1
|
Li Y, Xue L, Gao J, Cai W, Zhang Z, Meng L, Miao S, Hong X, Xu M, Wu Q, Zhang J. A systematic review and meta-analysis indicates a substantial burden of human noroviruses in shellfish worldwide, with GII.4 and GII.2 being the predominant genotypes. Food Microbiol 2023; 109:104140. [DOI: 10.1016/j.fm.2022.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
|
2
|
Vasquez-García A, Mejia-Ballesteros JE, de Godoy SHS, Barbieri E, de Sousa RLM, Fernandes AM. Norovirus GII and astrovirus in shellfish from a mangrove region in Cananéia, Brazil: molecular detection and characterization. Braz J Microbiol 2021; 53:317-326. [PMID: 34661887 DOI: 10.1007/s42770-021-00631-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022] Open
Abstract
In recent years, annual cases of gastroenteritis have been reported in the world at high rates, suggesting an association with the consumption of shellfish with enteric viruses in their tissues. Anthropic activities are considered a source of environmental pollution and the main responsible for contamination by pathogenic microorganisms in aquatic environments. The objective of this study was to evaluate, by RT-semi-nested PCR, the presence of astrovirus (AstV) and norovirus genogroup II (NoV GII) in mussels (Mytella falcata) and oysters (Crassostrea brasiliana) collected in two sites of the Lagunar Complex of Cananéia, State of São Paulo, Brazil. A total of 150 samples of mussels and oysters (75 samples each) were analyzed. AstV was not identified in any shellfish sample. NoV GII was detected in 21 samples (14%), 8 mussel samples (38%), and 13 oyster samples (62%). From the 21 positive samples, 16 were analyzed by nucleotide sequencing. The molecular characterization revealed that Brazilian samples were grouped into clades along with other sequences from Brazil, Japan, and Mexico. There was 93.8-100% amino acid sequence similarity among the samples in this study and > 94.9% when compared with the strains isolated from clinical cases in Brazil. The screening of shellfish for the presence of health-significant enteric viruses can help prevent outbreaks among consumers and contribute to the improvement of the estuarine environment.
Collapse
Affiliation(s)
- Andrea Vasquez-García
- Faculdade de Zootecnia E Engenharia de Alimentos, Universidade de São Paulo, Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil.,Escuela de Ciencias Básicas Tecnología E Ingeniería, Universidad Nacional Abierta Y a Distancia, 763532, Palmira, Colombia
| | - Julian Eduardo Mejia-Ballesteros
- Faculdade de Zootecnia E Engenharia de Alimentos, Universidade de São Paulo, Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil.,Escuela de Ciencias Agrarias Pecuarias Y del Medio Ambiente,, Universidad Nacional Abierta Y a Distancia, 763532, Palmira, Colombia
| | - Silvia Helena Seraphin de Godoy
- Faculdade de Zootecnia E Engenharia de Alimentos, Universidade de São Paulo, Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Edison Barbieri
- Instituto de Pesca - APTA-SAA/SP. Prof, Besnard s/n, Cananéia, SP, 11990-000, Brazil
| | - Ricardo Luiz Moro de Sousa
- Faculdade de Zootecnia E Engenharia de Alimentos, Universidade de São Paulo, Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Andrezza Maria Fernandes
- Faculdade de Zootecnia E Engenharia de Alimentos, Universidade de São Paulo, Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil.
| |
Collapse
|
3
|
Di Cola G, Fantilli AC, Pisano MB, Ré VE. Foodborne transmission of hepatitis A and hepatitis E viruses: A literature review. Int J Food Microbiol 2021; 338:108986. [PMID: 33257099 DOI: 10.1016/j.ijfoodmicro.2020.108986] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022]
Abstract
Foodborne viruses have been recognized as a growing concern to the food industry and a serious public health problem. Hepatitis A virus (HAV) is responsible for the majority of viral outbreaks of food origin worldwide, while hepatitis E virus (HEV) has also been gaining prominence as a foodborne viral agent in the last years, due to its zoonotic transmission through the consumption of uncooked or undercooked infected meat or derivatives. However, there is a lack of scientific reports that gather all the updated information about HAV and HEV as foodborne viruses. A search of all scientific articles about HAV and HEV in food until March 2020 was carried out, using the keywords "HAV", "HEV", "foodborne", "outbreak" and "detection in food". Foodborne outbreaks due to HAV have been reported since 1956, mainly in the USA, and in Europe in recent years, where the number of outbreaks has been increasing throughout time, and nowadays it has become the continent with the highest foodborne HAV outbreak report. Investigation and detection of HAV in food is more recent, and the first detections were performed in the 1990s decade, most of them carried out on seafood, first, and frozen food, later. On the other hand, HEV has been mainly looked for and detected in food derived from reservoir animals, such as meat, sausages and pate of pigs and wild boars. For this virus, only isolated cases and small outbreaks of foodborne transmission have been recorded, most of them in industrialized countries, due to HEV genotype 3 or 4. Virus detection in food matrices requires special processing of the food matrix, followed by RNA detection by molecular techniques. For HAV, a real-time PCR has been agreed as the standard method for virus detection in food; in the case of HEV, a consensus assay for its detection in food has not been reached yet. Our investigation shows that there is still little data about HAV and HEV prevalence and frequency of contamination in food, prevalent viral strains, and sources of contamination, mainly in developing countries, where there is no research and legislation in this regard. Studies on these issues are needed to get a better understanding of foodborne viruses, their maintenance and their potential to cause diseases.
