1
|
Ferreira GS, Hermanson G, Kyriakouli C, Dróżdż D, Szczygielski T. Shell biomechanics suggests an aquatic palaeoecology at the dawn of turtle evolution. Sci Rep 2024; 14:21822. [PMID: 39294199 PMCID: PMC11411134 DOI: 10.1038/s41598-024-72540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
The turtle shell is a remarkable structure that has intrigued not only evolutionary biologists but also engineering and material scientists because of its multi-scale complexity and various functions. Although protection is its most apparent role, the carapace and plastron are also related to many physiological functions and their shape influences hydrodynamics and self-righting ability. As such, analysing the functional morphology of the shell could help understanding the ecology of Triassic stem-turtles, which will contribute to the century-long debate on the evolutionary origins of turtles. Here, we used 3D imaging techniques to digitize the shells of two of the earliest stem-turtle taxa, Proganochelys and Proterochersis, and submitted their models to biomechanical and shape analyses. We analysed the strength performance under five predation scenarios and tested the function of two morphological traits found in stem-turtles, the epiplastral processes and an attached pelvic girdle. The latter, also present in the crown-lineage of side-necked turtles, has been suggested to increase load-bearing capacity of the shell or to improve swimming in pleurodires. Our results do not confirm the shell-strengthening hypothesis and, together with the results of our shape analyses, suggest that at least one of the first stem-turtles (Proterochersis) was an aquatic animal.
Collapse
Affiliation(s)
- Gabriel S Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany.
- Fachbereich Geowissenschaften, Eberhard Karls Universität Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany.
| | - Guilherme Hermanson
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700, Fribourg, Switzerland
| | - Christina Kyriakouli
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany
- Fachbereich Geowissenschaften, Eberhard Karls Universität Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany
| | - Dawid Dróżdż
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences PL, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Tomasz Szczygielski
- Institute of Paleobiology, Polish Academy of Sciences PL, Twarda 51/55, 00-818, Warsaw, Poland
| |
Collapse
|
2
|
Cherepanov G, Danilov I. Thecal and Epithecal Ossifications of the Turtle Shell: Ontogenetic And Phylogenetic Aspects. J Morphol 2024; 285:e21768. [PMID: 39223904 DOI: 10.1002/jmor.21768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The problem of the origin of the bony shell in turtles has a two-century history and still has not lost its relevance. First, this concerns the issues of the homology, the sources of formation and the ratio of bones of different nature, that is, thecal and epithecal, in particular. This article analyzes various views on the nature of the shell elements, and proposes their typification, based on modern data on developmental biology. It is proposed that the defining characteristic of the types of shell ossifications is not the level of their anlage in the dermis (thecality or epithecality), but, first of all, the primary sources of their formation: (1) neural crest (nuchal and plastral plates); (2) vertebral and rib periosteum (neural and costal plates); and (3) dermal mesenchyme (peripheral, suprapygal and pygal plates, as well as epithecal elements). In addition, there is complete correspondence between these types of ossifications and the sequence of their appearance in the turtle ontogenesis. The data show fundamental coincidence of the modifications of the ontogenetic development and evolutionary formation of the shell ossifications and are in agreement with a stepwise model for the origin of the turtle body plan. Particular attention is paid to the origin of the epithecal elements of the turtle shell, which correspond to the additional or supernumerary ossifications and seem to have wider distribution among turtles, than previously thought.
Collapse
Affiliation(s)
- Gennady Cherepanov
- Department of Vertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Igor Danilov
- Laboratory of Herpetology, Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
3
|
Holtz N, Albertson RC. Variable Craniofacial Shape and Development among Multiple Cave-Adapted Populations of Astyanax mexicanus. Integr Org Biol 2024; 6:obae030. [PMID: 39234027 PMCID: PMC11372417 DOI: 10.1093/iob/obae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024] Open
Abstract
Astyanax mexicanus is a freshwater fish species with blind cave morphs and sighted surface morphs. Like other troglodytic species, independently evolved cave-dwelling A. mexicanus populations share several stereotypic phenotypes, including the expansion of certain sensory systems, as well as the loss of eyes and pigmentation. Here, we assess the extent to which there is also parallelism in craniofacial development across cave populations. Since multiple forces may be acting upon variation in the A. mexicanus system, including phylogenetic history, selection, and developmental constraint, several outcomes are possible. For example, eye regression may have triggered a conserved series of compensatory developmental events, in which case we would expect to observe highly similar craniofacial phenotypes across cave populations. Selection for cave-specific foraging may also lead to the evolution of a conserved craniofacial phenotype, especially in regions of the head directly associated with feeding. Alternatively, in the absence of a common axis of selection or strong developmental constraints, craniofacial shape may evolve under neutral processes such as gene flow, drift, and bottlenecking, in which case patterns of variation should reflect the evolutionary history of A. mexicanus. Our results found that cave-adapted populations do share certain anatomical features; however, they generally did not support the hypothesis of a conserved craniofacial phenotype across caves, as nearly every pairwise comparison was statistically significant, with greater effect sizes noted between more distantly related cave populations with little gene flow. A similar pattern was observed for developmental trajectories. We also found that morphological disparity was lower among all three cave populations versus surface fish, suggesting eye loss is not associated with increased variation, which would be consistent with a release of developmental constraint. Instead, this pattern reflects the relatively low genetic diversity within cave populations. Finally, magnitudes of craniofacial integration were found to be similar among all groups, meaning that coordinated development among anatomical units is robust to eye loss in A. mexicanus. We conclude that, in contrast to many conserved phenotypes across cave populations, global craniofacial shape is more variable, and patterns of shape variation are more in line with population structure than developmental architecture or selection.
