1
|
Asiwe JN, Ajayi AM, Ben-Azu B, Fasanmade AA. Vincristine attenuates isoprenaline-induced cardiac hypertrophy in male Wistar rats via suppression of ROS/NO/NF-қB signalling pathways. Microvasc Res 2024; 155:104710. [PMID: 38880384 DOI: 10.1016/j.mvr.2024.104710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Vincristine (VCR), a vinca alkaloid with anti-tumor and anti-oxidant properties, is acclaimed to possess cardioprotective action. However, the molecular mechanism underlying this protective effect remains unknown. This study investigated the effects of VCR on isoprenaline (ISO), a beta-adrenergic receptor agonist, induced cardiac hypertrophy in male Wistar rats. Animals were pre-treated with ISO (1 mg/kg) intraperitoneally for 14 days before VCR (25 μg/kg) intraperitoneal injection from days 1 to 28. Thereafter, mechanical, and electrical activities of the hearts of the rats were measured using a non-invasive blood pressure monitor and an electrocardiograph, respectively. After which, the heart was homogenized, and supernatants were assayed for contractile proteins: endothelin-1, cardiac troponin-1, angiotensin-II, and creatine kinase-MB, with markers of oxidative/nitrergic stress (SOD, CAT, MDA, GSH, and NO), inflammation (TNF-a and IL-6, NF-kB), and caspase-3 indicative of VCR reduced elevated blood pressure and reversed the abnormal electrocardiogram. ISO-induced increased endothelin-1, cardiac troponin-1, angiotensin-II, and creatine phosphokinase-MB, which were reversed by VCR. ISO also increased TNF-α, IL-6, NF-kB expression with increased caspase-3-mediated apoptosis in the heart. However, VCR reduced ISO-induced inflammation and apoptosis, with improved endogenous antioxidant agents (GSH, SOD, CAT) relative to ISO controls. Moreso, VCR, protected against ISO-induced histoarchitectural degeneration of cardiac myofibre. The result of this study revealed that VCR treatment significantly reverses ISO-induced cardiac hypertrophic phenotypes, via mechanisms connected to improved levels of proteins involved in excitation-contraction, and suppression of oxido-inflammatory and apoptotic pathways.
Collapse
Affiliation(s)
- Jerome Ndudi Asiwe
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.
| | - Abayomi M Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | | |
Collapse
|
2
|
Lother A, Kohl P. The heterocellular heart: identities, interactions, and implications for cardiology. Basic Res Cardiol 2023; 118:30. [PMID: 37495826 PMCID: PMC10371928 DOI: 10.1007/s00395-023-01000-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
The heterocellular nature of the heart has been receiving increasing attention in recent years. In addition to cardiomyocytes as the prototypical cell type of the heart, non-myocytes such as endothelial cells, fibroblasts, or immune cells are coming more into focus. The rise of single-cell sequencing technologies enables identification of ever more subtle differences and has reignited the question of what defines a cell's identity. Here we provide an overview of the major cardiac cell types, describe their roles in homeostasis, and outline recent findings on non-canonical functions that may be of relevance for cardiology. We highlight modes of biochemical and biophysical interactions between different cardiac cell types and discuss the potential implications of the heterocellular nature of the heart for basic research and therapeutic interventions.