Collapse
Affiliation(s)
- Guadalupe Di Cola
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gomez s/n, CP: 5016 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Anabella C Fantilli
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gomez s/n, CP: 5016 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Belén Pisano
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gomez s/n, CP: 5016 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Viviana E Ré
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gomez s/n, CP: 5016 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
4
|
Randazzo W, Sánchez G. Hepatitis A infections from food. J Appl Microbiol 2020; 129:1120-1132. [DOI: 10.1111/jam.14727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022]
Affiliation(s)
- W. Randazzo
- Department of Preservation and Food Safety Technologies IATA‐CSIC Valencia Spain
- Department of Microbiology and Ecology University of Valencia Valencia Spain
| | - G. Sánchez
- Department of Preservation and Food Safety Technologies IATA‐CSIC Valencia Spain
| |
Collapse
|
5
|
Santos-Ferreira N, Mesquita JR, Rivadulla E, Inácio ÂS, Nascimento MSJ, Romalde J, Martins da Costa P. Norovirus contamination of sea urchins (Paracentrotus lividus): Potential food risk for consumers. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Suffredini E, Le Q, Di Pasquale S, Pham T, Vicenza T, Losardo M, To K, De Medici D. Occurrence and molecular characterization of enteric viruses in bivalve shellfish marketed in Vietnam. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Padovan AC, Neave MJ, Munksgaard NC, Gibb KS. Multiple approaches to assess the safety of artisanal marine food in a tropical estuary. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:125. [PMID: 28238170 DOI: 10.1007/s10661-017-5842-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
In this study, metal and metalloid concentrations and pathogens were measured in shellfish at different locations in a tropical estuary, including sites impacted by sewage and industry. Oyster, mangrove snails and mud snails did not exceed Australian and New Zealand Food Standards maximum levels for copper, lead or estimated inorganic arsenic at any site although copper concentrations in oysters and mud snails exceeded generally expected levels at some locations. Bacterial community composition in shellfish was species-specific regardless of location and different to the surrounding water and sediment. In the snails Telescopium telescopium, Terebralia palustris and Nerita balteata, some bacterial taxa differed between sites, but not in Saccostrea cucullata oysters. The abundance of potential human pathogens was very low and pathogen abundance or diversity was not associated with site classification, i.e. sewage impact, industry impact and reference.
Collapse
Affiliation(s)
- A C Padovan
- Research Institute of the Environment and Livelihoods, Charles Darwin University, Ellengowan Drive, Darwin, NT, 0810, Australia.