Collapse
Affiliation(s)
- N Holtz
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - R C Albertson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Usai G, Fambrini M, Pugliesi C, Simoni S. Exploring the patterns of evolution: Core thoughts and focus on the saltational model. Biosystems 2024; 238:105181. [PMID: 38479653 DOI: 10.1016/j.biosystems.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
The Modern Synthesis, a pillar in biological thought, united Darwin's species origin concepts with Mendel's laws of character heredity, providing a comprehensive understanding of evolution within species. Highlighting phenotypic variation and natural selection, it elucidated the environment's role as a selective force, shaping populations over time. This framework integrated additional mechanisms, including genetic drift, random mutations, and gene flow, predicting their cumulative effects on microevolution and the emergence of new species. Beyond the Modern Synthesis, the Extended Evolutionary Synthesis expands perspectives by recognizing the role of developmental plasticity, non-genetic inheritance, and epigenetics. We suggest that these aspects coexist in the plant evolutionary process; in this context, we focus on the saltational model, emphasizing how saltation events, such as dichotomous saltation, chromosomal mutations, epigenetic phenomena, and polyploidy, contribute to rapid evolutionary changes. The saltational model proposes that certain evolutionary changes, such as the rise of new species, may result suddenly from single macromutations rather than from gradual changes in DNA sequences and allele frequencies within a species over time. These events, observed in domesticated and wild higher plants, provide well-defined mechanistic bases, revealing their profound impact on plant diversity and rapid evolutionary events. Notably, next-generation sequencing exposes the likely crucial role of allopolyploidy and autopolyploidy (saltational events) in generating new plant species, each characterized by distinct chromosomal complements. In conclusion, through this review, we offer a thorough exploration of the ongoing dissertation on the saltational model, elucidating its implications for our understanding of plant evolutionary processes and paving the way for continued research in this intriguing field.
Collapse
Affiliation(s)
- Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Samuel Simoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
5
|
Al Aiyan A, Balan R, Gebreigziabiher S, Zerom S, Mihreteab Y, Ghebrehiwot E, AlDarwich A, Willingham AL, Kishore U. Comprehensive mapping of the exterior architecture of the dromedary camel brain. Sci Rep 2024; 14:2971. [PMID: 38316875 PMCID: PMC10844311 DOI: 10.1038/s41598-024-53541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024] Open
Abstract
The morphological perspective of the camel brain remains largely unexplored. Therefore, studying the topography of the camel brain is of crucial importance. This study aimed to provide a detailed color-coded topographic representation of the camel brain's gross anatomy and nomenclature, showing its various gyri and sulci and their borders. We compared them to previously known information to develop a detailed description of camel brain exterior architecture. Our research identified distinctive gyri and sulci with discrete positions and surrounding structures, allowing us to define sulci boundaries and establish logical gyri nomenclature. This study uncovered previously overlooked gyri and sulci and improved descriptions of specific sulci. The ectomarginal sulcus, splenial sulcus, splenial gyrus, and ectogenual gyrus are a few examples. These findings highlight several unique anatomical features of the dromedary brain, which can guide future research. By providing a comprehensive examination of the distinctive exterior anatomical features of the camel brain, this study may serve as a point of convergence for all researchers, providing more accurate identification of the gyri and sulci.
