1
|
Goette A, Corradi D, Dobrev D, Aguinaga L, Cabrera JA, Chugh SS, de Groot JR, Soulat-Dufour L, Fenelon G, Hatem SN, Jalife J, Lin YJ, Lip GYH, Marcus GM, Murray KT, Pak HN, Schotten U, Takahashi N, Yamaguchi T, Zoghbi WA, Nattel S. Atrial cardiomyopathy revisited-evolution of a concept: a clinical consensus statement of the European Heart Rhythm Association (EHRA) of the ESC, the Heart Rhythm Society (HRS), the Asian Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS). Europace 2024; 26:euae204. [PMID: 39077825 PMCID: PMC11431804 DOI: 10.1093/europace/euae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024] Open
Abstract
AIMS The concept of "atrial cardiomyopathy" (AtCM) had been percolating through the literature since its first mention in 1972. Since then, publications using the term were sporadic until the decision was made to convene an expert working group with representation from four multinational arrhythmia organizations to prepare a consensus document on atrial cardiomyopathy in 2016 (EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication). Subsequently, publications on AtCM have increased progressively. METHODS AND RESULTS The present consensus document elaborates the 2016 AtCM document further to implement a simple AtCM staging system (AtCM stages 1-3) by integrating biomarkers, atrial geometry, and electrophysiological changes. However, the proposed AtCM staging needs clinical validation. Importantly, it is clearly stated that the presence of AtCM might serve as a substrate for the development of atrial fibrillation (AF) and AF may accelerates AtCM substantially, but AtCM per se needs to be viewed as a separate entity. CONCLUSION Thus, the present document serves as a clinical consensus statement of the European Heart Rhythm Association (EHRA) of the ESC, the Heart Rhythm Society (HRS), the Asian Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS) to contribute to the evolution of the AtCM concept.
Collapse
Affiliation(s)
- Andreas Goette
- Department of Cardiology and Intensive Care Medicine, St. Vincenz-Hospital Paderborn, Am Busdorf 2, 33098 Paderborn, Germany
- MAESTRIA Consortium at AFNET, Münster, Germany
- Otto-von-Guericke University, Medical Faculty, Magdeburg, Germany
| | - Domenico Corradi
- Department of Medicine and Surgery, Unit of Pathology; Center of Excellence for Toxicological Research (CERT), University of Parma, Parma, Italy
| | - Dobromir Dobrev
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
- Montréal Heart Institute, Université de Montréal, 5000 Belanger St. E., Montréal, Québec H1T1C8, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Luis Aguinaga
- Director Centro Integral de Arritmias Tucumán, Presidente Sociedad de Cardiología de Tucumàn, Ex-PRESIDENTE DE SOLAECE (LAHRS), Sociedad Latinoamericana de EstimulaciónCardíaca y Electrofisiología, Argentina
| | - Jose-Angel Cabrera
- Hospital Universitario QuirónSalud, Madrid, Spain
- European University of Madrid, Madrid, Spain
| | - Sumeet S Chugh
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Health System, Los Angeles, CA, USA
| | - Joris R de Groot
- Department of Cardiology; Cardiovascular Sciences, Heart Failure and Arrhythmias, University of Amsterdam, Amsterdam, The Netherlands
| | - Laurie Soulat-Dufour
- Department of Cardiology, Saint Antoine and Tenon Hospital, AP-HP, Unité INSERM UMRS 1166 Unité de recherche sur les maladies cardiovasculaires et métaboliques, Institut Hospitalo-Universitaire, Institut de Cardiométabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | | | - Stephane N Hatem
- Department of Cardiology, Assistance Publique—Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Sorbonne University; INSERM UMR_S1166; Institute of Cardiometabolism and Nutrition-ICAN, Paris, France
| | - Jose Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
| | - Yenn-Jiang Lin
- Cardiovascular Center, Taipei Veterans General Hospital, and Faculty of Medicine National Yang-Ming University Taipei, Taiwan
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Gregory M Marcus
- Electrophysiology Section, Division of Cardiology, University of California, San Francisco, USA
| | - Katherine T Murray
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Ulrich Schotten
- MAESTRIA Consortium at AFNET, Münster, Germany