Collapse
Affiliation(s)
- Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
- Interdisciplinary Medical Intensive Care, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Sato T, Kouzu H, Yano T, Sakuma I, Furuhashi M, Tohse N. Potential favorable action of sodium-glucose cotransporter-2 inhibitors on sudden cardiac death: a brief overview. Front Cardiovasc Med 2023; 10:1159953. [PMID: 37252114 PMCID: PMC10214280 DOI: 10.3389/fcvm.2023.1159953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
The primary pharmacological action of sodium-glucose co-transporter 2 (SGLT2) inhibitors is to inhibit the reabsorption of glucose and sodium ions from the proximal tubules of the kidney and to promote urinary glucose excretion. Notably, several clinical trials have recently demonstrated potent protective effects of SGLT2 inhibitors in patients with heart failure (HF) or chronic kidney disease (CKD), regardless of the presence or absence of diabetes. However, the impact of SGLT2 inhibitors on sudden cardiac death (SCD) or fatal ventricular arrhythmias (VAs), the pathophysiology of which is partly similar to that of HF and CKD, remains undetermined. The cardiorenal protective effects of SGLT2 inhibitors have been reported to include hemodynamic improvement, reverse remodeling of the failing heart, amelioration of sympathetic hyperactivity, correction of anemia and impaired iron metabolism, antioxidative effects, correction of serum electrolyte abnormalities, and antifibrotic effects, which may lead to prevent SCD and/or VAs. Recently, as possible direct cardiac effects of SGLT2 inhibitors, not only inhibition of Na+/H+ exchanger (NHE) activity, but also suppression of late Na+ current have been focused on. In addition to the indirect cardioprotective mechanisms of SGLT2 inhibitors, suppression of aberrantly increased late Na+ current may contribute to preventing SCD and/or VAs via restoration of the prolonged repolarization phase in the failing heart. This review summarizes the results of previous clinical trials of SGLT2 inhibitors for prevention of SCD, their impact on the indices of electrocardiogram, and the possible molecular mechanisms of their anti-arrhythmic effects.
Collapse
Affiliation(s)
- Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ichiro Sakuma
- Caress Sapporo Hokko Memorial Clinic, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
4
|
Brimmer S, Ji P, Birla AK, Keswani SG, Caldarone CA, Birla RK. Recent advances in biological pumps as a building block for bioartificial hearts. Front Bioeng Biotechnol 2023; 11:1061622. [PMID: 36741765 PMCID: PMC9895798 DOI: 10.3389/fbioe.2023.1061622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
The field of biological pumps is a subset of cardiac tissue engineering and focused on the development of tubular grafts that are designed generate intraluminal pressure. In the simplest embodiment, biological pumps are tubular grafts with contractile cardiomyocytes on the external surface. The rationale for biological pumps is a transition from planar 3D cardiac patches to functional biological pumps, on the way to complete bioartificial hearts. Biological pumps also have applications as a standalone device, for example, to support the Fontan circulation in pediatric patients. In recent years, there has been a lot of progress in the field of biological pumps, with innovative fabrication technologies. Examples include the use of cell sheet engineering, self-organized heart muscle, bioprinting and in vivo bio chambers for vascularization. Several materials have been tested for biological pumps and included resected aortic segments from rodents, type I collagen, and fibrin hydrogel, to name a few. Multiple bioreactors have been tested to condition biological pumps and replicate the complex in vivo environment during controlled in vitro culture. The purpose of this article is to provide an overview of the field of the biological pumps, outlining progress in the field over the past several years. In particular, different fabrication methods, biomaterial platforms for tubular grafts and examples of bioreactors will be presented. In addition, we present an overview of some of the challenges that need to be overcome for the field of biological pumps to move forward.