Collapse
Affiliation(s)
- Ahmad Al Aiyan
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, UAE.
| | - Rinsha Balan
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, UAE
| | - Senit Gebreigziabiher
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, UAE
| | - Simona Zerom
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, UAE
| | - Yotam Mihreteab
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, UAE
| | - Even Ghebrehiwot
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, UAE
| | - Adnan AlDarwich
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, UAE
| | - Arve Lee Willingham
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, UAE
| | - Uday Kishore
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, UAE
| |
Collapse
|
6
|
Lin J, Zhang M, Liang F, Ni Y, Zhang J, Shi H, Hong M, Ding L. Morphological and transcriptomic analyses of embryonic development of red-eared slider Trachemys scripta elegans. Anim Reprod Sci 2024; 261:107395. [PMID: 38104500 DOI: 10.1016/j.anireprosci.2023.107395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Embryology provides an understanding of individual's origin and developmental patterns. Turtles are among the oldest living reptiles and have unique body structure. However, the morphogenesis and mechanisms of turtles are not fully understood. In this study, we focused on the embryonic development of red-eared slider (Trachemys scripta elegans) which widely distributes in the world. At an incubation temperature of 28 °C, the turtle eggs had a 61-day incubation cycle, and the entire embryonic development process was divided into 27 stages and 3 phases according to variations in age, body size, and morphological characteristics. The early phase of embryonic development (the first 12 stages) were characterized by embryo growth, and the appearance of internal organ precursors. The middle phase (stages 13-20) involved prominent heart division at stage 13 and the appearance of carapace and plastron at stages 14 and 17, respectively. In the later phase (stages 21-27), the hatchlings formed, and the carapace and plastron thickened. Transcriptome analysis of embryos showed enrichment of the differential genes in pathways related to development, metabolism, disease, and cellular processes. The Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG) analysis implied the crucial regulatory role of the axon guidance pathway. Real-time fluorescence quantitative PCR indicated upregulated expression of wnt5a and bmp7 in stages 7 and 16 compared to that in stage 12. This study revealed the development process of red-eared slider embryo and the dynamics of the signaling pathway affecting its development, which supplemented the theory of embryo development, and provided new ideas for the molecular mechanism of turtle embryo development.
Collapse
Affiliation(s)
- Jing Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Miaomiao Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Fangbin Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Yunfang Ni
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jiani Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
7
|
Pedro Selvatti A, Romero Rebello Moreira F, Cardoso de Carvalho D, Prosdocimi F, Augusta de Moraes Russo C, Carolina Martins Junqueira A. Phylogenomics reconciles molecular data with the rich fossil record on the origin of living turtles. Mol Phylogenet Evol 2023; 183:107773. [PMID: 36977459 DOI: 10.1016/j.ympev.2023.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 02/07/2023] [Accepted: 03/21/2023] [Indexed: 03/28/2023]
Abstract
Although a consensus exists that all living turtles fall within either Pleurodira or Cryptodira clades, estimating when these lineages split is still under debate. Most molecular studies date the split in the Triassic Period, whereas a Jurassic age is unanimous among morphological studies. Each hypothesis implies different paleobiogeographical scenarios to explain early turtle evolution. Here we explored the rich turtle fossil record with the Fossilized Birth-Death (FBD) and the traditional node dating (ND) methods using complete mitochondrial genomes (147 taxa) and a set of nuclear orthologs with over 10 million bp (25 taxa) to date the major splits in Testudines. Our results support an Early Jurassic split (191-182 Ma) for the crown Testudines with great consistency across different dating methods and datasets, with a narrow confidence interval. This result is independently supported by the oldest fossils of Testudines that postdate the Middle Jurassic (174 Ma), which were not used for calibration in this study. This age coincides with the Pangaea fragmentation and the formation of saltwater barriers such as the Atlantic Ocean and the Turgai Strait, supporting that diversification in Testudines was triggered by vicariance. Our ages of the splits in Pleurodira coincide with the geologic events of the Late Jurassic and Early Cretaceous. Conversely, the early Cryptodira radiation remained in Laurasia, and its diversification ensued as all its major lineages expanded their distribution into every continent during the Cenozoic. We provide the first detailed hypothesis of the evolution of Cryptodira in the Southern Hemisphere, in which our time estimates are correlated with each contact between landmasses derived from Gondwana and Laurasia. Although most South American Cryptodira arrived through the Great American Biotic Interchange, our results indicate that the Chelonoidis ancestor probably arrived from Africa through the chain islands of the South Atlantic during the Paleogene. Together, the presence of ancient turtle diversity and the vital role that turtles occupy in marine and terrestrial ecosystems underline South America as a chief area for conservation.
