1
|
Dumitru AC, Koehler M. Recent advances in the application of atomic force microscopy to structural biology. J Struct Biol 2023; 215:107963. [PMID: 37044358 DOI: 10.1016/j.jsb.2023.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
The application of atomic force microscopy (AFM) for (functional) imaging and manipulating biomolecules at all levels of organization has enabled great progress in the structural biology field over the last decades, contributing to the discovery of novel structural entities of biological significance across many disciplines ranging from biochemistry, biomedicine and biophysics to molecular and cell biology, up to food systems and beyond. AFM has the capability to generate high-resolution topographic images spanning from the submolecular to the (sub)cellular range and can probe biochemical and biophysical sample properties in close to native conditions with excellent temporal resolution. Instrumental developments in the past decade enable dynamical structural and conformational studies of single biomolecules and new techniques for structural and chemical modification of the AFM probe have converted the cantilever into a versatile tool to study different biological phenomena, such as the mechanical stability of biomolecular complexes or the force induced dynamic changes of mechanically stressed proteins at the nanoscopic level. To improve the functionality of AFM and approach dynamic processes of complex biological systems ex vivo, AFM is combined with complementary microscopy, nanoscopy and spectroscopy tools. These multimethodological approaches provide unprecedented possibilities of probing physical, chemical and biological properties of complex cellular systems with high spatio-temporal resolution, leading to novel applications that correlate structural results with functional biochemical, biophysical, immunological, or genetic data on the system under study.
Collapse
Affiliation(s)
- Andra C Dumitru
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University Munich, Freising, Germany.
| |
Collapse
|
2
|
Lostao A, Lim K, Pallarés MC, Ptak A, Marcuello C. Recent advances in sensing the inter-biomolecular interactions at the nanoscale - A comprehensive review of AFM-based force spectroscopy. Int J Biol Macromol 2023; 238:124089. [PMID: 36948336 DOI: 10.1016/j.ijbiomac.2023.124089] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Biomolecular interactions underpin most processes inside the cell. Hence, a precise and quantitative understanding of molecular association and dissociation events is crucial, not only from a fundamental perspective, but also for the rational design of biomolecular platforms for state-of-the-art biomedical and industrial applications. In this context, atomic force microscopy (AFM) appears as an invaluable experimental technique, allowing the measurement of the mechanical strength of biomolecular complexes to provide a quantitative characterization of their interaction properties from a single molecule perspective. In the present review, the most recent methodological advances in this field are presented with special focus on bioconjugation, immobilization and AFM tip functionalization, dynamic force spectroscopy measurements, molecular recognition imaging and theoretical modeling. We expect this work to significantly aid in grasping the principles of AFM-based force spectroscopy (AFM-FS) technique and provide the necessary tools to acquaint the type of data that can be achieved from this type of experiments. Furthermore, a critical assessment is done with other nanotechnology techniques to better visualize the future prospects of AFM-FS.
Collapse
Affiliation(s)
- Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain; Fundación ARAID, Aragón, Spain.
| | - KeeSiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Ishikawa 920-1192, Japan
| | - María Carmen Pallarés
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Poznan 60-925, Poland
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain.