Collapse
Affiliation(s)
- Sunita Brimmer
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Pengfei Ji
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Aditya K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Christopher A. Caldarone
- Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Ravi K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States,*Correspondence: Ravi K. Birla,
| |
Collapse
|
5
|
Linz B, Hesselkilde EM, Skarsfeldt MA, Hertel JN, Sattler SM, Yan Y, Tfelt-Hansen J, Diness JG, Bentzen BH, Linz D, Jespersen T. Pharmacological inhibition of SK-channels with AP14145 prevents atrial arrhythmogenic changes in a porcine model for obstructive respiratory events. J Cardiovasc Electrophysiol 2023; 34:126-134. [PMID: 36482155 PMCID: PMC10107889 DOI: 10.1111/jce.15769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) creates a complex substrate for atrial fibrillation (AF), which is refractory to many clinically available pharmacological interventions. We investigated atrial antiarrhythmogenic properties and ventricular electrophysiological safety of small-conductance Ca2+ -activated K+ (SK)-channel inhibition in a porcine model for obstructive respiratory events. METHODS In spontaneously breathing pigs, obstructive respiratory events were simulated by intermittent negative upper airway pressure (INAP) applied via a pressure device connected to the intubation tube. INAP was applied for 75 s, every 10 min, three times before and three times during infusion of the SK-channel inhibitor AP14145. Atrial effective refractory periods (AERP) were acquired before (pre-INAP), during (INAP) and after (post-) INAP. AF-inducibility was determined by a S1S2 atrial pacing protocol. Ventricular arrhythmicity was evaluated by heart rate adjusted QT-interval duration (QT-paced) and electromechanical window (EMW) shortening. RESULTS During vehicle infusion, INAP transiently shortened AERP (pre-INAP: 135 ± 10 ms vs. post-INAP 101 ± 11 ms; p = .008) and increased AF-inducibility. QT-paced prolonged during INAP (pre-INAP 270 ± 7 ms vs. INAP 275 ± 7 ms; p = .04) and EMW shortened progressively throughout INAP and post-INAP (pre-INAP 80 ± 4 ms; INAP 59 ± 6 ms, post-INAP 46 ± 10 ms). AP14145 prolonged baseline AERP, partially prevented INAP-induced AERP-shortening and reduced AF-susceptibility. AP14145 did not alter QT-paced at baseline (pre-AP14145 270 ± 7 ms vs. AP14145 268 ± 6 ms, p = .83) or QT-paced and EMW-shortening during INAP. CONCLUSION In a pig model for obstructive respiratory events, the SK-channel-inhibitor AP14145 prevented INAP-associated AERP-shortening and AF-susceptibility without impairing ventricular electrophysiology. Whether SK-channels represent a target for OSA-related AF in humans warrants further study.
Collapse
Affiliation(s)
- Benedikt Linz
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| | - Eva M Hesselkilde
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| | - Mark A Skarsfeldt
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark.,Acesion Pharma, Copenhagen, Denmark
| | - Julie N Hertel
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| | - Stefan M Sattler
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| | - Yannan Yan
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Bo H Bentzen
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark.,Acesion Pharma, Copenhagen, Denmark
| | - Dominik Linz
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark.,Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia.,Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Thomas Jespersen
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Lookin O, Protsenko Y. The Slow Force Response and Simultaneous Changes in Ca2+ Transient in Healthy and Failing Rat Atrial and Ventricular Myocardium. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Wang BX, Kane C, Nicastro L, King O, Kit-Anan W, Downing B, Deidda G, Couch LS, Pinali C, Mitraki A, MacLeod KT, Terracciano CM. Integrins Increase Sarcoplasmic Reticulum Activity for Excitation-Contraction Coupling in Human Stem Cell-Derived Cardiomyocytes. Int J Mol Sci 2022; 23:10940. [PMID: 36142853 PMCID: PMC9504605 DOI: 10.3390/ijms231810940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Engagement of the sarcoplasmic reticulum (SR) Ca2+ stores for excitation-contraction (EC)-coupling is a fundamental feature of cardiac muscle cells. Extracellular matrix (ECM) proteins that form the extracellular scaffolding supporting cardiac contractile activity are thought to play an integral role in the modulation of EC-coupling. At baseline, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) show poor utilisation of SR Ca2+ stores, leading to inefficient EC-coupling, like developing or human CMs in cardiac diseases such as heart failure. We hypothesised that integrin ligand-receptor interactions between ECM proteins and CMs recruit the SR to Ca2+ cycling during EC-coupling. hiPSC-CM monolayers were cultured on fibronectin-coated glass before 24 h treatment with fibril-forming peptides containing the integrin-binding tripeptide sequence arginine-glycine-aspartic acid (2 mM). Micropipette application of 40 mM caffeine in standard or Na+/Ca2+-free Tyrode's solutions was used to assess the Ca2+ removal mechanisms. Microelectrode recordings were conducted to analyse action potentials in current-clamp. Confocal images of labelled hiPSC-CMs were analysed to investigate hiPSC-CM morphology and ultrastructural arrangements in Ca2+ release units. This study demonstrates that peptides containing the integrin-binding sequence arginine-glycine-aspartic acid (1) abbreviate hiPSC-CM Ca2+ transient and action potential duration, (2) increase co-localisation between L-type Ca2+ channels and ryanodine receptors involved in EC-coupling, and (3) increase the rate of SR-mediated Ca2+ cycling. We conclude that integrin-binding peptides induce recruitment of the SR for Ca2+ cycling in EC-coupling through functional and structural improvements and demonstrate the importance of the ECM in modulating cardiomyocyte function in physiology.