Collapse
|
8
|
Oliveira MFS, Rocha LIQ, Dias LC, de Moura CEB, Vogt RC, Magalhães MS. Embryonic development of Podocnemis unifilis (Testudines: Podocnemididae). ZOOMORPHOLOGY 2022. [DOI: 10.1007/s00435-022-00571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
|
9
|
Gene Regulation during Carapacial Ridge Development of Mauremys reevesii: The Development of Carapacial Ridge, Ribs and Scutes. Genes (Basel) 2022; 13:genes13091676. [PMID: 36140843 PMCID: PMC9498798 DOI: 10.3390/genes13091676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The unique topological structure of a turtle shell, including the special ribs-scapula relationship, is an evolutionarily novelty of amniotes. The carapacial ridge is a key embryonic tissue for inducing turtle carapace morphologenesis. However, the gene expression profiles and molecular regulatory mechanisms that occur during carapacial ridge development, including the regulation mechanism of rib axis arrest, the development mechanism of the carapacial ridge, and the differentiation between soft-shell turtles and hard-shell turtles, are not fully understood. In this study, we obtained genome-wide gene expression profiles during the carapacial ridge development of Mauremys reevesii using RNA-sequencing by using carapacial ridge tissues from stage 14, 15 and 16 turtle embryos. In addition, a differentially expressed genes (DEGs) analysis and a gene set enrichment analysis (GSEA) of three comparison groups were performed. Furthermore, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used to analyze the pathway enrichment of the differentially expressed genes of the three comparative groups. The result displayed that the Wnt signaling pathway was substantially enriched in the CrTK14 vs. the CrTK15 comparison group, while the Hedgehog signaling pathway was significantly enriched in the CrTK15 vs. the CrTK16 group. Moreover, the regulatory network of the Wnt signaling pathway showed that Wnt signaling pathways might interact with Fgfs, Bmps, and Shh to form a regulatory network to regulate the carapacial ridge development. Next, WGCNA was used to cluster and analyze the expression genes during the carapacial ridge development of M. reevesii and P. sinensis. Further, a KEGG functional enrichment analysis of the carapacial ridge correlation gene modules was performed. Interesting, these results indicated that the Wnt signaling pathway and the MAPK signaling pathway were significantly enriched in the gene modules that were highly correlated with the stage 14 and stage 15 carapacial ridge samples of the two species. The Hedgehog signaling pathway was significantly enriched in the modules that were strongly correlated with the stage 16 carapacial ridge samples of M. reevesii, however, the PI3K-Akt signaling and the TGF-β signaling pathways were significantly enriched in the modules that were strongly correlated with the stage 16 carapacial ridge samples of P. sinensis. Furthermore, we found that those modules that were strongly correlated with the stage 14 carapacial ridge samples of M. reevesii and P. sinensis contained Wnts and Lef1. While the navajo white 3 module which was strongly correlated with the stage 16 carapacial ridge samples of M. reevesii contained Shh and Ptchs. The dark green module strongly correlated with the stage 16 carapacial ridge samples of P. sinensis which contained Col1a1, Col1a2, and Itga8. Consequently, this study systematically revealed the signaling pathways and genes that regulate the carapacial ridge development of M. reevesii and P. sinensis, which provides new insights for revealing the molecular mechanism that is underlying the turtle's body structure.
Collapse
|
10
|
Ascarrunz E, Sánchez-Villagra MR. The macroevolutionary and developmental evolution of the turtle carapacial scutes. VERTEBRATE ZOOLOGY 2022. [DOI: 10.3897/vz.72.e76256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The scutes of the carapace of extant turtles exhibit common elements in a narrow range of topographical arrangements. The typical arrangement has remained constant since its origin in the clade Mesochelydia (Early Jurassic), after a period of apparent greater diversity in the Triassic. This contribution is a review of the development and evolutionary history of the scute patterns of the carapace, seen through the lens of recent developmental models. This yields insights on pattern variations in the fossil record. We reinterpret the “supracaudal” scute and propose that Proganochelys had five vertebral scutes. We discuss the relationship between supramarginal scutes and Turing processes, and we show how a simple change during embryogenesis could account for origin of the configuration of the caudal region of the carapace in mesochelydians. We also discuss the nature of the decrease in number of scutes over the course of evolution, and whether macroevolutionary trends can be discerned. We argue that turtles with complete loss of scutes (e.g., softshells) follow clade-specific macroevolutionary regimes, which are distinct from the majority of other turtles. Finally, we draw a parallel between the variation of scute patterns on the carapace of turtles and the scale patterns in the pileus region (roof of the head) of squamates. The size and numbers of scales in the pileus region can evolve over a wide range, but we recognized tentative evidence of convergence towards a typical configuration when the scales become larger and fewer. Thus, typical patterns could be a more general property of similar systems of integumentary appendages.