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University and Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University and Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Japan
| | - Takanori Yamaguchi
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - William A Zoghbi
- Department of Cardiology, Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Stanley Nattel
- McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec H3G1Y6, Canada
- West German Heart and Vascular Center, Institute of Pharmacology, University Duisburg, Essen, Germany
| |
Collapse
|
2
|
Linna-Kuosmanen S, Vuori M, Kiviniemi T, Palmu J, Niiranen T. Genetics, transcriptomics, metagenomics, and metabolomics in the pathogenesis and prediction of atrial fibrillation. Eur Heart J Suppl 2024; 26:iv33-iv40. [PMID: 39099578 PMCID: PMC11292413 DOI: 10.1093/eurheartjsupp/suae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The primary cellular substrates of atrial fibrillation (AF) and the mechanisms underlying AF onset remain poorly characterized and therefore, its risk assessment lacks precision. While the use of omics may enable discovery of novel AF risk factors and narrow down the cellular pathways involved in AF pathogenesis, the work is far from complete. Large-scale genome-wide association studies and transcriptomic analyses that allow an unbiased, non-candidate-gene-based delineation of molecular changes associated with AF in humans have identified at least 150 genetic loci associated with AF. However, only few of these loci have been thoroughly mechanistically dissected, indicating that much remains to be discovered for targeted diagnostics and therapeutics. Metabolomics and metagenomics, on the other hand, add to the understanding of AF downstream of the primary substrate and integrate the signalling of environmental and host factors, respectively. These two rapidly developing fields have already provided several correlates of prevalent and incident AF that require additional validation in external cohorts and experimental studies. In this review, we take a look at the recent developments in genetics, transcriptomics, metagenomics, and metabolomics and how they may aid in improving the discovery of AF risk factors and shed light into the molecular mechanisms leading to AF onset.
Collapse
Affiliation(s)
- Suvi Linna-Kuosmanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Matti Vuori
- Division of Medicine, Turku University Hospital, Turku, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
| | - Tuomas Kiviniemi
- Department of Internal Medicine, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
| | - Joonatan Palmu
- Department of Internal Medicine, University of Turku, Turku, Finland
| | - Teemu Niiranen
- Division of Medicine, Turku University Hospital, Turku, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Turku, Finland
| |
Collapse
|
3
|
Ayagama T, Charles PD, Bose SJ, Boland B, Priestman DA, Aston D, Berridge G, Fischer R, Cribbs AP, Song Q, Mirams GR, Amponsah K, Heather L, Galione A, Herring N, Kramer H, Capel RA, Platt FM, Schotten U, Verheule S, Burton RA. Compartmentalization proteomics revealed endolysosomal protein network changes in a goat model of atrial fibrillation. iScience 2024; 27:109609. [PMID: 38827406 PMCID: PMC11141153 DOI: 10.1016/j.isci.2024.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 06/04/2024] Open
Abstract
Endolysosomes (EL) are known for their role in regulating both intracellular trafficking and proteostasis. EL facilitate the elimination of damaged membranes, protein aggregates, membranous organelles and play an important role in calcium signaling. The specific role of EL in cardiac atrial fibrillation (AF) is not well understood. We isolated atrial EL organelles from AF goat biopsies and conducted a comprehensive integrated omics analysis to study the EL-specific proteins and pathways. We also performed electron tomography, protein and enzyme assays on these biopsies. Our results revealed the upregulation of the AMPK pathway and the expression of EL-specific proteins that were not found in whole tissue lysates, including GAA, DYNLRB1, CLTB, SIRT3, CCT2, and muscle-specific HSPB2. We also observed structural anomalies, such as autophagic-vacuole formation, irregularly shaped mitochondria, and glycogen deposition. Our results provide molecular information suggesting EL play a role in AF disease process over extended time frames.