Collapse
Affiliation(s)
- Brian X. Wang
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Christopher Kane
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Laura Nicastro
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Oisín King
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
- Human Safety, Bayer Crop Science, 06903 Sophia-Antipolis, France
| | - Worrapong Kit-Anan
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Barrett Downing
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Graziano Deidda
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology−Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece
| | - Liam S. Couch
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Christian Pinali
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Anna Mitraki
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology−Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece
| | - Kenneth T. MacLeod
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Cesare M. Terracciano
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
- Laboratory of Myocardial Electrophysiology, 4th Floor, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
8
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
9
|
Häger SC, Dias C, Sønder SL, Olsen AV, da Piedade I, Heitmann ASB, Papaleo E, Nylandsted J. Short-term transcriptomic response to plasma membrane injury. Sci Rep 2021; 11:19141. [PMID: 34580330 PMCID: PMC8476590 DOI: 10.1038/s41598-021-98420-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Plasma membrane repair mechanisms are activated within seconds post-injury to promote rapid membrane resealing in eukaryotic cells and prevent cell death. However, less is known about the regeneration phase that follows and how cells respond to injury in the short-term. Here, we provide a genome-wide study into the mRNA expression profile of MCF-7 breast cancer cells exposed to injury by digitonin, a mild non-ionic detergent that permeabilizes the plasma membrane. We focused on the early transcriptional signature and found a time-dependent increase in the number of differentially expressed (> twofold, P < 0.05) genes (34, 114 and 236 genes at 20-, 40- and 60-min post-injury, respectively). Pathway analysis highlighted a robust and gradual three-part transcriptional response: (1) prompt activation of immediate-early response genes, (2) activation of specific MAPK cascades and (3) induction of inflammatory and immune pathways. Therefore, plasma membrane injury triggers a rapid and strong stress and immunogenic response. Our meta-analysis suggests that this is a conserved transcriptome response to plasma membrane injury across different cell and injury types. Taken together, our study shows that injury has profound effects on the transcriptome of wounded cells in the regeneration phase (subsequent to membrane resealing), which is likely to influence cellular status and has been previously overlooked.
Collapse
Affiliation(s)
- Swantje Christin Häger
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Catarina Dias
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Stine Lauritzen Sønder
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - André Vidas Olsen
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Isabelle da Piedade
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Anne Sofie Busk Heitmann
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Jesper Nylandsted
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3C, 2200, Copenhagen N, Denmark.
| |
Collapse
|
10
|
Syomin F, Osepyan A, Tsaturyan A. Computationally efficient model of myocardial electromechanics for multiscale simulations. PLoS One 2021; 16:e0255027. [PMID: 34293046 PMCID: PMC8297763 DOI: 10.1371/journal.pone.0255027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022] Open
Abstract
A model of myocardial electromechanics is suggested. It combines modified and simplified versions of previously published models of cardiac electrophysiology, excitation-contraction coupling, and mechanics. The mechano-calcium and mechano-electrical feedbacks, including the strain-dependence of the propagation velocity of the action potential, are also accounted for. The model reproduces changes in the twitch amplitude and Ca2+-transients upon changes in muscle strain including the slow response. The model also reproduces the Bowditch effect and changes in the twitch amplitude and duration upon changes in the interstimulus interval, including accelerated relaxation at high stimulation frequency. Special efforts were taken to reduce the stiffness of the differential equations of the model. As a result, the equations can be integrated numerically with a relatively high time step making the model suitable for multiscale simulation of the human heart and allowing one to study the impact of myocardial mechanics on arrhythmias.
