1
|
Zamani E, Ksantini N, Sheehy G, Ember KJI, Baloukas B, Zabeida O, Trang T, Mahfoud M, Sapieha JE, Martinu L, Leblond F. Spectral effects and enhancement quantification in healthy human saliva with surface-enhanced Raman spectroscopy using silver nanopillar substrates. Lasers Surg Med 2024; 56:206-217. [PMID: 38073098 DOI: 10.1002/lsm.23746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Raman spectroscopy as a diagnostic tool for biofluid applications is limited by low inelastic scattering contributions compared to the fluorescence background from biomolecules. Surface-enhanced Raman spectroscopy (SERS) can increase Raman scattering signals, thereby offering the potential to reduce imaging times. We aimed to evaluate the enhancement related to the plasmonic effect and quantify the improvements in terms of spectral quality associated with SERS measurements in human saliva. METHODS Dried human saliva was characterized using spontaneous Raman spectroscopy and SERS. A fabrication protocol was implemented leading to the production of silver (Ag) nanopillar substrates by glancing angle deposition. Two different imaging systems were used to interrogate saliva from 161 healthy donors: a custom single-point macroscopic system and a Raman micro-spectroscopy instrument. Quantitative metrics were established to compare spontaneous RS and SERS measurements: the Raman spectroscopy quality factor (QF), the photonic count rate (PR), the signal-to-background ratio (SBR). RESULTS SERS measurements acquired with an excitation energy four times smaller than with spontaneous RS resulted in improved QF, PR values an order of magnitude larger and a SBR twice as large. The SERS enhancement reached 100×, depending on which Raman bands were considered. CONCLUSIONS Single-point measurement of dried saliva with silver nanopillars substrates led to reproducible SERS measurements, paving the way to real-time tools of diagnosis in human biofluids.
Collapse
Affiliation(s)
- Esmat Zamani
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Nassim Ksantini
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Guillaume Sheehy
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Katherine J I Ember
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Bill Baloukas
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
| | - Oleg Zabeida
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
| | - Tran Trang
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Myriam Mahfoud
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | | | - Ludvik Martinu
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
| | - Frédéric Leblond
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| |
Collapse
|
2
|
Liu X, Zhou X, Li X, Wei Y, Wang T, Liu S, Yang H, Sun X. Saliva Analysis Based on Microfluidics: Focusing the Wide Spectrum of Target Analyte. Crit Rev Anal Chem 2023:1-23. [PMID: 38039145 DOI: 10.1080/10408347.2023.2287656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Saliva is one of the most critical human body fluids that can reflect the state of the human body. The detection of saliva is of great significance for disease diagnosis and health monitoring. Microfluidics, characterized by microscale size and high integration, is an ideal platform for the development of rapid and low-cost disease diagnostic techniques and devices. Microfluidic-based saliva testing methods have aroused considerable interest due to the increasing need for noninvasive testing and frequent or long-term testing. This review briefly described the significance of saliva analysis and generally classified the targets in saliva detection into pathogenic microorganisms, inorganic substances, and organic substances. By using this classification as a benchmark, the state-of-the-art research results on microfluidic detection of various substances in saliva were summarized. This work also put forward the challenges and future development directions of microfluidic detection methods for saliva.
Collapse
Affiliation(s)
- Xin Liu
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, Shenyang, China
| | - Xinyue Zhou
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, Shenyang, China
| | - Xiaojia Li
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang, China
| | - Yixuan Wei
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang, China
| | - Tianlin Wang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Shuo Liu
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, Shenyang, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Timpel J, Klinghammer S, Riemenschneider L, Ibarlucea B, Cuniberti G, Hannig C, Sterzenbach T. Sensors for in situ monitoring of oral and dental health parameters in saliva. Clin Oral Investig 2023; 27:5719-5736. [PMID: 37698630 PMCID: PMC10560166 DOI: 10.1007/s00784-023-05206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVES The oral cavity is an easily accessible unique environment and open system which is influenced by the oral fluids, microbiota, and nutrition. Little is known about the kinetics and dynamics of metabolic processes at the intraoral surfaces. Real-time monitoring of salivary biomarkers, e.g., glucose, lactate, fluoride, calcium, phosphate, and pH with intraoral sensors is therefore of major interest. The aim of this review is to overview the existing literature for intraoral saliva sensors. MATERIALS AND METHODS A comprehensive literature search was performed to review the most relevant studies on intraoral saliva sensor technology. RESULTS There is limited literature about the in situ saliva monitoring of salivary biomarkers. Bioadhesion and biofouling processes at the intraoral surfaces limit the performances of the sensors. Real-time, long-term, and continuous intraoral measurement of salivary metabolites remains challenging and needs further investigation as only few well-functioning sensors have been developed until today. Until now, there is no sensor that measures reliably beyond hours for any analyte other than glucose. CONCLUSIONS Saliva's complex and dynamic structure as well as bioadhesion are key challenges and should be addressed in the future developments. Consequently, more studies that focus particularly on biofouling processes and interferential effects of the salivary matrix components on sensor surfaces are required. CLINICAL RELEVANCE By monitoring fluids in the oral cavity, as the entrance to the digestive system, extensive information can be obtained regarding the effects of foods and preventive agents on the oral microbiota and the tooth surfaces. This may lead to a better understanding of strategies to modulate oral and general health.
