1
|
Awere-Duodu A, Donkor ES. Rotavirus in Water Environments: A Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241276667. [PMID: 39439598 PMCID: PMC11494518 DOI: 10.1177/11786302241276667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/02/2024] [Indexed: 10/25/2024]
Abstract
Background Despite the adoption of rotavirus vaccines, sporadic outbreaks of the virus have been reported in many parts of the world. These outbreaks are facilitated by several factors including the ease of transmission of rotavirus through water environments. This systematic review aimed to determine the global prevalence of rotavirus in water environments. Methodology Comprehensive Boolean searches were conducted in PubMed, SCOPUS, and Web of Science. A total of 75 eligible studies were included in the study, from which data was extracted for both systematic review and meta-analysis. Extracted prevalence data was grouped according to six water categories: drinking water, untreated sewage, treated sewage, surface water, groundwater, and others. A single-group prevalence meta-analysis was conducted in RStudio version 4.3.3 subjecting the data to the random-effects model. Results The included studies were conducted in 32 countries that span 5 continents: Africa, Asia, Europe, North America, and South America. The pooled prevalence of rotavirus in water environments was 40.86%. Among the individual water environments, untreated sewage had the highest prevalence (68.27%), followed by treated sewage (53.07%), surface water (33.40%), groundwater (25.64%) and drinking water (9.46%). Continental stratification of the prevalence data was as follows: Africa (51.75%), Asia (32.48%), Europe (55.90%), North America (41.80%), and South America (28.51%). Conclusion There is a high prevalence of rotavirus in water environments, especially in untreated sewage, and in Europe. Further research is needed to find more efficient methods that can effectively eliminate rotavirus to insignificant levels in water environments.
Collapse
Affiliation(s)
- Aaron Awere-Duodu
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
2
|
Omatola CA, Olaniran AO. Molecular Characterization and Phylogenetic analyses of Rotaviruses Circulating in Municipal Sewage and Sewage-Polluted River Waters in Durban Area, South Africa. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:363-379. [PMID: 38914870 PMCID: PMC11422280 DOI: 10.1007/s12560-024-09598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/17/2024] [Indexed: 06/26/2024]
Abstract
Globally, rotavirus continues to be the leading etiology of severe pediatric gastroenteritis, and transmission of the disease via environmental reservoirs has become an emerging concern in developing countries. From August to October 2021, a total of 69 samples comprising 48 of raw and treated sewage, and 21 surface waters, were collected from four Durban wastewater treatment plants (DWWTP), and effluent receiving rivers, respectively. Rotaviruses recovered and identified from the samples were subjected to sequencing, genotyping, and phylogenetic analysis. Of the 65 (94.2%) rotavirus-positive samples, 33.3% were from raw sewage, 16% from activated sludge, 15.9% from final effluents, and 29.0% were from the receiving river samples. A total of 49 G and 41 P genotypes were detected in sewage while 15 G and 22 P genotypes were detected in river samples. G1 genotype predominated in sewage (24.5%) followed by G3 (22.4%), G2 (14.3%), G4 (12.2%), G12 (10.2%), G9 (8.2%), and G8 (6.1%). Similarly, G1 predominated in river water samples (33.3%) and was followed by G2, G4 (20.0% each), G3, and G12 (13.3% each). Rotavirus VP4 genotypes P[4], P[6], and P[8] accounted for 36.6%, 29.3%, and 9.8%, respectively, in sewage. Correspondingly, 45.5%, 31.8%, and 13.6% were detected in river samples. The G and P genotypes not identified by the methods used were 2.1% versus 24.3% and 0.1% versus 9.1% for sewage and river water samples, respectively. Sequence comparison studies indicated a high level of nucleotide identity in the G1, G2, G3, G4, G8 VP7, and P[4], P[6], and P[8] VP4 gene sequences between strains from the environment and those from patients in the region. This is the first environmental-based study on the G and P genotypes diversity of rotavirus in municipal wastewater and their receiving rivers in this geographical region. The high similarity between environmental and clinical rotavirus strains suggests both local circulation of the virus and potential exposure risks. In addition, it highlights the usefulness of sewage surveillance as an additional tool for an epidemiological investigation, especially in populations that include individuals with subclinical or asymptomatic infections that are precluded in case-based studies.
