecological niches of fungal genera may be beneficial for identifying biotechnologically useful SMs.
Collapse
Affiliation(s)
- Esther Garcia-Cela
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK; (E.G.-C.); (C.V.-V.); (A.M.)
- Clinical, Pharmacology and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Michael Sulyok
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.S.); (R.K.)
| | - Carol Verheecke-Vaessen
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK; (E.G.-C.); (C.V.-V.); (A.M.)
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK; (E.G.-C.); (C.V.-V.); (A.M.)
| | - Rudolf Krska
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, University Road, Belfast BT7 1NN, UK
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK; (E.G.-C.); (C.V.-V.); (A.M.)
| |
Collapse
|
13
|
Naeem I, Ismail A, Rehman AU, Ismail Z, Saima S, Naz A, Faraz A, de Oliveira CAF, Benkerroum N, Aslam MZ, Aslam R. Prevalence of Aflatoxins in Selected Dry Fruits, Impact of Storage Conditions on Contamination Levels and Associated Health Risks on Pakistani Consumers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3404. [PMID: 35329090 PMCID: PMC8954913 DOI: 10.3390/ijerph19063404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022]
Abstract
Dry fruits and nuts are nutritious foods with several health-promoting properties. However, they are prone to contamination with aflatoxins at all stages of production and storage. The present study aimed to determine the natural occurrence of aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), and total aflatoxins (AFT) in dates, pistachios, and walnuts collected from four districts of South Punjab (Pakistan), and to assess the associated health risks as estimated by dietary exposure and the Margin of Exposure (MoE) determinations. The contents of AFB1 and AFT in these food products were monitored during storage under three different conditions (open-air, hermetically closed jars, and refrigeration at 4 °C) to determine the most efficient conditions in preventing aflatoxin accumulation. HPLC-fluorescence analysis of 60 samples of these products for aflatoxin contamination showed that 52 (86.7%) samples were contaminated at different levels, with a maximum of 24.2 ng/g. The overall (all samples) mean concentrations of AFB1, AFB2, AFG1, AFG2, and AFT were 3.39 ± 2.96, 1.39 ± 1.68, 1.63 ± 1.48. 1.12 ± 1.23, and 7.54 ± 6.68, respectively. The Estimated Daily Intake (EDI) and MoE of aflatoxins through the consumption of the products ranged from 0.06 ng/kg bw/day to 2.0 ng/kg bw/day and from 84.84 to 2857.13, respectively, indicating that consumers are at high health risk. Significant differences were recorded between aflatoxin levels in the samples stored under different storage conditions, with storage under refrigeration (4 °C) being the most effective in controlling aflatoxin accumulation, although storage in closed jars was also efficient and offers a more flexible alternative to retailers. The findings of the study urge official authorities of Pakistan to implement appropriate regulatory and control measures and surveillance program to alleviate the potential public health risks associated with the consumption of dry fruits and nuts in the scope of their increased consumption.
Collapse
Affiliation(s)
- Iqra Naeem
- Faculty of Agricultural Sciences and Technology, Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan; (I.N.); (A.U.R.); (Z.I.)
| | - Amir Ismail
- Faculty of Agricultural Sciences and Technology, Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan; (I.N.); (A.U.R.); (Z.I.)
| | - Awais Ur Rehman
- Faculty of Agricultural Sciences and Technology, Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan; (I.N.); (A.U.R.); (Z.I.)
| | - Zubair Ismail
- Faculty of Agricultural Sciences and Technology, Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan; (I.N.); (A.U.R.); (Z.I.)
| | - Shehzadi Saima
- Faculty of Sciences, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60000, Pakistan;
| | - Ambreen Naz
- Department of Food Science and Technology, MNS University of Agriculture, Multan 60000, Pakistan;
| | - Asim Faraz
- Department of Livestock & Poultry Production, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan 60000, Pakistan;
| | | | - Noreddine Benkerroum
- Canadian Food Inspection Agency, 93 Mount Edward Rd Charlottetown, Charlottetown, PE C1A 5T1, Canada
| | | | - Rashida Aslam
- Cytogenetics Section, Central Cotton Research Institute, Multan 60000, Pakistan;
| |
Collapse
|
14
|
Falkauskas R, Bakutis B, Jovaišienė J, Žilaitis V, Pridotkas G, Stankevičius R, Gerulis G, Vaičiulienė G, Baliukonienė V. Mycotoxin risk management for dairy cows by monitoring blood parameters, reproduction status and SCC in milk. ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT The objective of this study was to determine the effectiveness of mycotoxin management with feed additive by monitoring biochemical blood parameters, reproduction status and udder health in cows. During the first 1-12-months, the reproduction performance was assessed. The cows were fed only total mixed ration (TMR) with naturally contaminated mycotoxins (ZEN;DON;AFB1;OTA) and the cows were regarded as a control group (CG). In months 13-15, two groups were created: control (CG)(n=30) and experimental (EG)(n=60). The CG was fed with contaminated TMR and the EG was fed with the same TMR+40g/cow mycotoxins management feed additive (TMXL1000). During this period, blood indicators and udder health were studied. Beginning with months 16-24, all cows were fed with contaminated TMR+40 g/cow (TMXL1000) and regarded as the EG. The IgA concentrations in the CG decreased in the 15th month (p<0.05). The concentrations of cortisol decreased by two times (p<0.05) in the EG. Ovarian cyst treatment was more effective by 14.98% (p<0.05) in the EG than in the CG (p<0.05). The EG performed an effective (18.02%) (p<0.05) response to applied ovsynch protocol compared with the CG. According to the obtained results, it can be concluded that feed additive for mycotoxins management had a positive impact on dairy cow health.
Collapse
Affiliation(s)
- R. Falkauskas
- Lithuanian University of Health Sciences, Lithuanian
| | - B. Bakutis
- Lithuanian University of Health Sciences, Lithuanian
| | - J. Jovaišienė
- Lithuanian University of Health Sciences, Lithuanian
| | - V. Žilaitis
- Lithuanian University of Health Sciences, Lithuanian
| | - G. Pridotkas
- National Food and Veterinary Risk Assessment Institute, Lithuanian
| | | | - G. Gerulis
- Lithuanian University of Health Sciences, Lithuanian
| | | | | |
Collapse
|
15
|
Simultaneous distribution of aflatoxins B1 and B2, and fumonisin B1 in corn fractions during dry and wet-milling. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3192-3200. [PMID: 35872723 PMCID: PMC9304462 DOI: 10.1007/s13197-022-05373-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
One of the limitations of the use of corn in the food chain is its contamination with mycotoxins. Reduction in their levels can be achieved by processing the grain, which in the case of corn can be achieved by wet or dry milling. The aim of this study was to compare the distribution of aflatoxins B1 and B2, and fumonisin B1 in corn fractions obtained by dry and wet milling, aiming to identify conditions to mitigate the risk of exposure to these contaminants. Naturally, contaminated corn kernels were subjected to laboratory milling. The wet-milling conditions containing 1% lactic acid in the steeping solution and 18 h of steeping were the most efficient for mycotoxin reduction in the endosperm fraction, reducing aflatoxins B1 and B2 contamination to levels below the limit of quantification. Dry-milling reduced the concentration of these mycotoxins in the endosperm (98-99%). Fumonisin B1 contamination increased in the germ and pericarp fraction by more than three times in both dry and wet milling. Dry-milling reduced fumonisin B1 contamination in the endosperm to levels below the limit of quantitation. Wet and dry milling processes can be an efficient control method to reduce aflatoxins and fumonisin in the corn endosperm fraction. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05373-9.