| | - M J Neave
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Vic, 3220, Australia
| | - N C Munksgaard
- Research Institute of the Environment and Livelihoods, Charles Darwin University, Ellengowan Drive, Darwin, NT, 0810, Australia
| | - K S Gibb
- Research Institute of the Environment and Livelihoods, Charles Darwin University, Ellengowan Drive, Darwin, NT, 0810, Australia
| |
Collapse
|
8
|
Kim MS, Koo ES, Choi YS, Kim JY, Yoo CH, Yoon HJ, Kim TO, Choi HB, Kim JH, Choi JD, Park KS, Shin Y, Kim YM, Ko G, Jeong YS. Distribution of Human Norovirus in the Coastal Waters of South Korea. PLoS One 2016; 11:e0163800. [PMID: 27681683 PMCID: PMC5040428 DOI: 10.1371/journal.pone.0163800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/14/2016] [Indexed: 02/02/2023] Open
Abstract
The presence of human norovirus in the aquatic environment can cause outbreaks related to recreational activities and the consumption of norovirus-contaminated clams. In this study, we investigated the prevalence of norovirus genogroups I (GI) and II (GII) in the coastal aquatic environment in South Korea (March 2014 to February 2015). A total of 504 water samples were collected periodically from four coastal areas (total sites = 63), of which 44 sites were in estuaries (clam fisheries) and 19 were in inflow streams. RT-PCR analysis targeting ORF2 region C revealed that 20.6% of the water samples were contaminated by GI (13.3%) or GII (16.6%). The prevalence of human norovirus was higher in winter/spring than in summer/fall, and higher in inflow streams (50.0%) than in estuaries (7.9%). A total of 229 human norovirus sequences were identified from the water samples, and phylogenetic analysis showed that the sequences clustered into eight GI genotypes (GI.1, 2, 3, 4, 5, 6, 7, and 9) and nine GII genotypes (GII.2, 3, 4, 5, 6, 11, 13, 17, and 21). This study highlighted three issues: 1) a strong correlation between norovirus contamination via inflow streams and coastal areas used in clam fisheries; 2) increased prevalence of certain non-GII.4 genotypes, exceeding that of the GII.4 pandemic variants; 3) seasonal shifts in the dominant genotypes of both GI and GII.
Collapse
Affiliation(s)
- Man Su Kim
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| | - Eung Seo Koo
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| | - Yong Seon Choi
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| | - Ji Young Kim
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| | - Chang Hoon Yoo
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| | - Hyun Jin Yoon
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Gyeongnam, South Korea
| | - Tae-Ok Kim
- Department of Food Science and Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan, South Korea
| | - Hyun Bae Choi
- Department of Environmental Engineering & Biotechnology, Mokpo National Maritime University, Mokpo, South Korea
| | - Ji Hoon Kim
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| | - Jong Deok Choi
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Gyeongnam, South Korea
| | - Kwon-Sam Park
- Department of Food Science and Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan, South Korea
| | - Yongsik Shin
- Department of Environmental Engineering & Biotechnology, Mokpo National Maritime University, Mokpo, South Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Yong Seok Jeong
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
9
|
Kittigul L, Thamjaroen A, Chiawchan S, Chavalitshewinkoon-Petmitr P, Pombubpa K, Diraphat P. Prevalence and Molecular Genotyping of Noroviruses in Market Oysters, Mussels, and Cockles in Bangkok, Thailand. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:133-40. [PMID: 26872638 DOI: 10.1007/s12560-016-9228-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/29/2016] [Indexed: 05/06/2023]
Abstract
Noroviruses are the most common cause of acute gastroenteritis associated with bivalve shellfish consumption. This study aimed to detect and characterize noroviruses in three bivalve shellfish species: oysters (Saccostrea forskali), cockles (Anadara nodifera), and mussels (Perna viridis). The virus concentration procedure (adsorption-twice elution-extraction) and a molecular method were employed to identify noroviruses in shellfish. RT-nested PCR was able to detect known norovirus GII.4 of 8.8 × 10(-2) genome copies/g of digestive tissues from oyster and cockle concentrates, whereas in mussel concentrates, the positive result was seen at 8.8 × 10(2) copies/g of digestive tissues. From August 2011 to July 2012, a total of 300 shellfish samples, including each of 100 samples from oysters, cockles, and mussels were collected and tested for noroviruses. Norovirus RNA was detected in 12.3 % of shellfish samples. Of the noroviruses, 7.7 % were of the genogroup (G) I, 2.6 % GII, and 2.0 % were mixed GI and GII. The detection rate of norovirus GI was 2.1 times higher than GII. With regards to the different shellfish species, 17 % of the oyster samples were positive, while 14.0 and 6.0 % were positive for noroviruses found in mussels and cockles, respectively. Norovirus contamination in the shellfish occurred throughout the year with the highest peak in September. Seventeen norovirus-positive PCR products were characterized upon a partial sequence analysis of the capsid gene. Based on phylogenetic analysis, five different genotypes of norovirus GI (GI.2, GI.3, GI.4, GI.5, and GI.9) and four different genotypes of GII (GII.1, GII.2, GII.3, and GII.4) were identified. These findings indicate the prevalence and distribution of noroviruses in three shellfish species. The high prevalence of noroviruses in oysters contributes to the optimization of monitoring plans to improve the preventive strategies of acute gastroenteritis.
Collapse
Affiliation(s)
- Leera Kittigul
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand.
| | - Anyarat Thamjaroen
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Suwat Chiawchan
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | | | - Kannika Pombubpa
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Pornphan Diraphat
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| |
Collapse
|