Collapse
Affiliation(s)
- Thamali Ayagama
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Samuel J. Bose
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | | | - Daniel Aston
- Department of Anaesthesia and Critical Care, Royal Papworth Hospital NHS Foundation Trust, Papworth Road, Cambridge CB2 0AY, UK
| | | | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Adam P. Cribbs
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Headington OX3 7LD, UK
| | - Qianqian Song
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Gary R. Mirams
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kwabena Amponsah
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lisa Heather
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Holger Kramer
- Mass spectrometry Facility, The MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | | | - Ulrich Schotten
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Sander Verheule
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rebecca A.B. Burton
- Department of Pharmacology, University of Oxford, Oxford, UK
- University of Liverpool, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool, UK
| |
Collapse
|
4
|
Hu Z, Ding L, Yao Y. Atrial fibrillation: mechanism and clinical management. Chin Med J (Engl) 2023; 136:2668-2676. [PMID: 37914663 PMCID: PMC10684204 DOI: 10.1097/cm9.0000000000002906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 11/03/2023] Open
Abstract
ABSTRACT Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with a range of symptoms, including palpitations, cognitive impairment, systemic embolism, and increased mortality. It places a significant burden on healthcare systems worldwide. Despite decades of research, the precise mechanisms underlying AF remain elusive. Current understanding suggests that factors like stretch-induced fibrosis, epicardial adipose tissue (EAT), chronic inflammation, autonomic nervous system (ANS) imbalances, and genetic mutations all play significant roles in its development. In recent years, the advent of wearable devices has revolutionized AF diagnosis, enabling timely detection and monitoring. However, balancing early diagnosis with efficient resource utilization presents new challenges for healthcare providers. AF management primarily focuses on stroke prevention and symptom alleviation. Patients at high risk of thromboembolism require anticoagulation therapy, and emerging pipeline drugs, particularly factor XI inhibitors, hold promise for achieving effective anticoagulation with reduced bleeding risks. The scope of indications for catheter ablation in AF has expanded significantly. Pulsed field ablation, as a novel energy source, shows potential for improving success rates while ensuring safety. This review integrates existing knowledge and ongoing research on AF pathophysiology and clinical management, with emphasis on diagnostic devices, next-generation anticoagulants, drugs targeting underlying mechanisms, and interventional therapies. It offers a comprehensive mosaic of AF, providing insights into its complexities.
Collapse
Affiliation(s)
| | | | - Yan Yao
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
5
|
Huiskes FG, Creemers EE, Brundel BJJM. Dissecting the Molecular Mechanisms Driving Electropathology in Atrial Fibrillation: Deployment of RNA Sequencing and Transcriptomic Analyses. Cells 2023; 12:2242. [PMID: 37759465 PMCID: PMC10526291 DOI: 10.3390/cells12182242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Despite many efforts to treat atrial fibrillation (AF), the most common progressive and age-related cardiac tachyarrhythmia in the Western world, the efficacy is still suboptimal. A plausible reason for this is that current treatments are not directed at underlying molecular root causes that drive electrical conduction disorders and AF (i.e., electropathology). Insights into AF-induced transcriptomic alterations may aid in a deeper understanding of electropathology. Specifically, RNA sequencing (RNA-seq) facilitates transcriptomic analyses and discovery of differences in gene expression profiles between patient groups. In the last decade, various RNA-seq studies have been conducted in atrial tissue samples of patients with AF versus controls in sinus rhythm. Identified differentially expressed molecular pathways so far include pathways related to mechanotransduction, ECM remodeling, ion channel signaling, and structural tissue organization through developmental and inflammatory signaling pathways. In this review, we provide an overview of the available human AF RNA-seq studies and highlight the molecular pathways identified. Additionally, a comparison is made between human RNA-seq findings with findings from experimental AF model systems and we discuss contrasting findings. Finally, we elaborate on new exciting RNA-seq approaches, including single-nucleotide variants, spatial transcriptomics and profiling of different populations of total RNA, small RNA and long non-coding RNA.
Collapse
Affiliation(s)
- Fabries G. Huiskes
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, VUmc, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ, Amsterdam, The Netherlands;
- Department of Experimental Cardiology, Amsterdam UMC, Location AMC, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1105 AZ Amsterdam, The Netherlands;
| | - Esther E. Creemers
- Department of Experimental Cardiology, Amsterdam UMC, Location AMC, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1105 AZ Amsterdam, The Netherlands;
| | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, VUmc, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ, Amsterdam, The Netherlands;
| |
Collapse
|
6
|
Long non-coding RNA and circular RNA: new perspectives for molecular pathophysiology of atrial fibrillation. Mol Biol Rep 2023; 50:2835-2845. [PMID: 36596997 DOI: 10.1007/s11033-022-08216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
Many studies have demonstrated the association of atrial fibrillation (AF) with endogenous genetic regulatory mechanisms. These interactions could advance the understanding of the AF pathophysiological process, supporting the search for early biomarkers to improve diagnosis and disease monitoring. Among the endogenous genetic regulatory mechanisms, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained special attention, and studies have demonstrated their involvement in AF development and other AF-related diseases such as coronary artery disease and cardiomyopathy. This review describes the main experimental results reported by studies that analyzed the expression of lncRNAs and circRNAs in AF associated with miRNA or mRNA. The search was conducted in PubMed public database using the terms "lncRNA and atrial fibrillation" or "long ncRNA and atrial fibrillation" or "long non-coding RNA and atrial fibrillation" or "circular RNA and atrial fibrillation" or "circRNA and atrial fibrillation". There was no overlapping of lncRNA or circRNA among the studies, attributed to the different sample types, methods, species, and patient classification evaluated in these studies. Although the regulatory mechanisms in which these molecules are involved are not yet well understood, the studies analyzed show their importance in the pathophysiological process of AF, supporting the idea that lncRNAs and circRNAs are involved in miRNA or mRNA regulation in the molecular mechanism of this disease.