Collapse
|
16
|
Ezekiel CN, Abia WA, Braun D, Šarkanj B, Ayeni KI, Oyedele OA, Michael-Chikezie EC, Ezekiel VC, Mark BN, Ahuchaogu CP, Krska R, Sulyok M, Turner PC, Warth B. Mycotoxin exposure biomonitoring in breastfed and non-exclusively breastfed Nigerian children. ENVIRONMENT INTERNATIONAL 2022; 158:106996. [PMID: 34991256 DOI: 10.1016/j.envint.2021.106996] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
A multi-specimen, multi-mycotoxin approach involving ultra-sensitive LC-MS/MS analysis of breast milk, complementary food and urine was applied to examine mycotoxin co-exposure in 65 infants, aged 1-18 months, in Ogun state, Nigeria. Aflatoxin M1 was detected in breast milk (4/22 (18%)), while six other classes of mycotoxins were quantified; including dihydrocitrinone (6/22 (27%); range: 14.0-59.7 ng/L) and sterigmatocystin (1/22 (5%); 1.2 ng/L) detected for the first time. Seven distinct classes of mycotoxins including aflatoxins (9/42 (21%); range: 1.0-16.2 µg/kg) and fumonisins (12/42 (29%); range: 7.9-194 µg/kg) contaminated complementary food. Mycotoxins covering seven distinct classes with diverse structures and modes of action were detected in 64/65 (99%) of the urine samples, demonstrating ubiquitous exposure. Two aflatoxin metabolites (AFM1 and AFQ1) and FB1 were detected in 6/65 (9%), 44/65 (68%) and 17/65 (26%) of urine samples, respectively. Mixtures of mycotoxin classes were common, including 22/22 (100%), 14/42 (33%) and 56/65 (86%) samples having 2-6, 2-4, or 2-6 mycotoxins present, for breast milk, complementary food and urine, respectively. Aflatoxin and/or fumonisin was detected in 4/22 (18%), 12/42 (29%) and 46/65 (71%) for breast milk, complimentary foods and urine, respectively. Furthermore, the detection frequency, median concentrations and occurrence of mixtures were typically greater in urine of non-exclusively breastfed compared to exclusively breastfed infants. The study provides novel insights into mycotoxin co-exposures in early-life. Albeit a small sample set, it highlights transition to higher levels of infant mycotoxin exposure as complementary foods are introduced, providing impetus to mitigate during this critical early-life period and encourage breastfeeding.
Collapse
Affiliation(s)
- Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria; University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria.
| | - Wilfred A Abia
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; Queen's University Belfast, School of Biological Sciences, Institute for Global Food Security, University Road, Belfast BT7 1NN, Northern Ireland, UK; Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Dominik Braun
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, A-1090 Vienna, Austria
| | - Bojan Šarkanj
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; Department of Food Technology, University North, Center Koprivnica, Trg dr. Zarka Dolinara 1, HR, 48000 Koprivnica, Croatia
| | - Kolawole I Ayeni
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | | | - Emmanuel C Michael-Chikezie
- Clifford University, Owerrinta (Ihie Campus), Abia State, Nigeria; Benjamin Carson (Snr.) School of Medicine, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | | | - Beatrice N Mark
- Department of Community Health, Babcock University Teaching Hospital, Ilishan Remo, Ogun State, Nigeria
| | - Chinonso P Ahuchaogu
- Department of Clinical Sciences, Babcock University Teaching Hospital, Ilishan Remo, Ogun State, Nigeria
| | - Rudolf Krska
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; Queen's University Belfast, School of Biological Sciences, Institute for Global Food Security, University Road, Belfast BT7 1NN, Northern Ireland, UK
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Paul C Turner
- MIAEH, School of Public Health, University of Maryland, College Park, MD 20742, USA
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, A-1090 Vienna, Austria.
| |
Collapse
|
17
|
Braun D, Abia WA, Šarkanj B, Sulyok M, Waldhoer T, Erber AC, Krska R, Turner PC, Marko D, Ezekiel CN, Warth B. Mycotoxin-mixture assessment in mother-infant pairs in Nigeria: From mothers' meal to infants' urine. CHEMOSPHERE 2022; 287:132226. [PMID: 34826919 DOI: 10.1016/j.chemosphere.2021.132226] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Exposure to food and environmental contaminants is a global environmental health issue. In this study, innovative LC-MS/MS approaches were applied to investigate mycotoxin co-exposure in mother-infant pairs (n = 23) by analyzing matched plate-ready food, breast milk and urine samples of mothers and their exclusively breastfed infants. The study revealed frequent co-occurrence of two to five mycotoxins. Regulated (e.g. aflatoxins, deoxynivalenol and ochratoxin A) and emerging mycotoxins (e.g. alternariol monomethyl ether and beauvericin) were frequently detected (3 %-89 % and 45 %-100 %), in at least one specimen. In addition, a moderate association of ochratoxin A in milk to urine of mothers (r = 0.47; p = 0.003) and infants (r = 0.52; p = 0.019) but no other significant correlations were found. Average concentration levels in food mostly did not exceed European maximum residue limits, and intake estimates demonstrated exposure below tolerable daily intake values. Infants were exposed to significantly lower toxin levels compared to their mothers, indicating the protective effect of breastfeeding. However, the transfer into milk and urine and the resulting chronic low-dose exposure warrant further monitoring. In the future, occurrence of mycotoxin-mixtures, and their combined toxicological effects need to be comprehensively considered and implemented in risk management strategies. These should aim to minimize early-life exposure in critical developmental stages.
Collapse
Affiliation(s)
- Dominik Braun
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Wilfred A Abia
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria; Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon; Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Bojan Šarkanj
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria; Department of Food Technology, University Centre Koprivnica, University North, Trg dr. Žarka Dolinara 1, HR-48000, Koprivnica, Croatia
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria
| | - Thomas Waldhoer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Austria
| | - Astrid C Erber
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Austria; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, New Richards Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7LG, UK
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria; Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Paul C Turner
- MIAEH, School of Public Health, University of Maryland, College Park, MD, 20742, USA
| | - Doris Marko
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Chibundu N Ezekiel
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria; Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria.
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria.
| |
Collapse
|
18
|
Ezekiel CN, Ayeni KI, Akinyemi MO, Sulyok M, Oyedele OA, Babalola DA, Ogara IM, Krska R. Dietary Risk Assessment and Consumer Awareness of Mycotoxins among Household Consumers of Cereals, Nuts and Legumes in North-Central Nigeria. Toxins (Basel) 2021; 13:635. [PMID: 34564639 PMCID: PMC8472633 DOI: 10.3390/toxins13090635] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
This study characterized the health risks due to the consumption of mycotoxin-contaminated foods and assessed the consumer awareness level of mycotoxins in households in two north-central Nigerian states during the harvest and storage seasons of 2018. Twenty-six mycotoxins and 121 other microbial and plant metabolites were quantified by LC-MS/MS in 250 samples of cereals, nuts and legumes. Aflatoxins were detected in all food types (cowpea, maize, peanut and sorghum) except in millet. Aflatoxin B1 was the most prevalent mycotoxin in peanut (64%) and rice (57%), while fumonisin B1 occurred most in maize (93%) and beauvericin in sorghum (71%). The total aflatoxin concentration was highest in peanut (max: 8422 µg/kg; mean: 1281 µg/kg) and rice (max: 955 µg/kg; mean: 94 µg/kg), whereas the totals of the B-type fumonisins and citrinin were highest in maize (max: 68,204 µg/kg; mean: 2988 µg/kg) and sorghum (max: 1335 µg/kg; mean: 186 µg/kg), respectively. Citrinin levels also reached 51,195 µg/kg (mean: 2343 µg/kg) in maize. Aflatoxin and citrinin concentrations in maize were significantly (p < 0.05) higher during storage than at harvest. The estimated chronic exposures to aflatoxins, citrinin and fumonisins were high, resulting in as much as 247 new liver cancer cases/year/100,000 population and risks of nephrotoxicity and esophageal cancer, respectively. Children who consumed the foods were the most vulnerable. Mycotoxin co-occurrence was evident, which could increase the health risk of the outcomes. Awareness of mycotoxin issues was generally low among the households.
Collapse
Affiliation(s)
- Chibundu N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (K.I.A.); (M.O.A.); (O.A.O.)
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria; (M.S.); (R.K.)
| | - Kolawole I. Ayeni
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (K.I.A.); (M.O.A.); (O.A.O.)
| | - Muiz O. Akinyemi
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (K.I.A.); (M.O.A.); (O.A.O.)