| |
Collapse
|
3
|
Sun H, Wang J. Novel perspective for protein-drug interaction analysis: atomic force microscope. Analyst 2023; 148:454-474. [PMID: 36398684 DOI: 10.1039/d2an01591a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteins are major drug targets, and drug-target interaction identification and analysis are important factors for drug discovery. Atomic force microscopy (AFM) is a powerful tool making it possible to image proteins with nanometric resolution and probe intermolecular forces under physiological conditions. We review recent studies conducted in the field of target protein drug discovery using AFM-based analysis technology, including drug-driven changes in nanomechanical properties of protein morphology and interactions. Underlying mechanisms (including thermodynamic and kinetic parameters) of the drug-target interaction and drug-modulating protein-protein interaction (PPI) on the surfaces of models or living cells are discussed. Furthermore, challenges and the outlook for the field are likewise discussed. Overall, this insight into the mechanical properties of protein-drug interactions provides an unprecedented information framework for rational drug discovery in the pharmaceutical field.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
4
|
Li F, Smoukov SK, Korotkin I, Taiji M, Karabasov S. Interfacial Layer Breaker: A Violation of Stokes' Law in High-Speed Atomic Force Microscope Flows. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:220-226. [PMID: 36537801 PMCID: PMC9835886 DOI: 10.1021/acs.langmuir.2c02418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Structured water near surfaces is important in nonclassical crystallization, biomineralization, and restructuring of cellular membranes. In addition to equilibrium structures, studied by atomic force microscopy (AFM), high-speed AFM (H-S AFM) can now detect piconewton forces in microseconds. With increasing speeds and decreasing tip diameters, there is a danger that continuum water models will not hold, and molecular dynamic (MD) simulations would be needed for accurate predictions. MD simulations, however, can only evolve over tens of nanoseconds due to memory and computational efficiency/speed limitations, so new methods are needed to bridge the gap. Here, we report a hybrid, multiscale simulation method, which can bridge the size and time scale gaps to existing experiments. Structured water is studied between a moving silica AFM colloidal tip and a cleaved mica surface. The computational domain includes 1,472,766 atoms. To mimic the effect of long-range hydrodynamic forces occurring in water, when moving the AFM tip at speeds from 5 × 10-7 to 30 m/s, a hybrid multiscale method with local atomistic resolution is used, which serves as an effective open-domain boundary condition. The multiscale simulation is thus equivalent to using a macroscopically large computational domain with equilibrium boundary conditions. Quantification of the drag force shows the breaking of continuum behavior. Nonmonotonic dependence on both the tip speed and distance from the surface implies breaking of the hydration layer around the moving tip at time scales smaller than water cluster formation and strong water compressibility effects at the highest speeds.
Collapse
Affiliation(s)
- Fan Li
- The
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1
4NSLondon, United
Kingdom
| | - Stoyan K. Smoukov
- The
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1
4NSLondon, United
Kingdom
| | - Ivan Korotkin
- The
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1
4NSLondon, United
Kingdom
- Mathematical
Sciences, University of Southampton, University Road, SO17 1BJSouthampton, United Kingdom
| | - Makoto Taiji
- Laboratory
for Computational Molecular Design, Computational Biology Research
Core, RIKEN Quantitative Biology Center
(QBiC), 1-6-5 Minatojima Minamimachi, Chuo-Ku, Kobe, Hyogo650-0047, Japan
| | - Sergey Karabasov
- The
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1
4NSLondon, United
Kingdom
| |
Collapse
|
5
|
Ohkubo T, Shiina T, Kawaguchi K, Sasaki D, Inamasu R, Yang Y, Li Z, Taninaka K, Sakaguchi M, Fujimura S, Sekiguchi H, Kuramochi M, Arai T, Tsuda S, Sasaki YC, Mio K. Visualizing Intramolecular Dynamics of Membrane Proteins. Int J Mol Sci 2022; 23:ijms232314539. [PMID: 36498865 PMCID: PMC9736139 DOI: 10.3390/ijms232314539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Membrane proteins play important roles in biological functions, with accompanying allosteric structure changes. Understanding intramolecular dynamics helps elucidate catalytic mechanisms and develop new drugs. In contrast to the various technologies for structural analysis, methods for analyzing intramolecular dynamics are limited. Single-molecule measurements using optical microscopy have been widely used for kinetic analysis. Recently, improvements in detectors and image analysis technology have made it possible to use single-molecule determination methods using X-rays and electron beams, such as diffracted X-ray tracking (DXT), X-ray free electron laser (XFEL) imaging, and cryo-electron microscopy (cryo-EM). High-speed atomic force microscopy (HS-AFM) is a scanning probe microscope that can capture the structural dynamics of biomolecules in real time at the single-molecule level. Time-resolved techniques also facilitate an understanding of real-time intramolecular processes during chemical reactions. In this review, recent advances in membrane protein dynamics visualization techniques were presented.