Collapse
|
7
|
Wei F, Zhang X, Kuang X, Gao X, Wang J, Fan J. Integrated Analysis of circRNA-miRNA-mRNA-Mediated Network and Its Potential Function in Atrial Fibrillation. Front Cardiovasc Med 2022; 9:883205. [PMID: 35845080 PMCID: PMC9279703 DOI: 10.3389/fcvm.2022.883205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Atrial fibrillation (AF) is one of the most prevalent arrhythmias, characterized by a high risk of heart failure and embolic stroke. Competing endogenous RNA network has been reported to play an important role in cardiovascular diseases. The main objective of the present study was to construct a circRNA–miRNA–mRNA-mediated network and explore the potential function in AF. Methods The microarray data of circRNA, miRNA, and mRNA in AF were downloaded from the Gene Expression Omnibus database. The RobustRankAggreg method was used to screen the different expression circRNAs(DECs). Then the circRNA–miRNA–mRNA-mediated network was constructed by using the CircInteractome database and the miRWalk online tool. A quantitative real-time polymerase chain reaction was used to detect the circRNA expression level in plasma. The left atrial fibrosis was evaluated with the left atrial low voltage area (LVA) by using left atrial voltage matrix mapping. Results Three DECs (hsa_circRNA_102461, hsa_circRNA_103693, and hsa_circRNA_059880) and 4 miRNAs were screened. Then a circRNA–miRNA–mRNA-mediated network was constructed, which included 2 circRNAs, 4 miRNAs, and 83 genes. Furthermore, the plasma’s hsa_circ_0070391 expression level was confirmed to be upregulated and positively correlated with left atrial fibrosis in AF (r = 0.88, P < 0.001), whereas hsa_circ_0003935 was downregulated. Moreover, the ROC curve analysis revealed hsa_circ_0070391 and hsa_circ_0003935 could differentiate AF from the healthy controls with an AUC of 0.95 (95% sensitivity and 90% specificity) and 0.86 (70% sensitivity and 75% specificity), respectively. Finally, the free of atrial tachyarrhythmia rate was dramatically lower in the hsa_circ_0070391 high expression group than in the low expression group post catheter ablation (70.0 vs. 90.0%, p = 0.04). Conclusion This study provides a novel insight to further understand the AF pathogenesis from the perspective of the circRNA–miRNA–mRNA network, suggesting that plasma circRNAs could serve as a novel atrial fibrosis and prognosis biomarker for AF.