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria; (M.S.); (R.K.)
| | - Oluwawapelumi A. Oyedele
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (K.I.A.); (M.O.A.); (O.A.O.)
| | - Daniel A. Babalola
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria;
| | - Isaac M. Ogara
- Faculty of Agriculture, Lafia Campus, Nasarawa State University, Keffi 950101, Nasarawa State, Nigeria;
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria; (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, University Road, Belfast BT7 1NN, UK
| |
Collapse
|
19
|
Ayeni KI, Atanda OO, Krska R, Ezekiel CN. Present status and future perspectives of grain drying and storage practices as a means to reduce mycotoxin exposure in Nigeria. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Olopade BK, Oranusi SU, Nwinyi OC, Gbashi S, Njobeh PB. Occurrences of Deoxynivalenol, Zearalenone and some of their masked forms in selected cereals from Southwest Nigeria. NFS JOURNAL 2021. [DOI: 10.1016/j.nfs.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Meijer N, Kleter G, de Nijs M, Rau ML, Derkx R, van der Fels-Klerx HJ. The aflatoxin situation in Africa: Systematic literature review. Compr Rev Food Sci Food Saf 2021; 20:2286-2304. [PMID: 33682354 DOI: 10.1111/1541-4337.12731] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/16/2021] [Accepted: 02/01/2021] [Indexed: 11/29/2022]
Abstract
Contamination of African staple foods is a major issue for human and animal health, nutrition, and trade. This review aimed to collect and synthesize the available evidence on geographical spread, scale of contamination, disease burden, economic impact, and mitigation measures for aflatoxins in Africa by way of a systematic literature review. This knowledge can enhance management strategies for the major challenges to combat aflatoxins. The search was conducted by applying a predefined search strategy, using bibliographic databases and websites, covering the period 2010 to 2018. Results showed that maize, peanuts, and animal feeds were the most studied commodities. For maize, all studies indicated mean AFB1 to exceed the European Union legal limit. From studies on contamination levels and biomarkers, it is clear that overall exposure is high, leading to a substantial increase in long-term disease burden. In addition, concentrations in food occasionally can reach very high levels, causing acute aflatoxicoses. The trade-related impact of aflatoxin contamination was mainly evaluated from the standpoint of aflatoxin regulation affecting products imported from Africa. There was a limited number of studies on health-related economic impacts, pointing out a gap in peer-reviewed literature. A number of mitigation measures have been developed, but proof of cost-effectiveness or even costs alone of the practices is often lacking. We recommend more emphasis to be put in peer-reviewed studies on evidence-based cost-effective mitigation strategies for aflatoxins, on the scale and spread of the problem and its impacts on public health and economics for use in evidence-based policies.
Collapse
Affiliation(s)
- Nathan Meijer
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Gijs Kleter
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Monique de Nijs
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Marie-Luise Rau
- Wageningen Economic Research (WECR), Den Haag, The Netherlands
| | - Ria Derkx
- Wageningen University & Research - Library, Wageningen, The Netherlands
| | | |
Collapse
|
22
|
Chibuzor-Onyema IE, Ezeokoli OT, Sulyok M, Notununu I, Petchkongkaew A, Elliott CT, Adeleke RA, Krska R, Ezekiel CN. Metataxonomic analysis of bacterial communities and mycotoxin reduction during processing of three millet varieties into ogi, a fermented cereal beverage. Food Res Int 2021; 143:110241. [PMID: 33992353 DOI: 10.1016/j.foodres.2021.110241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/16/2022]
Abstract
Ogi is a fermented cereal beverage, made primarily from maize (Zea mays) and rarely from millets. Unlike maize-based ogi, little is known about the bacterial community and mycotoxin profile during the production of millet-based ogi. Therefore, the bacterial community dynamics and mycotoxin reduction during ogi processing from three millet varieties were investigated using next-generation sequencing of the 16S rRNA gene and liquid chromatography-tandem mass spectrometry, respectively. A total of 1163 amplicon sequence variants (ASVs) were obtained, with ASV diversity across time intervals influenced by processing stage and millet variety. ASV distribution among samples suggested that the souring stage was more influenced by millet variety than the steeping stage, and that souring may be crucial for the quality attributes of the ogi. Furthermore, bacterial community structure during steeping and souring was significantly differentiated (PERMANOVA, P < 0.05) between varieties, with close associations observed for closely-related millet varieties. Taxonomically, Firmicutes, followed by Actinobacteria, Bacteroidetes, Cyanobacteria and Proteobacteria phyla were relatively abundant (>1%). Lactic acid bacteria, such as Burkholderia-Caballeronia-Paraburkholderia, Lactobacillus, Lactococcus and Pediococcus, dominated most fermentation stages, suggesting their roles as key fermentative and functional bacteria in relation to mycotoxin reduction. About 52-100%, 58-100% and 100% reductions in mycotoxin (aflatoxins, beauvericin, citrinin, moniliformin, sterigmatocystin and zearalenone) concentrations were recorded after processing of white fonio, brown fonio and finger millet, respectively, into ogi. This study provides new knowledge of the dominant bacterial genera vital for the improvement of millet-based ogi through starter culture development and as well, elucidates the role of processing in reducing mycotoxins in millet ogi.
Collapse
Affiliation(s)
| | - Obinna T Ezeokoli
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria
| | - Iviwe Notununu
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Institute for Soil, Climate and Water, Pretoria, South Africa; Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Pathumthani, Thailand; Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5BN, Northern Ireland, United Kingdom
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5BN, Northern Ireland, United Kingdom
| | - Rasheed A Adeleke
- Unit for Environmental Science and Management, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria; Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5BN, Northern Ireland, United Kingdom
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria; Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria.
| |
Collapse
|
23
|
Early Life Exposure to Aflatoxin B1 in Rats: Alterations in Lipids, Hormones, and DNA Methylation among the Offspring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020589. [PMID: 33445757 PMCID: PMC7828191 DOI: 10.3390/ijerph18020589] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/30/2023]
Abstract
Aflatoxins are toxic compounds produced by molds of the Aspergillus species that contaminate food primarily in tropical countries. The most toxic aflatoxin, aflatoxin B1 (AFB1), is a major cause of hepatocellular carcinoma (HCC) in these countries. In sub-Saharan Africa, aflatoxin contamination is common, and perinatal AFB1 exposure has been linked to the early onset of HCC. Epigenetic programming, including changes to DNA methylation, is one mechanism by which early life exposures can lead to adult disease. This study aims to elucidate whether perinatal AFB1 exposure alters markers of offspring health including weight, lipid, and hormone profiles as well as epigenetic regulation that may later influence cancer risk. Pregnant rats were exposed to two doses of AFB1 (low 0.5 and high 5 mg/kg) before conception, throughout pregnancy, and while weaning and compared to an unexposed group. Offspring from each group were followed to 3 weeks or 3 months of age, and their blood and liver samples were collected. Body weights and lipids were assessed at 3 weeks and 3 months while reproductive, gonadotropic, and thyroid hormones were assessed at 3 months. Prenatal AFB1 (high dose) exposure resulted in significant 16.3%, 31.6%, and 7.5% decreases in weight of the offspring at birth, 3 weeks, and 3 months, respectively. Both doses of exposure altered lipid and hormone profiles. Pyrosequencing was used to quantify percent DNA methylation at tumor suppressor gene Tp53 and growth-regulator H19 in DNA from liver and blood. Results were compared between the control and AFB1 exposure groups in 3-week liver samples and 3-week and 3-month blood samples. Relative to controls, Tp53 DNA methylation in both low- and high-dose exposed rats was significantly decreased in liver samples and increased in the blood (p < 0.05 in linear mixed models). H19 methylation was higher in the liver from low- and high-exposed rats and decreased in 3-month blood samples from the high exposure group (p < 0.05). Further research is warranted to determine whether such hormone, lipid, and epigenetic alterations from AFB1 exposure early in life play a role in the development of early-onset HCC.