Collapse
Affiliation(s)
- Tatsunari Ohkubo
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takaaki Shiina
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan
| | - Kayoko Kawaguchi
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan
| | - Daisuke Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| | - Rena Inamasu
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| | - Yue Yang
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| | - Zhuoqi Li
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| | - Keizaburo Taninaka
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| | - Masaki Sakaguchi
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| | - Shoko Fujimura
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| | - Hiroshi Sekiguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5198, Japan
| | - Masahiro Kuramochi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi 316-8511, Japan
| | - Tatsuya Arai
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| | - Sakae Tsuda
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| | - Yuji C. Sasaki
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5198, Japan
| | - Kazuhiro Mio
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Correspondence:
| |
Collapse
|
6
|
Parreira P, Martins MCL. The biophysics of bacterial infections: Adhesion events in the light of force spectroscopy. Cell Surf 2021; 7:100048. [PMID: 33665520 PMCID: PMC7898176 DOI: 10.1016/j.tcsw.2021.100048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 08/10/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Bacterial infections are the most eminent public health challenge of the 21st century. The primary step leading to infection is bacterial adhesion to the surface of host cells or medical devices, which is mediated by a multitude of molecular interactions. At the interface of life sciences and physics, last years advances in atomic force microscopy (AFM)-based force spectroscopy techniques have made possible to measure the forces driving bacteria-cell and bacteria-materials interactions on a single molecule/cell basis (single molecule/cell force spectroscopy). Among the bacteria-(bio)materials surface interactions, the life-threatening infections associated to medical devices involving Staphylococcus aureus and Escherichia coli are the most eminent. On the other hand, Pseudomonas aeruginosa binding to the pulmonary and urinary tract or the Helicobacter pylori binding to the gastric mucosa, are classical examples of bacteria-host cell interactions that end in serious infections. As we approach the end of the antibiotic era, acquisition of a deeper knowledge of the fundamental forces involved in bacteria - host cells/(bio)materials surface adhesion is crucial for the identification of new ligand-binding events and its assessment as novel targets for alternative anti-infective therapies. This article aims to highlight the potential of AFM-based force spectroscopy for new targeted therapies development against bacterial infections in which adhesion plays a pivotal role and does not aim to be an extensive overview on the AFM technical capabilities and theory of single molecule force spectroscopy.
Collapse
Affiliation(s)
- Paula Parreira
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - M. Cristina L. Martins
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| |
Collapse
|
7
|
Ando T. Biophysical reviews top five: atomic force microscopy in biophysics. Biophys Rev 2021; 13:455-458. [PMID: 34466165 PMCID: PMC8355283 DOI: 10.1007/s12551-021-00820-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 01/03/2023] Open
Abstract
Since its invention in the late 1980s, atomic force microscopy (AFM), in which a nanometer-sized tip is used to physically interrogate the properties of a surface at high resolution, has brought about scientific revolutions in both surface science and biological physics. In response to a request from the journal, I have prepared a top-five list of scientific papers that I feel represent truly landmark developments in the use of AFM in the biophysics field. This selection is necessarily limited by number (just five) and subjective (my opinion) and I offer my apologies to those not appearing in this list.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| |
Collapse
|
8
|
Collinson DW, Sheridan RJ, Palmeri MJ, Brinson LC. Best practices and recommendations for accurate nanomechanical characterization of heterogeneous polymer systems with atomic force microscopy. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101420] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Rodriguez-Ramos J, Rico F. Determination of calibration parameters of cantilevers of arbitrary shape by finite element analysis. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:045001. [PMID: 34243426 DOI: 10.1063/5.0036263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/14/2021] [Indexed: 06/13/2023]
Abstract
The use of atomic force microscopy in nanomechanical measurements requires accurate calibration of the cantilever's spring constant (kc) and the optical lever sensitivity (OLS). The thermal method, based on the cantilever's thermal fluctuations in fluids, allows estimation of kc in a fast, non-invasive mode. However, differences in the cantilever geometry and mounting angle require the knowledge of three correction factors to get a good estimation of kc: the contribution of the oscillation mode to the total amplitude, the shape difference between the free and end-loaded configurations, and the tilt of the cantilever with respect to the measured surface. While the correction factors for traditional rectangular and V-shaped cantilever geometries have been reported, they must be determined for cantilevers with non-traditional geometries and large tips. Here, we develop a method based on finite element analysis to estimate the correction factors of cantilevers with arbitrary geometry and tip dimensions. The method relies on the numerical computation of the effective cantilever mass. The use of the correction factor for rectangular geometries in our model cantilever (PFQNM-LC) will lead to values underestimated by 16%. In contrast, experiments using pre-calibrated cantilevers revealed a maximum uncertainty below 5% in the estimation of the OLS, verifying our approach.