Collapse
Affiliation(s)
- Julia Timpel
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany.
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany.
| | - Stephanie Klinghammer
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, 01069, Dresden, Germany
| | - Leif Riemenschneider
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, 01069, Dresden, Germany
| | - Bergoi Ibarlucea
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, 01069, Dresden, Germany
| | - Gianaurelio Cuniberti
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, 01069, Dresden, Germany
| | - Christian Hannig
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
| | - Torsten Sterzenbach
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
| |
Collapse
|
4
|
Abstract
Liquid biopsy has become a significant tool in personalized medicine, enabling real-time monitoring of cancer evolution and patient follow-up. This minimally invasive procedure analyzes circulating tumor cells (CTCs) and circulating tumor-derived materials, such as ctDNA, miRNAs, and EVs. CTC analysis significantly impacts prognosis, detection of minimal residual disease (MRD), treatment selection, and monitoring of cancer patients. Liquid biopsy is an attractive option for mouth cancer detection and treatment progress monitoring in many countries. It is not invasive and requires no surgical expertise, making it an attractive option for mouth cancer detection. Liquid biopsy is a diagnostic repeatable test that can profile cancer genomes in real-time with minimal invasiveness and tailor oncological decision-making. It analyzes different blood-circulating biomarkers, with ctDNA being the preferred one. While tissue biopsy remains the gold standard for molecular evaluation of solid tumors, liquid biopsy is a complementary tool in various clinical settings, including treatment selection, monitoring response, cancer clonal evolution, prognostic evaluation, early disease detection, and minimal residual disease (MRD).
Collapse
Affiliation(s)
- Shrikant B Mali
- Mahatma Gandhi Vidyamandir's Karmaveer Bhausaheb Hiray Dental College & Hospital, Nashik, India.
| |
Collapse
|
5
|
Dongiovanni P, Meroni M, Casati S, Goldoni R, Thomaz DV, Kehr NS, Galimberti D, Del Fabbro M, Tartaglia GM. Salivary biomarkers: novel noninvasive tools to diagnose chronic inflammation. Int J Oral Sci 2023; 15:27. [PMID: 37386003 DOI: 10.1038/s41368-023-00231-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Several chronic disorders including type 2 diabetes (T2D), obesity, heart disease and cancer are preceded by a state of chronic low-grade inflammation. Biomarkers for the early assessment of chronic disorders encompass acute phase proteins (APP), cytokines and chemokines, pro-inflammatory enzymes, lipids and oxidative stress mediators. These substances enter saliva through the blood flow and, in some cases, there is a close relation between their salivary and serum concentration. Saliva can be easily collected and stored with non-invasive and cost-saving procedures, and it is emerging the concept to use it for the detection of inflammatory biomarkers. To this purpose, the present review aims to discuss the advantages and challenges of using standard and cutting-edge techniques to discover salivary biomarkers which may be used in diagnosis/therapy of several chronic diseases with inflammatory consequences with the pursuit to possibly replace conventional paths with detectable soluble mediators in saliva. Specifically, the review describes the procedures used for saliva collection, the standard approaches for the measurement of salivary biomarkers and the novel methodological strategies such as biosensors to improve the quality of care for chronically affected patients.
Collapse
Affiliation(s)
- Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marica Meroni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Casati
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| | - Riccardo Goldoni
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni, CNR, Pisa, Italy
| | - Douglas Vieira Thomaz
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Nermin Seda Kehr
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Department of Chemistry, İzmir Institute of Technology, Gülbahçe Kampüsü, Urla İzmir, Turkey
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Neurology-Neurodegenerative Diseases, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- UOC Maxillo-Facial Surgery and Dentistry Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca M Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- UOC Maxillo-Facial Surgery and Dentistry Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
6
|
Min H, Zhu S, Safi L, Alkourdi M, Nguyen BH, Upadhyay A, Tran SD. Salivary Diagnostics in Pediatrics and the Status of Saliva-Based Biosensors. BIOSENSORS 2023; 13:206. [PMID: 36831972 PMCID: PMC9953390 DOI: 10.3390/bios13020206] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Salivary biomarkers are increasingly being used as an alternative to diagnose and monitor the progression of various diseases due to their ease of use, on site application, non-invasiveness, and most likely improved patient compliance. Here, we highlight the role of salivary biosensors in the general population, followed by the application of saliva as a diagnostic tool in the pediatric population. We searched the literature for pediatric applications of salivary biomarkers, more specifically, in children from 0 to 18 years old. The use of those biomarkers spans autoimmune, developmental disorders, oncology, neuropsychiatry, respiratory illnesses, gastrointestinal disorders, and oral diseases. Four major applications of salivary proteins as biomarkers are: (1) dental health (caries, stress from orthodontic appliances, and gingivitis); (2) gastrointestinal conditions (eosinophilic esophagitis, acid reflux, appendicitis); (3) metabolic conditions (obesity, diabetes); and (4) respiratory conditions (asthma, allergic rhinitis, small airway inflammation, pneumonia). Genomics, metabolomics, microbiomics, proteomics, and transcriptomics, are various other classifications for biosensing based on the type of biomarkers used and reviewed here. Lastly, we describe the recent advances in pediatric biosensing applications using saliva. This work guides scientists in fabricating saliva-based biosensors by comprehensively overviewing the potential markers and techniques that can be employed.