Collapse
|
24
|
|
25
|
Esan AO, Fapohunda SO, Ezekiel CN, Sulyok M, Krska R. Distribution of fungi and their toxic metabolites in melon and sesame seeds marketed in two major producing states in Nigeria. Mycotoxin Res 2020; 36:361-369. [PMID: 32666399 PMCID: PMC7536151 DOI: 10.1007/s12550-020-00400-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 11/07/2022]
Abstract
In this study, melon (n = 60) and sesame (n = 60) seeds purchased from markets within Benue and Nasarawa states, respectively, in Nigeria, during two seasons (dry and wet), were analysed for fungal and mycotoxin contamination in order to determine the safety of these foods for human consumption. Molecular analysis revealed the following seven fungal taxonomic groups in the foods: Aspergillus section Candidi, Aspergillus section Flavi, Aspergillus section Nigri, Cladosporium, Fusarium fujikuroi species group, Penicillium, and Pleosporales/Didymellaceae. A total of 78 microbial metabolites, including several mycotoxins, occurred in the foods. The most frequent mycotoxins in melon and sesame were aflatoxin B1 (occurrence: 76%) and alternariol monomethyl ether (occurrence: 59%), respectively. However, higher mean total aflatoxin levels occurred in sesame (17 μg kg-1) than in melon (11 μg kg-1). About 28 and 5% of melon and sesame, respectively, exceeded the 4 μg kg-1 total aflatoxin limit for oilseeds intended for direct human consumption in the European Union. Additionally, fumonisin B1 and moniliformin occurred only in sesame, whilst ochratoxins A and B occurred only in melon; ochratoxin B being reported for the first time in this food. Our data indicated seasonal variations in the fungal and mycotoxin contamination levels in both foods.
Collapse
Affiliation(s)
- Adetoun O Esan
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Stephen O Fapohunda
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria.
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria.
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast, Northern Ireland, BT7 1NN, UK
| |
Collapse
|
26
|
Wen YQ, Xu LL, Xue CH, Jiang XM. Effect of Stored Humidity and Initial Moisture Content on the Qualities and Mycotoxin Levels of Maize Germ and Its Processing Products. Toxins (Basel) 2020; 12:E535. [PMID: 32825493 PMCID: PMC7551338 DOI: 10.3390/toxins12090535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
With high fat and protein content, maize germ is easily infected with fungus and mycotoxins during its storage. The qualities and safety of germ and its processing products may be affected by the storage. However, studies on the effect of storage on quality and polluted mycotoxin level of maize germ are limited. In this study, maize germ was stored with different initial moisture contents (5.03, 9.07, 11.82 and 17.97%) or at different relative humidity (75, 85 and 95%) for 30 days. The quality indices of germ (moisture content and crude fat content) and their produced germ oils (color, acid value and peroxide value) as well as the zearalenone (ZEN) and deoxynivalenol (DON) levels of germ, oils and meals were analyzed. Results showed that maize germ with high initial moisture contents (11.82, 17.97%) or kept at high humidity (95%) became badly moldy at the end of storage. Meanwhile, the qualities of these germ and oils showed great changes. However, the ZEN and DON contents of this maize germ, oils and meals stayed at similar levels (p < 0.05). Therefore, the storage could produce influence on the qualities of germ and oils, but showed limited effect on the DON and ZEN levels of germ and their processing products. According to this study, the storage condition of germ with no more than 9% moisture content and no higher than 75% humidity was recommended. This study would be benefit for the control of germ qualities and safety during its storage.
Collapse
Affiliation(s)
| | | | | | - Xiao-ming Jiang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, China; (Y.-q.W.); (L.-l.X.); (C.-h.X.)
| |
Collapse
|
27
|
Gbashi S, Njobeh PB, Madala NE, De Boevre M, Kagot V, De Saeger S. Parallel validation of a green-solvent extraction method and quantitative estimation of multi-mycotoxins in staple cereals using LC-MS/MS. Sci Rep 2020; 10:10334. [PMID: 32587262 PMCID: PMC7316717 DOI: 10.1038/s41598-020-66787-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/13/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, 15 different mycotoxins were estimated in three staple cereals from selected agro-ecological regions in Nigeria using a 'novel' green extraction method, pressurized hot water extraction (PHWE) in comparison to a conventional solvent extraction method. Discrimination of the results of PHWE and solvent extraction using principal component analysis (PCA) and orthogonal projection to latent structures discriminate analysis (OPLS-DA) did not yield any differential clustering patterns. All maize samples (n = 16), 32% (n = 38) of sorghum and 35% (n = 37) of millet samples were positive for at least one of the 15 tested mycotoxins. Contamination levels for the cereals were higher in the warm humid rain forest region and gradually decreased towards the hot and arid region in the north of the country. The results demonstrate the applicability of PHWE as a possible alternative extraction method to conventional methods of extraction, which are solvent based.
Collapse
Affiliation(s)
- Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa.
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa.
| | - Ntakadzeni Edwin Madala
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, 9000, Ghent, Belgium
| | - Victor Kagot
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, 9000, Ghent, Belgium
| | - Sarah De Saeger
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
28
|
Ezekiel CN, Kraak B, Sandoval-Denis M, Sulyok M, Oyedele OA, Ayeni KI, Makinde OM, Akinyemi OM, Krska R, Crous PW, Houbraken J. Diversity and toxigenicity of fungi and description of Fusarium madaense sp. nov. from cereals, legumes and soils in north-central Nigeria. MycoKeys 2020; 67:95-124. [PMID: 32565683 PMCID: PMC7295817 DOI: 10.3897/mycokeys.67.52716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
Mycological investigation of various foods (mainly cowpea, groundnut, maize, rice, sorghum) and agricultural soils from two states in north-central Nigeria (Nasarawa and Niger), was conducted in order to understand the role of filamentous fungi in food contamination and public health. A total of 839 fungal isolates were recovered from 84% of the 250 food and all 30 soil samples. Preliminary identifications were made, based on macro- and micromorphological characters. Representative strains (n = 121) were studied in detail using morphology and DNA sequencing, involving genera/species-specific markers, while extrolite profiles using LC-MS/MS were obtained for a selection of strains. The representative strains grouped in seven genera (Aspergillus, Fusarium, Macrophomina, Meyerozyma, Neocosmospora, Neotestudina and Phoma). Amongst the 21 species that were isolated during this study was one novel species belonging to the Fusariumfujikuroi species complex, F.madaensesp. nov., obtained from groundnut and sorghum in Nasarawa state. The examined strains produced diverse extrolites, including several uncommon compounds: averantinmethylether in A.aflatoxiformans; aspergillimide in A.flavus; heptelidic acid in A.austwickii; desoxypaxillin, kotanin A and paspalitrems (A and B) in A.aflatoxiformans, A.austwickii and A.cerealis; aurasperon C, dimethylsulochrin, fellutanine A, methylorsellinic acid, nigragillin and pyrophen in A.brunneoviolaceus; cyclosporins (A, B, C and H) in A.niger; methylorsellinic acid, pyrophen and secalonic acid in A.piperis; aspulvinone E, fonsecin, kojic acid, kotanin A, malformin C, pyranonigrin and pyrophen in A.vadensis; and all compounds in F.madaense sp. nov., Meyerozyma, Neocosmospora and Neotestudina. This study provides snapshot data for prediction of food contamination and fungal biodiversity exploitation.