Collapse
Affiliation(s)
- Feiyu Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of Cardiology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xi Zhang
- Department of Cardiology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiaohui Kuang
- Department of Cardiology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiaolong Gao
- Department of Cardiology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jing Wang
- Department of Cardiology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jie Fan
- Department of Cardiology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- *Correspondence: Jie Fan,
| |
Collapse
|
8
|
van den Berg NWE, Kawasaki M, Fabrizi B, Nariswari FA, Verduijn AC, Neefs J, Wesselink R, Al‐Shama RFM, van der Wal AC, de Boer OJ, Aten J, Driessen AHG, Jongejan A, de Groot JR. Epicardial and endothelial cell activation concurs with extracellular matrix remodeling in atrial fibrillation. Clin Transl Med 2021; 11:e558. [PMID: 34841686 PMCID: PMC8567047 DOI: 10.1002/ctm2.558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Improved understanding of the interconnectedness of structural remodeling processes in atrial fibrillation (AF) in patients could identify targets for future therapies. METHODS We present transcriptome sequencing of atrial tissues of patients without AF, with paroxysmal AF, and persistent AF (total n = 64). RNA expression levels were validated in the same and an independent cohort with qPCR. Biological processes were assessed with histological and immunohistochemical analyses. RESULTS In AF patients, epicardial cell gene expression decreased, contrasting with an upregulation of epithelial-to-mesenchymal transition (EMT) and mesenchymal cell gene expression. Immunohistochemistry demonstrated thickening of the epicardium and an increased proportion of (myo)fibroblast-like cells in the myocardium, supporting enhanced EMT in AF. We furthermore report an upregulation of endothelial cell proliferation, angiogenesis, and endothelial signaling. EMT and endothelial cell proliferation concurred with increased interstitial (myo)fibroblast-like cells and extracellular matrix gene expression including enhanced tenascin-C, thrombospondins, biglycan, and versican. Morphological analyses discovered increased and redistributed glycosaminoglycans and collagens in the atria of AF patients. Signaling pathways, including cell-matrix interactions, PI3K-AKT, and Notch signaling that could regulate mesenchymal cell activation, were upregulated. CONCLUSION Our results suggest that EMT and endothelial cell proliferation work in concert and characterize the (myo)fibroblast recruitment and ECM remodeling of AF. These processes could guide future research toward the discovery of targets for AF therapy.
Collapse
Affiliation(s)
- Nicoline W. E. van den Berg
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Makiri Kawasaki
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Benedetta Fabrizi
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Fransisca A. Nariswari
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Arianne C. Verduijn
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Jolien Neefs
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Robin Wesselink
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Rushd F. M. Al‐Shama
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Allard C. van der Wal
- Department of Clinical PathologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Onno J. de Boer
- Department of Clinical PathologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Jan Aten
- Department of Clinical PathologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Antoine H. G. Driessen
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Aldo Jongejan
- Department of Epidemiology & Data ScienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Joris R. de Groot
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| |
Collapse
|
9
|
Goette A, Lendeckel U. Atrial Cardiomyopathy: Pathophysiology and Clinical Consequences. Cells 2021; 10:cells10102605. [PMID: 34685585 PMCID: PMC8533786 DOI: 10.3390/cells10102605] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
Around the world there are 33.5 million patients suffering from atrial fibrillation (AF) with an annual increase of 5 million cases. Most AF patients have an established form of an atrial cardiomyopathy. The concept of atrial cardiomyopathy was introduced in 2016. Thus, therapy of underlying diseases and atrial tissue changes appear as a cornerstone of AF therapy. Furthermore, therapy or prevention of atrial endocardial changes has the potential to reduce atrial thrombogenesis and thereby cerebral stroke. The present manuscript will summarize the underlying pathophysiology and remodeling processes observed in the development of an atrial cardiomyopathy, thrombogenesis, and atrial fibrillation. In particular, the impact of oxidative stress, inflammation, diabetes, and obesity will be addressed.
Collapse
Affiliation(s)
- Andreas Goette
- Department of Cardiology and Intensive Care Medicine, St. Vincenz Hospital, 33098 Paderborn, Germany
- MAESTRIA Consortium/AFNET, 48149 Münster, Germany
- Correspondence:
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
| |
Collapse
|
10
|
Victorino J, Alvarez-Franco A, Manzanares M. Functional genomics and epigenomics of atrial fibrillation. J Mol Cell Cardiol 2021; 157:45-55. [PMID: 33887329 DOI: 10.1016/j.yjmcc.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Atrial fibrillation is a progressive cardiac arrhythmia that increases the risk of hospitalization and adverse cardiovascular events. Despite years of study, we still do not have a full comprehension of the molecular mechanism responsible for the disease. The recent implementation of large-scale approaches in both patient samples, population studies and animal models has helped us to broaden our knowledge on the molecular drivers responsible for AF and on the mechanisms behind disease progression. Understanding genomic and epigenomic changes that take place during chronification of AF will prove essential to design novel treatments leading to improved patient care.