Collapse
Affiliation(s)
- Cornelius Arome Omatola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, Republic of South Africa
| | - Ademola Olufolahan Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, Republic of South Africa.
| |
Collapse
|
3
|
Bleotu C, Matei L, Dragu LD, Necula LG, Pitica IM, Chivu-Economescu M, Diaconu CC. Viruses in Wastewater-A Concern for Public Health and the Environment. Microorganisms 2024; 12:1430. [PMID: 39065197 PMCID: PMC11278728 DOI: 10.3390/microorganisms12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/26/2024] Open
Abstract
Wastewater monitoring provides essential information about water quality and the degree of contamination. Monitoring these waters helps identify and manage risks to public health, prevent the spread of disease, and protect the environment. Standardizing the appropriate and most accurate methods for the isolation and identification of viruses in wastewater is necessary. This review aims to present the major classes of viruses in wastewater, as well as the methods of concentration, isolation, and identification of viruses in wastewater to assess public health risks and implement corrective measures to prevent and control viral infections. Last but not least, we propose to evaluate the current strategies in wastewater treatment as well as new alternative methods of water disinfection.
Collapse
Affiliation(s)
- Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
- The Academy of Romanian Scientist, 050711 Bucharest, Romania
| | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Denisa Dragu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Georgiana Necula
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Ioana Madalina Pitica
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Mihaela Chivu-Economescu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Carmen Cristina Diaconu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| |
Collapse
|
4
|
Panizzolo M, Gea M, Carraro E, Gilli G, Bonetta S, Pignata C. Occurrence of human pathogenic viruses in drinking water and in its sources: A review. J Environ Sci (China) 2023; 132:145-161. [PMID: 37336605 DOI: 10.1016/j.jes.2022.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/21/2023]
Abstract
Since many waterborne diseases are caused by human pathogenic viruses, virus monitoring of drinking water (DW) and DW sources is crucial for public health. Therefore, the aim of this review was to describe the occurrence of human pathogenic viruses in DW and DW sources; the occurrence of two viruses proposed as novel indicators of human faecal contamination (Pepper mild mottle virus and Tobacco mosaic virus) was also reported. This research was focused on articles that assessed viral occurrence using molecular methods in the surface water used for DW production (SW-D), groundwater used for DW production (GW-D), DW and bottled-DW (BW). A total of 1544 studies published in the last 10 years were analysed, and 79 were ultimately included. In considering the detection methods, filtration is the most common concentration technique, while quantitative polymerase chain reaction is the most common quantification technique. Regarding virus occurrence in SW-D, GW-D, and DW, high percentages of positive samples were reported for adenovirus, polyomavirus and Pepper mild mottle virus. Viral genomes were frequently detected in SW-D and rarely in GW-D, suggesting that GW-D may be a safe DW source. Viral genomes were also detected in DW, posing a possible threat to human health. The lowest percentages of positive samples were found in Europe, while the highest were found in Asia and South America. Only three articles assessed viral occurrence in BW. This review highlights the lack of method standardization and the need for legislation updates.
Collapse
Affiliation(s)
- Marco Panizzolo
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy.
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Silvia Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| |
Collapse
|
5
|
Gholipour S, Ghalhari MR, Nikaeen M, Rabbani D, Pakzad P, Miranzadeh MB. Occurrence of viruses in sewage sludge: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153886. [PMID: 35182626 PMCID: PMC8848571 DOI: 10.1016/j.scitotenv.2022.153886] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 05/04/2023]
Abstract
Enteric viruses are of great importance in wastewater due to their high excretion from infected individuals, low removal in wastewater treatment processes, long-time survival in the environment, and low infectious dose. Among the other viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surveillance in wastewater systems has received particular attention as a result of the current COVID-19 epidemic. Viruses adhering to solid particles in wastewater treatment processes will end up as sewage sludge, and therefore insufficient sludge treatment may result in viral particles dissemination into the environment. Here, we review data on viruses' presence in sewage sludge, their detection and concentration methods, and information on human health issues associated with sewage sludge land application. We used combinations of the following keywords in the Scopus, Web of Science (WOS), and PubMed databases, which were published between 2010 and January 21th, 2022: sludge (sewage sludge, biosolids, sewage solids, wastewater solids) and virus (enteric virus, viral particles, viral contamination, SARS-CoV-2, coronavirus). The sources were searched twice, once with and then without the common enteric virus names (adenovirus, rotavirus, norovirus, enterovirus, hepatitis A virus). Studies suggest adenovirus and norovirus as the most prevalent enteric viruses in sewage sludge. Indeed, other viruses include rotavirus, hepatitis A virus, and enterovirus were frequently found in sewage sludge samples. Untreated biological sludge and thickened sludge showed more viral contamination level than digested sludge and the lowest prevalence of viruses was reported in lime stabilized sludge. The review reveals that land application of sewage sludge may pose viral infection risks to people due to accidently ingestion of sludge or intake of crops grown in biosolids amended soil. Moreover, contamination of groundwater and/or surface water may occur due to land application of sewage sludge.