Collapse
Affiliation(s)
- Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria Babcock University Ilishan Remo Nigeria.,Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria University of Natural Resources and Life Sciences Vienna Tulln Austria
| | - Bart Kraak
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands Westerdijk Fungal Biodiversity Institute Utrecht Netherlands
| | - Marcelo Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands Westerdijk Fungal Biodiversity Institute Utrecht Netherlands
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria University of Natural Resources and Life Sciences Vienna Tulln Austria
| | - Oluwawapelumi A Oyedele
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria Babcock University Ilishan Remo Nigeria
| | - Kolawole I Ayeni
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria Babcock University Ilishan Remo Nigeria
| | - Oluwadamilola M Makinde
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria Babcock University Ilishan Remo Nigeria
| | - Oluwatosin M Akinyemi
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria Babcock University Ilishan Remo Nigeria
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria University of Natural Resources and Life Sciences Vienna Tulln Austria.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, UK Queen's University Belfast Belfast United Kingdom
| | - Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands Westerdijk Fungal Biodiversity Institute Utrecht Netherlands
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands Westerdijk Fungal Biodiversity Institute Utrecht Netherlands
| |
Collapse
|
29
|
Ezekiel CN, Oyedele OA, Kraak B, Ayeni KI, Sulyok M, Houbraken J, Krska R. Fungal Diversity and Mycotoxins in Low Moisture Content Ready-To-Eat Foods in Nigeria. Front Microbiol 2020; 11:615. [PMID: 32328050 PMCID: PMC7161469 DOI: 10.3389/fmicb.2020.00615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Low moisture content ready-to-eat foods vended in Nigerian markets could be pre-packaged or packaged at point of sale. These foods are widely and frequently consumed across Nigeria as quick foods. Despite their importance in the daily diets of Nigerians, a comprehensive study on the diversity of fungi, fungal metabolite production potential, and mycotoxin contamination in the foods has not yet been reported. Therefore, this study assessed the diversity of fungi in 70 samples of low moisture content ready-to-eat foods [cheese balls, garri (cassava-based), granola (a mix of cereals and nuts) and popcorn] in Nigeria by applying a polyphasic approach including morphological examination, genera/species-specific gene marker sequencing and secondary metabolite profiling of fungal cultures. Additionally, mycotoxin levels in the foods were determined by LC-MS/MS. Fungal strains (n = 148) were recovered only from garri. Molecular analysis of 107 representative isolates revealed 27 species belonging to 12 genera: Acremonium, Allophoma, Aspergillus, Cladosporium, Fusarium, Microdochium, Penicillium, Sarocladium, Talaromyces, and Tolypocladium in the Ascomycota, and Fomitopsis and Trametes in the Basidiomycota. To the best of our knowledge Allophoma, Fomitopsis, Microdochium, Tolypocladium, and Trametes are reported in African food for the first time. A total of 21 uncommon metabolites were found in cultures of the following species: andrastin A and sporogen AO1 in Aspergillus flavus; paspalin in A. brunneoviolaceus; lecanoic acid and rugulusovin in A. sydowii; sclerotin A in P. citrinum and Talaromyces siamensis; barceloneic acid, festuclavine, fumigaclavine, isochromophilons (IV, VI, and IX), ochrephilone, sclerotioramin, and sclerotiorin in P. sclerotium; epoxyagroclavine, infectopyron, methylorsellinic acid and trichodermamide C in P. steckii; moniliformin and sporogen AO1 in P. copticola; and aminodimethyloctadecanol in Tolypocladium. Twenty-four mycotoxins in addition to other 73 fungal and plant toxins were quantified in the foods. In garri, cheeseballs, popcorn and granola were 1, 6, 12, and 23 mycotoxins detected, respectively. Deoxynivalenol, fumonisins, moniliformin, aflatoxins and citrinin contaminated 37, 31, 31, 20, and 14% of all food samples, respectively. Overall, citrinin had the highest mean concentration of 1481 μg/kg in the foods, suggesting high citrinin exposures in the Nigerian populace. Fungal and mycotoxin contamination of the foods depend on pre-food and post-food processing practices.
Collapse
Affiliation(s)
- Chibundu N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Nigeria
- Department of Agrobiotechnology (IFA–Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | | | - Bart Kraak
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan, Netherlands
| | - Kolawole I. Ayeni
- Department of Microbiology, Babcock University, Ilishan Remo, Nigeria
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA–Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan, Netherlands
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA–Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
30
|
Occurrence of major mycotoxins and their dietary exposure in North-Central Nigeria staples. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2019.e00188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Ekwomadu TI, Dada TA, Nleya N, Gopane R, Sulyok M, Mwanza M. Variation of Fusarium Free, Masked, and Emerging Mycotoxin Metabolites in Maize from Agriculture Regions of South Africa. Toxins (Basel) 2020; 12:E149. [PMID: 32121210 PMCID: PMC7150761 DOI: 10.3390/toxins12030149] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 02/05/2023] Open
Abstract
The presence of mycotoxins in cereal grain is a very important food safety issue with the occurrence of masked mycotoxins extensively investigated in recent years. This study investigated the variation of different Fusarium metabolites (including the related regulated, masked, and emerging mycotoxin) in maize from various agriculture regions of South Africa. The relationship between the maize producing regions, the maize type, as well as the mycotoxins was established. A total of 123 maize samples was analyzed by a LC-MS/MS multi-mycotoxin method. The results revealed that all maize types exhibited a mixture of free, masked, and emerging mycotoxins contamination across the regions with an average of 5 and up to 24 out of 42 investigated Fusarium mycotoxins, including 1 to 3 masked forms at the same time. Data obtained show that fumonisin B1, B2, B3, B4, and A1 were the most prevalent mycotoxins and had maximum contamination levels of 8908, 3383, 990, 1014, and 51.5 µg/kg, respectively. Deoxynivalenol occurred in 50% of the samples with a mean concentration of 152 µg/kg (max 1380 µg/kg). Thirty-three percent of the samples were contaminated with zearalenone at a mean concentration of 13.6 µg/kg (max 146 µg/kg). Of the masked mycotoxins, DON-3-glucoside occurred at a high incidence level of 53%. Among emerging toxins, moniliformin, fusarinolic acid, and beauvericin showed high occurrences at 98%, 98%, and 83%, and had maximum contamination levels of 1130, 3422, and 142 µg/kg, respectively. Significant differences in the contamination pattern were observed between the agricultural regions and maize types.
Collapse
Affiliation(s)
- Theodora Ijeoma Ekwomadu
- Department of Biological Sciences, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa;
| | - Toluwase Adeseye Dada
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa; (T.A.D.); (N.N.); (M.M.)
| | - Nancy Nleya
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa; (T.A.D.); (N.N.); (M.M.)
| | - Ramokone Gopane
- Department of Biological Sciences, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa;
| | - Michael Sulyok
- Department of Agro Biotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), A-3430 Tulln, Austria;
| | - Mulunda Mwanza
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa; (T.A.D.); (N.N.); (M.M.)
| |
Collapse
|
32
|
Makinde OM, Ayeni KI, Sulyok M, Krska R, Adeleke RA, Ezekiel CN. Microbiological safety of ready‐to‐eat foods in low‐ and middle‐income countries: A comprehensive 10‐year (2009 to 2018) review. Compr Rev Food Sci Food Saf 2020; 19:703-732. [DOI: 10.1111/1541-4337.12533] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/01/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Michael Sulyok
- Department of Agrobiotechnology (IFA–Tulln)Institute of Bioanalytics and Agro‐Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU) Tulln Austria
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA–Tulln)Institute of Bioanalytics and Agro‐Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU) Tulln Austria
- Institute for Global Food Security, School of Biological SciencesQueen's University Belfast Belfast United Kingdom
| | - Rasheed A. Adeleke
- Department of MicrobiologyNorth‐West University Potchefstroom South Africa
| | - Chibundu N. Ezekiel
- Department of MicrobiologyBabcock University Ilishan Remo Nigeria
- Department of Agrobiotechnology (IFA–Tulln)Institute of Bioanalytics and Agro‐Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU) Tulln Austria
| |
Collapse
|
33
|
Afolabi CG, Ezekiel CN, Ogunbiyi AE, Oluwadairo OJ, Sulyok M, Krska R. Fungi and mycotoxins in cowpea ( Vigna unguiculata L) on Nigerian markets. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2019; 13:52-58. [PMID: 31739763 DOI: 10.1080/19393210.2019.1690590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, 81 samples of two cowpea varieties (brown: 54; white: 27) collected from various markets in southwestern Nigeria were examined for fungal and mycotoxin contamination. Moulds belonging to Aspergillus, Fusarium, and Penicillium were recovered from 99% of the samples. In both cowpea varieties, Aspergillus (52-53%) dominated Fusarium (29-30%) and Penicillium (17-20%). The interactive effect of cowpea variety and sampled location was significant (p = .013) on the occurrence of Fusarium species. Aflatoxins were detected in one brown and two white cowpea samples at concentrations reaching 209 and 84 µg/kg, respectively. Additionally, beauvericin was found in two samples of each cowpea variety, albeit at low concentrations. Cowpea presents as an alternative vegetable protein source to groundnuts in household nutrition with respect to mycotoxin contamination. Simple techniques to prevent mycotoxins in dry cowpeas are discussed.