Collapse
Affiliation(s)
- Fyodor Syomin
- Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| | - Anna Osepyan
- Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey Tsaturyan
- Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
Limbu S, Prosser BL, Lederer WJ, Ward CW, Jafri MS. X-ROS Signaling Depends on Length-Dependent Calcium Buffering by Troponin. Cells 2021; 10:cells10051189. [PMID: 34068012 PMCID: PMC8152234 DOI: 10.3390/cells10051189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/03/2022] Open
Abstract
The stretching of a cardiomyocyte leads to the increased production of reactive oxygen species that increases ryanodine receptor open probability through a process termed X-ROS signaling. The stretching of the myocyte also increases the calcium affinity of myofilament Troponin C, which increases its calcium buffering capacity. Here, an integrative experimental and modeling study is pursued to explain the interplay of length-dependent changes in calcium buffering by troponin and stretch-activated X-ROS calcium signaling. Using this combination, we show that the troponin C-dependent increase in myoplasmic calcium buffering during myocyte stretching largely offsets the X-ROS-dependent increase in calcium release from the sarcoplasmic reticulum. The combination of modeling and experiment are further informed by the elimination of length-dependent changes to troponin C calcium binding in the presence of blebbistatin. Here, the model suggests that it is the X-ROS signaling-dependent Ca2+ release increase that serves to maintain free myoplasmic calcium concentrations during a change in myocyte length. Together, our experimental and modeling approaches have further defined the relative contributions of X-ROS signaling and the length-dependent calcium buffering by troponin in shaping the myoplasmic calcium transient.
Collapse
Affiliation(s)
- Sarita Limbu
- School of Systems Biology and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA;
| | - Benjamin L. Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | - William J. Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA;
| | - Christopher W. Ward
- Center for Biomedical Engineering and Technology and Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 20201, USA;
| | - Mohsin S. Jafri
- School of Systems Biology and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA;
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA;
- Correspondence: ; Tel.: +1-703-993-8420
| |
Collapse
|
12
|
Birla RK. A methodological nine-step process to bioengineer heart muscle tissue. Tissue Cell 2020; 67:101425. [PMID: 32853859 DOI: 10.1016/j.tice.2020.101425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 01/15/2023]
Abstract
Research in the field of heart muscle tissue engineering is focused on the fabrication of heart muscle tissue which can be utilized to repair, replace and/or augment functionality of damaged and/or diseased tissue. In the simplest embodiment, bioengineering heart muscle tissue constructs involves culture of cardiomyocytes within natural or synthetic scaffolds. Functional integration of the cells with the scaffold and subsequent remodeling lead to the formation of 3D heart muscle tissue and physiological cues like mechanical stretch, electrical stimulation and perfusion are necessary to guide tissue maturation and development. Potential applications for bioengineered heart muscle include use as grafts to repair or replace damaged tissue, as models for basic research and as tools for high-throughput screening of pharmacological agents. In this article, we provide a methodological process to bioengineer functional 3D heart muscle tissue and discuss state of the art and potential challenges in each of the nine-step tissue fabrication process.
Collapse
Affiliation(s)
- Ravi K Birla
- BIOLIFE4D, 2450 Holcombe Blvd; Houston, TX, 77204, United States.
| |
Collapse
|
13
|
Hall D. A new decade for Biophysical Reviews and a look into the future of biophysics. Biophys Rev 2020; 12:1-7. [PMID: 31997161 PMCID: PMC7040127 DOI: 10.1007/s12551-020-00622-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
This Editorial for Volume 12 Issue 1 first describes the contents of the current issue before informing on a few of the developments occurring in Biophysical Reviews during 2020. Notable items include the announcement of the (i) inaugural winner of the Michèle Auger Award for Young Scientists' Independent Research and (ii) lineup of Special Issue topics for 2020. This Editorial concludes with a short forward-looking discussion piece on the future of biophysics as an increasingly important and vital sub-discipline of modern scientific research.
Collapse
Affiliation(s)
- Damien Hall
- Laboratory of Biochemistry and Genetics, NIDDK, NIH, Bld. 8, Bethesda, MD, 20892-0830, USA.
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|