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Rezvani Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davarkhah Rabbani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Parichehr Pakzad
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagher Miranzadeh
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Booranathawornsom T, Pombubpa K, Tipayamongkholgul M, Kittigul L. Molecular characterization of human bocavirus in recycled water and sewage sludge in Thailand. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105276. [PMID: 35367361 DOI: 10.1016/j.meegid.2022.105276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The study aimed to assess the presence and molecular characterization of human bocavirus (HBoV) in recycled water and sewage sludge samples in Thailand. One hundred and two recycled water and eighty-six sewage sludge samples collected from a wastewater treatment plant were tested for the presence of HBoV using nested PCR with broad-range primer pairs targeting the capsid proteins VP1 and VP2. HBoV DNA was detected in recycled water of 9/102 (8.8%) samples and sewage sludge of 27/86 (31.4%) samples. Based on DNA sequencing and phylogenetic analysis, the HBoV DNA sequences had 98.8-100.0% nucleotide identity to the sequences from HBoV reported globally. Thirty-five HBoV-positive samples were identified to genotypes as the predominant HBoV2; 26 followed by HBoV3; 8 and the rare HBoV4; 1 sample. Concerning recycled water, HBoV2 was detected in 3 (2.9%) and HBoV3 was detected in 5 (4.9%) of all samples. The sewage sludge samples were characterized as HBoV2 in 23 (26.7%), HBoV3 in 3 (3.5%) and HBoV4 in 1 (1.2%) of all samples. The frequency of HBoV detected in recycled water and sewage sludge samples significantly differed in sample type (p-value = 0.007). The findings of three HBoV genotypes in recycled water and sewage sludge emphasized the circulation of the virus in the environment and the potential source of transmission to the community.
Collapse
Affiliation(s)
- Thitiya Booranathawornsom
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok 10400, Thailand
| | - Kannika Pombubpa
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok 10400, Thailand
| | - Mathuros Tipayamongkholgul
- Department of Epidemiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok 10400, Thailand
| | - Leera Kittigul
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok 10400, Thailand.
| |
Collapse
|
7
|
Omatola CA, Olaniran AO. Epidemiological significance of the occurrence and persistence of rotaviruses in water and sewage: a critical review and proposal for routine microbiological monitoring. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:380-399. [PMID: 35174845 DOI: 10.1039/d1em00435b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Globally, waterborne gastroenteritis attributable to rotaviruses is on the increase due to the rapid increase in population growth, poor socioeconomic conditions, and drastic changes in climatic conditions. The burden of diarrhea is quite alarming in developing nations where the majority of the populations still rely on untreated surface water that is usually polluted for their immediate water needs. Humans and animals of all ages are affected by rotaviruses. In humans, the preponderance of cases occurs in children under 5 years. Global efforts in advancing water/wastewater treatment technologies have not yet realized the objective of complete viral removal from wastewater. Most times, surface waters are impacted heavily by inadequately treated wastewater run-offs thereby exposing people or animals to preventable health risks. The relative stability of rotaviruses in aquatic matrices during wastewater treatment, poor correlation of bacteriological indicators with the presence of rotaviruses, and their infectiousness at a low dose informed the proposal for inclusion in the routine microbiological water screening panel. Environmental monitoring data have been shown to provide early warnings that can complement clinical data used to monitor the impact of current rotavirus vaccination in a community. This review was therefore undertaken to critically appraise rotavirus excretion and emission pathways, and the existence, viability and persistence in the receiving aquatic milieu. The efficiency of the current wastewater treatment modality for rotavirus removal, correlation of the current bacteriological water quality assessment strategy, public health risks and current laboratory methods for an epidemiological study were also discussed.
Collapse
Affiliation(s)
- Cornelius A Omatola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Republic of South Africa.
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Republic of South Africa.
| |
Collapse
|