Collapse
Affiliation(s)
- Clement G Afolabi
- Department of Crop Protection, Federal University of Agriculture, Abeokuta, Nigeria
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Nigeria.,Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Abimbola E Ogunbiyi
- Department of Crop Protection, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olufemi J Oluwadairo
- Department of Crop Protection, Federal University of Agriculture, Abeokuta, Nigeria
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
34
|
Oyeka C, Amasiani R, Ekwealor C. Mycotoxins contamination of maize in Anambra State, Nigeria. FOOD ADDITIVES & CONTAMINANTS: PART B 2019. [DOI: 10.1080/19393210.2019.1661528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- C.A Oyeka
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - R.N. Amasiani
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - C.C. Ekwealor
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
35
|
Ezekiel CN, Sulyok M, Ogara IM, Abia WA, Warth B, Šarkanj B, Turner PC, Krska R. Mycotoxins in uncooked and plate-ready household food from rural northern Nigeria. Food Chem Toxicol 2019; 128:171-179. [PMID: 30965105 DOI: 10.1016/j.fct.2019.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022]
Abstract
In order to understand the changes in toxic metabolite profiles in uncooked and cooked foods, samples of flour/grain (n = 40) and their corresponding plate-ready food (n = 39) were collected from 40 households in two states of northern Nigeria. The food samples were analyzed for multiple fungal metabolites by LC-MS/MS and daily intakes of mycotoxins in the diets were estimated and compared to established margin of exposure (MOE) and tolerable daily intake (TDI) values. Both food groups contained 65 fungal and plant metabolites, inclusive of 23 mycotoxins. The mean concentrations of aflatoxin B1, beauvericin, fumonisin B1 (FB1), FB2, FB3, hydrolysed FB1, moniliformin and nivalenol were significantly (p < 0.05) higher in flour than in the plate-ready food samples. The levels of several mycotoxins were higher in the flour samples than in plate-ready meals by 129-383%. The dilution effect from proportionate mixing of flour samples with water led to 48-100% reduction in detectable mycotoxins in flour to plate-ready meals. Aflatoxins and fumonisins co-occurred in 36% of the plate-ready foods. Exposures of households to aflatoxins and fumonisins based on 95% CI concentration of mycotoxins in the meals were high, suggesting potential health risks based on calculated low MOE and exceedence of stipulated TDI value, respectively.
Collapse
Affiliation(s)
- Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria; Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria.
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria
| | - Isaac M Ogara
- Faculty of Agriculture, Nasarawa State University Keffi, Lafia Campus, Nasarawa State, Nigeria
| | - Wilfred A Abia
- Laboratory of Pharmacology and Toxicology, University of Yaounde I, Yaounde, Cameroon
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstr. 38, A-1090, Vienna, Austria
| | - Bojan Šarkanj
- Department of Food Technology, University North, Center Koprivnica, Trg dr. Zarka Dolinara 1, HR, 48000, Koprivnica, Croatia
| | - Paul C Turner
- MIAEH, School of Public Health, University of Maryland, College Park, MD, 20742, USA
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria; Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, United Kingdom
| |
Collapse
|
36
|
Mycotoxin co-exposures in infants and young children consuming household- and industrially-processed complementary foods in Nigeria and risk management advice. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Wielogorska E, Mooney M, Eskola M, Ezekiel CN, Stranska M, Krska R, Elliott C. Occurrence and Human-Health Impacts of Mycotoxins in Somalia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2052-2060. [PMID: 30694057 DOI: 10.1021/acs.jafc.8b05141] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mycotoxins are secondary metabolites produced by various molds that contaminate many staple foods and cause a broad range of detrimental health effects in animals and humans through chronic exposure or acute toxicity. As such, the worldwide contamination of food and feed with mycotoxins is a significant problem, especially in sub-Saharan Africa. In this study, mycotoxin occurrence in staple foods consumed in Somalia was determined. A total of 140 samples (42 maize, 40 sorghum, and 58 wheat) were collected from a number of markets in Mogadishu, Somalia, and analyzed by a UPLC-MS/MS multimycotoxin method that could detect 77 toxins. All of the maize samples tested contained eight or more mycotoxins, with aflatoxin B1 (AFB1) and fumonisin B1 (FB1) levels reaching up to 908 and 17 322 μg/kg, respectively, greatly exceeding the European Union limits and guidance values. The average probable daily intake of fumonisins (FB1 and FB2) was 16.70 μg per kilogram of body weight (kg bw) per day, representing 835% of the recommended provisional maximum tolerable daily intake value of 2 μg/(kg bw)/day. A risk characterization revealed a mean national margin of exposure of 0.62 for AFB1 with an associated risk of developing primary liver cancer estimated at 75 cancers per year per 100 000 people for white-maize consumption alone. The results clearly indicate that aflatoxin and fumonisin exposure is a major public-health concern and that risk-management actions require prioritization in Somalia.
Collapse
Affiliation(s)
- Ewa Wielogorska
- School of Pharmacy , Queen's University Belfast , Belfast , Northern Ireland BT9 7BL , United Kingdom
- Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences , Queen's University Belfast , Belfast , Northern Ireland BT9 5BN , United Kingdom
| | - Mark Mooney
- Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences , Queen's University Belfast , Belfast , Northern Ireland BT9 5BN , United Kingdom
| | - Mari Eskola
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln) , University of Natural Resources and Life Sciences, Vienna (BOKU) , Konrad Lorenz Straße 20 , 3430 Tulln , Austria
| | - Chibundu N Ezekiel
- Department of Microbiology , Babcock University , Ilishan Remo , Ogun State Nigeria
| | - Milena Stranska
- Department of Food Analysis and Nutrition , University of Chemistry and Technology , 166 28 Prague , Czech Republic
| | - Rudolf Krska
- Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences , Queen's University Belfast , Belfast , Northern Ireland BT9 5BN , United Kingdom
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln) , University of Natural Resources and Life Sciences, Vienna (BOKU) , Konrad Lorenz Straße 20 , 3430 Tulln , Austria
| | - Chris Elliott
- Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences , Queen's University Belfast , Belfast , Northern Ireland BT9 5BN , United Kingdom
| |
Collapse
|
38
|
Mishra S, Srivastava S, Dewangan J, Divakar A, Kumar Rath S. Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: a survey. Crit Rev Food Sci Nutr 2019; 60:1346-1374. [DOI: 10.1080/10408398.2019.1571479] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sakshi Mishra
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Sonal Srivastava
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Jayant Dewangan
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Aman Divakar
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| |
Collapse
|
39
|
Ezekiel CN, Ayeni KI, Ezeokoli OT, Sulyok M, van Wyk DAB, Oyedele OA, Akinyemi OM, Chibuzor-Onyema IE, Adeleke RA, Nwangburuka CC, Hajšlová J, Elliott CT, Krska R. High-Throughput Sequence Analyses of Bacterial Communities and Multi-Mycotoxin Profiling During Processing of Different Formulations of Kunu, a Traditional Fermented Beverage. Front Microbiol 2019; 9:3282. [PMID: 30687270 PMCID: PMC6333642 DOI: 10.3389/fmicb.2018.03282] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/17/2018] [Indexed: 02/05/2023] Open
Abstract
Kunu is a traditional fermented single or mixed cereals-based beverage popularly consumed in many parts of West Africa. Presently, the bacterial community and mycotoxin contamination profiles during processing of various kunu formulations have never been comprehensively studied. This study, therefore, investigated the bacterial community and multi-mycotoxin dynamics during the processing of three kunu formulations using high-throughput sequence analysis of partial 16S rRNA gene (hypervariable V3-V4 region) and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. A total of 2,303 operational taxonomic units (OTUs) were obtained across six processing stages in all three kunu formulations. Principal coordinate analysis biplots of the Bray-Curtis dissimilarity between bacterial communities revealed the combined influences of formulations and processing steps. Taxonomically, OTUs spanned 13 phyla and 486 genera. Firmicutes (phylum) dominated (relative abundance) most of the processing stages, while Proteobacteria dominated the rest of the stages. Lactobacillus (genus taxa level) dominated most processing stages and the final product (kunu) of two formulations, whereas Clostridium sensu stricto (cluster 1) dominated kunu of one formulation, constituting a novel observation. We further identified Acetobacter, Propionibacterium, Gluconacetobacter, and Gluconobacter previously not associated with kunu processing. Shared phylotypes between all communities were dominated by lactic acid bacteria including species of Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and Weissella. Other shared phylotypes included notable acetic acid bacteria and potential human enteric pathogens. Ten mycotoxins [3-Nitropropionic acid, aflatoxicol, aflatoxin B1 (AFB1), AFB2, AFM1, alternariol (AOH), alternariolmethylether (AME), beauvericin (BEAU), citrinin, and moniliformin] were quantified at varying concentrations in ingredients for kunu processing. Except for AOH, AME, and BEAU that were retained at minimal levels of < 2 μg/kg in the final product, most mycotoxins in the ingredients were not detectable after processing. In particular, mycotoxin levels were substantially reduced by fermentation, although simple dilution and sieving also contributed to mycotoxin reduction. This study reinforces the perception of kunu as a rich source of bacteria with beneficial attributes to consumer health, and provides in-depth understanding of the microbiology of kunu processing, as well as information on mycotoxin contamination and reduction during this process. These findings may aid the development of starter culture technology for safe and quality kunu production.