Collapse
Affiliation(s)
- Hayeon Min
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Science, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Sophie Zhu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Science, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Lydia Safi
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Science, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Munzer Alkourdi
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Science, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | | | - Akshaya Upadhyay
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Science, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Science, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
7
|
Krishna R, Colak I. Advances in Biomedical Applications of Raman Microscopy and Data Processing: A Mini Review. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2094391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Ram Krishna
- Department of Mechanical Engineering, Madanapalle Institute of Technology & Science, Madanapalle, Andhra Pradesh, India
- Electrical and Electronics Engineering, Nisantasi University, Istanbul, Turkey
- Ohm Janki Biotech Research Private Limited, India
| | - Ilhami Colak
- Electrical and Electronics Engineering, Nisantasi University, Istanbul, Turkey
| |
Collapse
|
8
|
Abstract
The current issue (volume 13 issue 6, 2021) is a Special Issue jointly dedicated to scientific content presented at the 20th triennial IUPAB Congress that was held in conjunction with both the 45th Annual Meeting of the Brazilian Biophysical Society (Sociedade Brasileira de Biofísica - SBBf) and the 50th Annual Meeting of the Brazilian Society for Biochemistry and Molecular Biology (Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq). In addition to describing the scientific and nonscientific content arising from the meeting this sub-editorial also provides a look back at some of the high points for Biophysical Reviews in the year 2021 before going on to describe a number of matters of interest to readers of the journal in relation to the coming year of 2022.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1164 Japan
- Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
9
|
|
10
|
Lukose J, Barik A, Unnikrishnan VK, George SD, Kartha VB, Chidangil S. Development of a spectroscopic technique that enables the saliva based detection of COVID-19 at safe distances. RESULTS IN CHEMISTRY 2021; 3:100210. [PMID: 34642620 PMCID: PMC8500476 DOI: 10.1016/j.rechem.2021.100210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/17/2021] [Accepted: 10/02/2021] [Indexed: 01/29/2023] Open
Abstract
Research activities are in full swing globally to translate the use of saliva as a non-invasive and highly potential specimen for clinical diagnostics, particularly for COVID-19 detection. Being comprised of a pool of biomarkers also enriched with ACE-2 receptors, saliva can provide vital information regarding the state of the human body. Advancements in biophotonics tools for saliva investigation may offer promise for developing rapid, highly objective, optical modalities for COVID- 19 detection. This article presents concept/design study, which propose the use of Raman/laser induced fluorescence spectroscopic device that have the potential for viral detection via saliva from a safer distance. Noticeable changes of biomarkers present in saliva in response to viral infection can reflect the pathological state, thus can altogether affect the Raman spectral pattern. Monitoring these spectral patterns of saliva, which are further enhanced by using cost effective and reproducible Surface Enhanced Raman Spectroscopy substrates can be a viable option for sensitive and non-invasive viral detection. The spectral information acquired from the optical device can be processed using various multivariate statistical analytical tools, which ultimately facilitate effective viral detection in few minutes. This method doesn't demand the necessity of qualified professionals and sample processing with reagents unlike in RT-PCR test. The proposed optical device can be further modified into a portable form, which can be easily transported for field applications. The stand-off observation, contactless and highly non-invasive technique can be of paramount importance in the current context, where the safer screening of a large population for viral infection by maintaining social distances is a necessity. The proposed stand-off spectroscopic technique can also address the major concern of nosocomial viral transmission amongst healthcare workers during sample collection in a pandemic scenario.
Collapse
Affiliation(s)
- Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104 India
| | - Ajayakumar Barik
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104 India
| | - V K Unnikrishnan
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104 India
| | - Sajan D George
- Centre for Applied Nanosciences, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104 India
| | - V B Kartha
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104 India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104 India
| |
Collapse
|
11
|
Hall D. Biophysical Reviews-A call to young biophysicists. Biophys Rev 2021; 13:289-294. [PMID: 34178166 PMCID: PMC8214647 DOI: 10.1007/s12551-021-00810-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
This Editorial for Volume 13, Issue 3 of Biophysical Reviews begins with a summary of the Issue contents. This is then followed by a discussion of some additional matters important to the journal. In particular, this Editorial offers some thoughts as to what constitutes a good scientific Commentary before announcing the call for nominations for the 'The 2022 Michèle Auger Award for Young Scientists' Independent Research'.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1164 Japan
- Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|