Collapse
Affiliation(s)
- Jesus Victorino
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Spain
| | - Alba Alvarez-Franco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
11
|
Liu Y, Bai F, Tang Z, Liu N, Liu Q. Integrative transcriptomic, proteomic, and machine learning approach to identifying feature genes of atrial fibrillation using atrial samples from patients with valvular heart disease. BMC Cardiovasc Disord 2021; 21:52. [PMID: 33509101 PMCID: PMC7842070 DOI: 10.1186/s12872-020-01819-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023] Open
Abstract
Background Atrial fibrillation (AF) is the most common arrhythmia with poorly understood mechanisms. We aimed to investigate the biological mechanism of AF and to discover feature genes by analyzing multi-omics data and by applying a machine learning approach. Methods At the transcriptomic level, four microarray datasets (GSE41177, GSE79768, GSE115574, GSE14975) were downloaded from the Gene Expression Omnibus database, which included 130 available atrial samples from AF and sinus rhythm (SR) patients with valvular heart disease. Microarray meta-analysis was adopted to identified differentially expressed genes (DEGs). At the proteomic level, a qualitative and quantitative analysis of proteomics in the left atrial appendage of 18 patients (9 with AF and 9 with SR) who underwent cardiac valvular surgery was conducted. The machine learning correlation-based feature selection (CFS) method was introduced to selected feature genes of AF using the training set of 130 samples involved in the microarray meta-analysis. The Naive Bayes (NB) based classifier constructed using training set was evaluated on an independent validation test set GSE2240. Results 863 DEGs with FDR < 0.05 and 482 differentially expressed proteins (DEPs) with FDR < 0.1 and fold change > 1.2 were obtained from the transcriptomic and proteomic study, respectively. The DEGs and DEPs were then analyzed together which identified 30 biomarkers with consistent trends. Further, 10 features, including 8 upregulated genes (CD44, CHGB, FHL2, GGT5, IGFBP2, NRAP, SEPTIN6, YWHAQ) and 2 downregulated genes (TNNI1, TRDN) were selected from the 30 biomarkers through machine learning CFS method using training set. The NB based classifier constructed using the training set accurately and reliably classify AF from SR samples in the validation test set with a precision of 87.5% and AUC of 0.995. Conclusion Taken together, our present work might provide novel insights into the molecular mechanism and provide some promising diagnostic and therapeutic targets of AF.
Collapse
Affiliation(s)
- Yaozhong Liu
- Department of Cardiovascular Medicine/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Fan Bai
- Department of Cardiovascular Medicine/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Zhenwei Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Na Liu
- Department of Cardiovascular Medicine/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Qiming Liu
- Department of Cardiovascular Medicine/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan Province, People's Republic of China.
| |
Collapse
|
12
|
Manifestations of gene expression profiles in human right atrial myocardium caused by mechanical stretch. Heart Vessels 2020; 36:577-588. [PMID: 33180177 DOI: 10.1007/s00380-020-01724-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
This investigation was aimed to identify gene profiles in human atrial myocardium in response to chronic mechanical stretch. Right atrial appendages from 21 patients were divided into 2 groups based on the size of right atrial volume. The microarray DATA analyses differentially identified 335 genes (> 2.0-fold, corrected P < 0.05) including "functionally unknown genes". This study identified 26 up-regulated genes (natriuretic peptide B, G protein subunit gamma 13, thyroid stimulating hormone beta, etc.) and 23 down-regulated genes (oligodendrocyte transcription factor 1, carbonic anhydrase 12, etc.), which could be responsible for chronic stretch-mediated structural remodeling in the atrium.
Collapse
|
13
|
Hall D, Li A, Cooke R. Biophysics of human anatomy and physiology-a Special Issue in honor of Prof. Cristobal dos Remedios on the occasion of his 80 th birthday. Biophys Rev 2020; 12:731-739. [PMID: 32729063 PMCID: PMC7390459 DOI: 10.1007/s12551-020-00745-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
In 2001, Cristobal dos Remedios was made Professor of Anatomy (now emeritus) within Australia's highest-ranked university (University of Sydney). For the majority of his career, he has examined the biomechanics and biophysics of human muscle contraction. To coincide with the occasion of his 80th birthday, this Special Issue has commissioned a collection of review articles from experts exploring biophysical subjects within the general areas of human anatomy and physiology. After introducing the scope and contents of the Issue, we provide a short scientific biography, placing his scientific achievements within the context of the course of his life's developments.
Collapse
Affiliation(s)
- Damien Hall
- Department of Life Sciences and Applied Chemistry, Nagoya Institute of Technology, Gokiso Showa, Nagoya, Aichi, 466-8555, Japan.
| | - Amy Li
- Department of Pharmacy & Biomedical Sciences, La Trobe University, Bendigo, VIC, 3552, Australia
| | - Roger Cooke
- Department of Biochemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|