Collapse
Affiliation(s)
- Chibundu N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Nigeria
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Kolawole I. Ayeni
- Department of Microbiology, Babcock University, Ilishan Remo, Nigeria
| | - Obinna T. Ezeokoli
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Institute for Soil, Climate and Water, Pretoria, South Africa
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Deidre A. B. van Wyk
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Institute for Soil, Climate and Water, Pretoria, South Africa
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | | | | | | | - Rasheed A. Adeleke
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Institute for Soil, Climate and Water, Pretoria, South Africa
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Cyril C. Nwangburuka
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan Remo, Nigeria
| | - Jana Hajšlová
- University of Chemistry and Technology, Prague, Czechia
| | - Christopher T. Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
40
|
Akinmusire OO, El-Yuguda AD, Musa JA, Oyedele OA, Sulyok M, Somorin YM, Ezekiel CN, Krska R. Mycotoxins in poultry feed and feed ingredients in Nigeria. Mycotoxin Res 2018; 35:149-155. [PMID: 30484071 PMCID: PMC6478637 DOI: 10.1007/s12550-018-0337-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 11/30/2022]
Abstract
Mycotoxins are toxic secondary fungal metabolites that can negatively affect animal productivity when ingested through feed. In order to assess mycotoxin contamination of poultry feed and feed ingredients vis-a-vis source tracking of feed contamination in Nigeria, 102 samples of feed (n = 30) and feed ingredients (n = 72) were collected from in-house mills of poultry farms across 12 states of Nigeria and analyzed for multiple mycotoxins using LC/MS-MS. One hundred and forty microbial metabolites were detected in the feed and feed ingredients. The most frequent mycotoxin in the feed was fumonisin B1, occurring in 97% of the samples at mean concentration of 1014 μg kg−1. AFB1 occurred in 83% of the feed samples at mean concentration of 74 μg kg−1 and in all feed ingredients except fish meal and other cereals (millet and rice). Feed samples analyzed in this study were contaminated with at least four mycotoxins: aflatoxins and fumonisin co-occurring in 80% of the samples. Peanut cake and maize contributed the most to the levels of aflatoxin and fumonisin, respectively, in the feed. Consequently, there is a need to explore other cereal- and protein-based ingredients for compounding feeds in order to reduce the risk associated with high mycotoxin (e.g. aflatoxin) intake in poultry.
Collapse
Affiliation(s)
| | - Abdul-Dahiru El-Yuguda
- Department of Veterinary Microbiology, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Jasini A Musa
- Department of Veterinary Microbiology, University of Maiduguri, Maiduguri, Borno, Nigeria
| | | | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| | - Yinka M Somorin
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun, Nigeria. .,Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria.
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| |
Collapse
|
41
|
Ojuri OT, Ezekiel CN, Sulyok M, Ezeokoli OT, Oyedele OA, Ayeni KI, Eskola MK, Šarkanj B, Hajšlová J, Adeleke RA, Nwangburuka CC, Elliott CT, Krska R. Assessing the mycotoxicological risk from consumption of complementary foods by infants and young children in Nigeria. Food Chem Toxicol 2018; 121:37-50. [DOI: 10.1016/j.fct.2018.08.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022]
|
42
|
Garcia-Cela E, Verheecke-Vaessen C, Magan N, Medina A. The ``-omics’’ contributions to the understanding of mycotoxin production under diverse environmental conditions. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Gruber-Dorninger C, Jenkins T, Schatzmayr G. Multi-mycotoxin screening of feed and feed raw materials from Africa. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2292] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As animal feed is prone to infestation with mycotoxin-producing fungi, mycotoxin contamination of feed should be monitored. Here, we report a multi-mycotoxin survey of feed samples from Africa. We determined the concentrations of aflatoxins, fumonisins, deoxynivalenol, T-2 toxin, zearalenone and ochratoxin A in 1,045 samples of finished feed and feed raw materials (maize, maize silage, other cereals, etc.) from South Africa and 318 samples from Algeria, Tunisia, Morocco, Senegal, Côte d’Ivoire, Nigeria, Ghana, Namibia, Uganda, Kenya, Tanzania, Zambia and Madagascar. We compared the measured mycotoxin concentrations to regulatory limits or guidance values that are in effect in the European Union and analysed the co-occurrence of these mycotoxins. To determine the occurrence of other fungal secondary metabolites, a subset of the samples was analysed using a multi-analyte liquid chromatography tandem mass spectrometry-based method for the simultaneous detection of over 700 fungal metabolites. We found that 33.3% of maize samples and 54.4% of finished feed samples from Senegal, Côte d’Ivoire, Nigeria, Ghana, Namibia, Uganda, Kenya and Tanzania exceeded the European regulatory limit of 20 ng/g aflatoxins. The Fusarium mycotoxins zearalenone, fumonisins and deoxynivalenol were prevalent in all commodities from all countries, but concentrations were in most cases below European guidance values. Concentrations of deoxynivalenol and zearalenone were correlated. Several other Fusarium metabolites occurred frequently (e.g. moniliformin, beauvericin, aurofusarin) or in high concentrations (e.g. aurofusarin, fusaproliferin). Furthermore, high levels of diplodiatoxin were occasionally detected in samples from South Africa and the Alternaria metabolite tenuazonic acid was prevalent and reached high concentrations. In conclusion, aflatoxins frequently occurred in African feed samples in potentially unsafe concentrations. While Fusarium mycotoxins mostly occurred in concentrations below European guidance values, a correlation between deoxynivalenol and zearalenone concentrations suggests that toxicological interactions of these compounds deserve attention. Several less investigated fungal secondary metabolites occurred frequently or reached high concentrations.
Collapse
Affiliation(s)
| | - T. Jenkins
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - G. Schatzmayr
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| |
Collapse
|
44
|
Ezekiel CN, Oyeyemi OT, Oyedele OA, Ayeni KI, Oyeyemi IT, Nabofa W, Nwozichi CU, Dada A. Urinary aflatoxin exposure monitoring in rural and semi-urban populations in Ogun state, Nigeria. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1565-1572. [PMID: 29843566 DOI: 10.1080/19440049.2018.1475752] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aflatoxins are a major class of fungal toxins that have food safety importance due to their economic and health impacts. This pilot aflatoxin exposure biomonitoring study on 84 individuals was conducted in a rural (Ilumafon) and a semi-urban community (Ilishan Remo) of Ogun state, Nigeria, to compare aflatoxin exposures among the two population cohorts. First morning urine samples were obtained from the participants, and the urinary aflatoxin M1 (AFM1) levels were measured by a quantitative Helica Biosystems Inc. ELISA kit assay. About 99% (83 out of 84) of the urine samples had detectable AFM1 levels in the range of 0.06 to 0.51 ng mL-1 (median: 0.27 ng mL-1). The mean urinary AFM1 levels were significantly (p = 0.001) higher in the semi-urban population (0.31 ± 0.09 ng mL-1) compared to the rural population (0.24 ± 0.07 ng mL-1). There were, however, no significant differences in mean urinary AFM1 levels of males and females, and among children, adolescents and adults. This study indicates high aflatoxin exposure to the extent of public health concerns in the studied populations. Thus, more efforts are required for aflatoxin exposure monitoring and control in high-risk regions.