Collapse
Affiliation(s)
| | - Felix Rico
- Aix-Marseille University, INSERM, CNRS, LAI, 13009 Marseille, France
| |
Collapse
|
10
|
Zika A, Gröhn F. Multiswitchable photoacid-hydroxyflavylium-polyelectrolyte nano-assemblies. Beilstein J Org Chem 2021; 17:166-185. [PMID: 33564327 PMCID: PMC7849232 DOI: 10.3762/bjoc.17.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/16/2020] [Indexed: 02/05/2023] Open
Abstract
Light- and pH-responsive nano-assemblies with switchable size and structure are formed by the association of a photoacid, anthocyanidin, and a linear polyelectrolyte in aqueous solution. Specifically, anionic disulfonated naphthol derivatives, neutral hydroxyflavylium, and cationic poly(allylamine) are used as building blocks for the ternary electrostatic self-assembly, forming well-defined supramolecular assemblies with tunable sizes of 50 to 500 nm. Due to the network of possible chemical reactions for the anthocyanidin and the excited-state dissociation of the photoacid upon irradiation, different ways to alter the ternary system through external triggering are accessible. The structure and trigger effects can be controlled through the component ratios of the samples. Dynamic and static light scattering (DLS, SLS) and ζ-potential measurements were applied to study the size and the stability of the particles, and information on the molecular structure was gained by UV-vis spectroscopy. Isothermal titration calorimetry (ITC) provided information on the thermodynamics and interaction forces in the supramolecular assembly formation.
Collapse
Affiliation(s)
- Alexander Zika
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) and Bavarian Polymer Institute (BPI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) and Bavarian Polymer Institute (BPI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| |
Collapse
|
11
|
Casuso I, Redondo-Morata L, Rico F. Biological physics by high-speed atomic force microscopy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190604. [PMID: 33100165 PMCID: PMC7661283 DOI: 10.1098/rsta.2019.0604] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
While many fields have contributed to biological physics, nanotechnology offers a new scale of observation. High-speed atomic force microscopy (HS-AFM) provides nanometre structural information and dynamics with subsecond resolution of biological systems. Moreover, HS-AFM allows us to measure piconewton forces within microseconds giving access to unexplored, fast biophysical processes. Thus, HS-AFM provides a tool to nourish biological physics through the observation of emergent physical phenomena in biological systems. In this review, we present an overview of the contribution of HS-AFM, both in imaging and force spectroscopy modes, to the field of biological physics. We focus on examples in which HS-AFM observations on membrane remodelling, molecular motors or the unfolding of proteins have stimulated the development of novel theories or the emergence of new concepts. We finally provide expected applications and developments of HS-AFM that we believe will continue contributing to our understanding of nature, by serving to the dialogue between biology and physics. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.
Collapse
Affiliation(s)
- Ignacio Casuso
- Aix-Marseile University, Inserm, CNRS, LAI, 163 Av. de Luminy, 13009 Marseille, France
| | - Lorena Redondo-Morata
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, 59000 Lille, France
| | - Felix Rico
- Aix-Marseile University, Inserm, CNRS, LAI, 163 Av. de Luminy, 13009 Marseille, France
- e-mail:
| |
Collapse
|
12
|
Bergues-Pupo AE, Lipowsky R, Vila Verde A. Unfolding mechanism and free energy landscape of single, stable, alpha helices at low pull speeds. SOFT MATTER 2020; 16:9917-9928. [PMID: 33030193 DOI: 10.1039/d0sm01166e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single alpha helices (SAHs) stable in isolated form are often found in motor proteins where they bridge functional domains. Understanding the mechanical response of SAHs is thus critical to understand their function. The quasi-static force-extension relation of a small number of SAHs is known from single-molecule experiments. Unknown, or still controversial, are the molecular scale details behind those observations. We show that the deformation mechanism of SAHs pulled from the termini at pull speeds approaching the quasi-static limit differs from that of typical helices found in proteins, which are stable only when interacting with other protein domains. Using molecular dynamics simulations with atomistic resolution at low pull speeds previously inaccessible to simulation, we show that SAHs start unfolding from the termini at all pull speeds we investigated. Unfolding proceeds residue-by-residue and hydrogen bond breaking is not the main event determining the barrier to unfolding. We use the molecular simulation data to test the cooperative sticky chain model. This model yields excellent fits of the force-extension curves and quantifies the distance, xE = 0.13 nm, to the transition state, the natural frequency of bond vibration, ν0 = 0.82 ns-1, and the height, V0 = 2.9 kcal mol-1, of the free energy barrier associated with the deformation of single residues. Our results demonstrate that the sticky chain model could advantageously be used to analyze experimental force-extension curves of SAHs and other biopolymers.