Collapse
Affiliation(s)
- Chibundu N Ezekiel
- a Department of Microbiology , Babcock University , Ilishan Remo , Ogun State , Nigeria
| | - Oyetunde T Oyeyemi
- b Department of Basic Sciences , Babcock University , Ilishan Remo , Nigeria
| | | | - Kolawole I Ayeni
- a Department of Microbiology , Babcock University , Ilishan Remo , Ogun State , Nigeria
| | - Ifeoluwa T Oyeyemi
- c Department of Biological Sciences , University of Medical Sciences , Ondo , Nigeria
| | - Williams Nabofa
- d Department of Physiology, Benjamin Carson (Senior) School of Medicine , Babcock University , Ilishan Remo , Nigeria
| | - Chinomso U Nwozichi
- e Department of Adult Health Nursing, School of Nursing , Babcock University , Ilishan Remo , Nigeria
| | - Adeyemi Dada
- f Department of Chemical Pathology , Lagos State University Teaching Hospital , Ikeja , Nigeria
| |
Collapse
|
45
|
Microbiological Quality and Risk Assessment for Aflatoxins in Groundnuts and Roasted Cashew Nuts Meant for Human Consumption. J Toxicol 2018; 2018:1308748. [PMID: 30046306 PMCID: PMC6038661 DOI: 10.1155/2018/1308748] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/23/2018] [Accepted: 04/01/2018] [Indexed: 11/17/2022] Open
Abstract
Nuts are one of the commonly consumed snacks but poor handling and storage practices can make them prone to foodborne infections. The study aimed at assessing the microbiological quality and risk assessment for aflatoxins in groundnuts and cashew nuts consumed in selected locations in Nigeria. The moisture content, colony counts, incidence of pathogenic bacteria, aflatoxin contamination, and risk assessment for aflatoxins were evaluated using standard methods. The moisture content and total viable count ranged from 5.00–8.60% and 5.5–89 × 103 cfug−1, respectively, while the fungal count was between 4–24 × 103 and 1.0–4.5 × 102 cfug−1, respectively. Eleven fungal species belonging to 5 genera were isolated from the nuts, with Aspergillus flavus, Rhizopus oryzae, and Fusarium oxysporum having the highest percentage occurrence of 50%. In addition, the aflatoxin concentration ranged 0.1–6.8 and 29–33.78 ng kg−1 for cashew nuts and groundnuts, respectively. The margin of exposure (MOE) to aflatoxin contamination was 6.10 for groundnuts and 1000 for cashew nuts and the nuts consumers were at a risk of exposure to foodborne diseases and aflatoxin contamination with mean exposure values of 27.96 and 0.17 ng kg−1bwday−1, respectively. The risk of primary liver cancer for groundnuts and cashew nuts consumers was also estimated to be 1.38 and 0.01 canceryear−1100,000−1person, respectively. This calls for mitigation measures from appropriate governmental organizations.
Collapse
|
46
|
Chilaka CA, De Boevre M, Atanda OO, De Saeger S. Quantification of Fusarium mycotoxins in Nigerian traditional beers and spices using a multi-mycotoxin LC-MS/MS method. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.12.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Prevalence of Fusarium mycotoxins in cassava and yam products from some selected Nigerian markets. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
48
|
Garcia-Cela E, Kiaitsi E, Medina A, Sulyok M, Krska R, Magan N. Interacting Environmental Stress Factors Affects Targeted Metabolomic Profiles in Stored Natural Wheat and That Inoculated with F. graminearum. Toxins (Basel) 2018; 10:toxins10020056. [PMID: 29382163 PMCID: PMC5848157 DOI: 10.3390/toxins10020056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Changes in environmental stress impact on secondary metabolite (SM) production profiles. Few studies have examined targeted SM production patterns in relation to interacting environmental conditions in stored cereals. The objectives were to examine the effect of water activity (aw; 0.95–0.90) x temperature (10–25 °C) on SM production on naturally contaminated stored wheat and that inoculated with Fusarium graminearum. Samples were analysed using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) on (a) total number of known SMs, (b) their concentrations and (c) changes under environmental stress. 24 Fusarium metabolites were quantified. Interestingly, statistical differences (ChisSq., p < 0.001) were observed in the number of SMs produced under different sets of interacting environmental conditions. The dominant metabolites in natural stored grain were deoxynivalenol (DON) and nivalenol (NIV) followed by a range of enniatins (A, A1, B, B1), apicidin and DON-3-glucoside at 10 °C. Increasing temperature promoted the biosynthesis of other SMs such as aurofusarin, moniliformin, zearalenone (ZEN) and their derivatives. Natural wheat + F. graminearum inoculation resulted in a significant increase in the number of metabolites produced (ChisSq., p < 0.001). For ZEN and its derivatives, more was produced under cooler storage conditions. Fusarin C was enhanced in contrast to that for the enniatin group. The relative ratios of certain groups of targeted SM changed with environmental stress. Both temperature and aw affected the amounts of metabolites present, especially of DON and ZEN. This study suggests that the dominant SMs produced in stored temperate cereals are the mycotoxins for which legislation exists. However, there are changes in the ratios of key metabolites which could influence the relative contamination with individual compounds. Thus, in the future, under more extreme environmental stresses, different dominant SMs may be formed which could make present legislation out of step with the future contamination which might occur.
Collapse
Affiliation(s)
- Esther Garcia-Cela
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK.
| | - Elisavet Kiaitsi
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK.
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK.
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria.
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria.
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK.
| |
Collapse
|
49
|
Ezekiel CN, Ayeni KI, Misihairabgwi JM, Somorin YM, Chibuzor-Onyema IE, Oyedele OA, Abia WA, Sulyok M, Shephard GS, Krska R. Traditionally Processed Beverages in Africa: A Review of the Mycotoxin Occurrence Patterns and Exposure Assessment. Compr Rev Food Sci Food Saf 2018; 17:334-351. [DOI: 10.1111/1541-4337.12329] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Chibundu N. Ezekiel
- Dept. of Microbiology; Babcock Univ.; Ilishan Remo Ogun State Nigeria
- Dept. of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry; Univ. of Natural Resources and Life Sciences Vienna (BOKU); Konrad Lorenzstr. 20 A-3430 Tulln Austria
| | - Kolawole I. Ayeni
- Dept. of Microbiology; Babcock Univ.; Ilishan Remo Ogun State Nigeria
| | - Jane M. Misihairabgwi
- Dept. of Biochemistry and Microbiology, School of Medicine; Univ. of Namibia; P. Bag 13301 Windhoek Namibia
| | - Yinka M. Somorin
- Microbiology, School of Natural Sciences; Natl. Univ. of Ireland; Galway Ireland
| | | | | | - Wilfred A. Abia
- School of Toxicology, Occupational Health/Safety and Risk Assessment, COSET; Inst. for Management and Professional Training (IMPT); Yaounde Cameroon
| | - Michael Sulyok
- Dept. of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry; Univ. of Natural Resources and Life Sciences Vienna (BOKU); Konrad Lorenzstr. 20 A-3430 Tulln Austria
| | - Gordon S. Shephard
- Mycotoxicology and Chemoprevention Research Group, Inst. of Biomedical and Microbial Biotechnology; Cape Peninsula Univ. of Technology; PO Box 1906 Bellville 7535 South Africa
| | - Rudolf Krska
- Dept. of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry; Univ. of Natural Resources and Life Sciences Vienna (BOKU); Konrad Lorenzstr. 20 A-3430 Tulln Austria
| |
Collapse
|
50
|
|