Collapse
Affiliation(s)
- Ana Elisa Bergues-Pupo
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Ana Vila Verde
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
13
|
Cárdenas R, Martínez-Seoane J, Amero C. Combining Experimental Data and Computational Methods for the Non-Computer Specialist. Molecules 2020; 25:E4783. [PMID: 33081072 PMCID: PMC7594097 DOI: 10.3390/molecules25204783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023] Open
Abstract
Experimental methods are indispensable for the study of the function of biological macromolecules, not just as static structures, but as dynamic systems that change conformation, bind partners, perform reactions, and respond to different stimulus. However, providing a detailed structural interpretation of the results is often a very challenging task. While experimental and computational methods are often considered as two different and separate approaches, the power and utility of combining both is undeniable. The integration of the experimental data with computational techniques can assist and enrich the interpretation, providing new detailed molecular understanding of the systems. Here, we briefly describe the basic principles of how experimental data can be combined with computational methods to obtain insights into the molecular mechanism and expand the interpretation through the generation of detailed models.
Collapse
Affiliation(s)
| | | | - Carlos Amero
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico; (R.C.); (J.M.-S.)
| |
Collapse
|
14
|
Benedito M, Manca F, Palla PL, Giordano S. Rate-dependent force-extension models for single-molecule force spectroscopy experiments. Phys Biol 2020; 17:056002. [PMID: 32464604 DOI: 10.1088/1478-3975/ab97a8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Single-molecule force spectroscopy techniques allow for the measurement of several static and dynamic features of macromolecules of biological origin. In particular, atomic force microscopy, used with a variable pulling rate, provides valuable information on the folding/unfolding dynamics of proteins. We propose here two different models able to describe the out-of-equilibrium statistical mechanics of a chain composed of bistable units. These latter represent the protein domains, which can be either folded or unfolded. Both models are based on the Langevin approach and their implementation allows for investigating the effect of the pulling rate and of the device intrinsic elasticity on the chain unfolding response. The theoretical results (both analytical and numerical) have been compared with experimental data concerning the unfolding of the titin and filamin proteins, eventually obtaining a good agreement over a large range of the pulling rates.
Collapse
Affiliation(s)
- Manon Benedito
- Institute of Electronics, Microelectronics and Nanotechnology, UMR 8520, Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, LIA LICS/LEMAC, 59000 Lille, France
| | | | | | | |
Collapse
|
15
|
Alunda BO, Lee YJ. Review: Cantilever-Based Sensors for High Speed Atomic Force Microscopy. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4784. [PMID: 32854193 PMCID: PMC7506678 DOI: 10.3390/s20174784] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
This review critically summarizes the recent advances of the microcantilever-based force sensors for atomic force microscope (AFM) applications. They are one the most common mechanical spring-mass systems and are extremely sensitive to changes in the resonant frequency, thus finding numerous applications especially for molecular sensing. Specifically, we comment on the latest progress in research on the deflection detection systems, fabrication, coating and functionalization of the microcantilevers and their application as bio- and chemical sensors. A trend on the recent breakthroughs on the study of biological samples using high-speed atomic force microscope is also reported in this review.
Collapse
Affiliation(s)
- Bernard Ouma Alunda
- School of Mines and Engineering, Taita Taveta University, P.O. Box 635-80300 Voi, Kenya;
| | - Yong Joong Lee
- School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
16
|
Ananchenko B, Belozerov V, Byvalov A, Konyshev I, Korzhavina A, Dudina L. Evaluation of intermolecular forces between lipopolysaccharides and monoclonal antibodies using atomic force microscopy. Int J Biol Macromol 2020; 156:841-850. [PMID: 32305368 DOI: 10.1016/j.ijbiomac.2020.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/20/2020] [Accepted: 04/06/2020] [Indexed: 11/19/2022]
Abstract
Understanding of interactions between a bacterium and an immune or non-immune host organism at the cellular and subcellular level is important in order to improve new and existing immunobiological tools for the treatment of bacterial infections (including pseudotuberculosis). The aim of this work was to quantify the interaction force between Yersinia pseudotuberculosis and monoclonal antibodies (mAbs) in the model system "lipopolysaccharide (LPS) - mAbs" by atomic force microscopy (AFM). Our research findings provided the methodical approaches to force measurements between an AFM probe, which was functionalized with Y. pseudotuberculosis LPS, and mica coated by different mAbs. Based on the criteria for force estimation there was shown a greater binding force in the system "LPS - complementary mAbs" than in the system "LPS - heterologous mAbs". In both cases binding force increase followed by increase a contact time between the functionalized AFM probe and mica from 1 to 5 s. It has been shown that single bonds between LPS and complementary mAbs molecules also included a clearly defined non-specific component along with immunochemically specific one. The evidence suggests a significant proportion of applied force exerted to unfolding of high-molecular aggregates whose length may attain many hundreds of nanometers.
Collapse
Affiliation(s)
| | - Vladislav Belozerov
- The Institute of Physiology of the Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic 167982, Russian Federation; Vyatka State University, Kirov 610000, Russian Federation
| | - Andrey Byvalov
- The Institute of Physiology of the Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic 167982, Russian Federation; Vyatka State University, Kirov 610000, Russian Federation.
| | - Ilya Konyshev
- The Institute of Physiology of the Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic 167982, Russian Federation; Vyatka State University, Kirov 610000, Russian Federation
| | | | - Lyubov Dudina
- The Institute of Physiology of the Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic 167982, Russian Federation; Vyatka State University, Kirov 610000, Russian Federation
| |
Collapse
|
17
|
Shibata T, Furukawa H, Ito Y, Nagahama M, Hayashi T, Ishii-Teshima M, Nagai M. Photocatalytic Nanofabrication and Intracellular Raman Imaging of Living Cells with Functionalized AFM Probes. MICROMACHINES 2020; 11:E495. [PMID: 32414191 PMCID: PMC7281467 DOI: 10.3390/mi11050495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
Atomic force microscopy (AFM) is an effective platform for in vitro manipulation and analysis of living cells in medical and biological sciences. To introduce additional new features and functionalities into a conventional AFM system, we investigated the photocatalytic nanofabrication and intracellular Raman imaging of living cells by employing functionalized AFM probes. Herein, we investigated the effect of indentation speed on the cell membrane perforation of living HeLa cells based on highly localized photochemical oxidation with a catalytic titanium dioxide (TiO2)-functionalized AFM probe. On the basis of force-distance curves obtained during the indentation process, the probability of cell membrane perforation, penetration force, and cell viability was determined quantitatively. Moreover, we explored the possibility of intracellular tip-enhanced Raman spectroscopy (TERS) imaging of molecular dynamics in living cells via an AFM probe functionalized with silver nanoparticles in a homemade Raman system integrated with an inverted microscope. We successfully demonstrated that the intracellular TERS imaging has the potential to visualize distinctly different features in Raman spectra between the nucleus and the cytoplasm of a single living cell and to analyze the dynamic behavior of biomolecules inside a living cell.
Collapse
Affiliation(s)
- Takayuki Shibata
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Hiromi Furukawa
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Yasuharu Ito
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Masahiro Nagahama
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Terutake Hayashi
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
| | - Miho Ishii-Teshima
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| |
Collapse
|
18
|
2019-A year in Biophysical Reviews. Biophys Rev 2019; 11:833-839. [PMID: 31741173 DOI: 10.1007/s12551-019-00607-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
|
19
|
Ferrari A, Capitanio M, Vassalli M, Martinac B. Science by the sea: how nanoengineering met mechanobiology in Camogli. Biophys Rev 2019; 11:659-661. [PMID: 31529357 PMCID: PMC6815305 DOI: 10.1007/s12551-019-00598-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Aldo Ferrari
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.
| | - Marco Capitanio
- LENS-European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019, Sesto Fiorentino, Italy
| | - Massimo Vassalli
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, Genoa, Italy
| | - Boris Martinac
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, 2010, Australia
| |
Collapse
|