Collapse
|
11
|
Krahl A, Witzel U. Foreflipper and hindflipper muscle reconstructions of Cryptoclidus eurymerus in comparison to functional analogues: introduction of a myological mechanism for flipper twisting. PeerJ 2022; 9:e12537. [PMID: 35003916 PMCID: PMC8684327 DOI: 10.7717/peerj.12537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Plesiosaurs, diapsid crown-group Sauropterygia, inhabited the oceans from the Late Triassic to the Late Cretaceous. Their most exceptional characteristic are four hydrofoil-like flippers. The question whether plesiosaurs employed their four flippers in underwater flight, rowing flight, or rowing has not been settled yet. Plesiosaur locomotory muscles have been reconstructed in the past, but neither the pelvic muscles nor the distal fore- and hindflipper musculature have been reconstructed entirely. METHODS All plesiosaur locomotory muscles were reconstructed in order to find out whether it is possible to identify muscles that are necessary for underwater flight including those that enable flipper rotation and twisting. Flipper twisting has been proven by hydrodynamic studies to be necessary for efficient underwater flight. So, Cryptoclidus eurymerus fore- and hindflipper muscles and ligaments were reconstructed using the extant phylogenetic bracket (Testudines, Crocodylia, and Lepidosauria) and correlated with osteological features and checked for their functionality. Muscle functions were geometrically derived in relation to the glenoid and acetabulum position. Additionally, myology of functionally analogous Chelonioidea, Spheniscidae, Otariinae, and Cetacea is used to extract general myological adaptations of secondary aquatic tetrapods to inform the phylogenetically inferred muscle reconstructions. RESULTS A total of 52 plesiosaur fore- and hindflipper muscles were reconstructed. Amongst these are flipper depressors, elevators, retractors, protractors, and rotators. These muscles enable a fore- and hindflipper downstroke and upstroke, the two sequences that represent an underwater flight flipper beat cycle. Additionally, other muscles were capable of twisting fore- and hindflippers along their length axis during down- and upstroke accordingly. A combination of these muscles that actively aid in flipper twisting and intermetacarpal/intermetatarsal and metacarpodigital/metatarsodigital ligament systems, that passively engage the successive digits, could have accomplished fore-and hindflipper length axis twisting in plesiosaurs that is essential for underwater flight. Furthermore, five muscles that could possibly actively adjust the flipper profiles for efficient underwater flight were found, too.
Collapse
Affiliation(s)
- Anna Krahl
- Biomechanics Research Group, Lehrstuhl für Produktentwicklung, Faculty of Mechanical Engineering, Ruhr-Universität Bochum, Bochum, Germany.,Section of Paleontology, Institute of Geoscience, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.,Paläontologische Sammlung, Fachbereich Geowissenschaften, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Ulrich Witzel
- Biomechanics Research Group, Lehrstuhl für Produktentwicklung, Faculty of Mechanical Engineering, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
12
|
Global Analysis of Transcriptome and Translatome Revealed That Coordinated WNT and FGF Regulate the Carapacial Ridge Development of Chinese Soft-Shell Turtle. Int J Mol Sci 2021; 22:ijms222212441. [PMID: 34830331 PMCID: PMC8621500 DOI: 10.3390/ijms222212441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
The turtle carapace is composed of severely deformed fused dorsal vertebrae, ribs, and bone plates. In particular, the lateral growth in the superficial layer of turtle ribs in the dorsal trunk causes an encapsulation of the scapula and pelvis. The recent study suggested that the carapacial ridge (CR) is a new model of epithelial–mesenchymal transition which is essential for the arrangement of the ribs. Therefore, it is necessary to explore the regulatory mechanism of carapacial ridge development to analyze the formation of the turtle shell. However, the current understanding of the regulatory network underlying turtle carapacial ridge development is poor due to the lack of both systematic gene screening at different carapacial ridge development stages and gene function verification studies. In this study, we obtained genome-wide gene transcription and gene translation profiles using RNA sequencing and ribosome nascent-chain complex mRNA sequencing from carapacial ridge tissues of Chinese soft-shell turtle at different development stages. A correlation analysis of the transcriptome and translatome revealed that there were 129, 670, and 135 codifferentially expressed genes, including homodirection and opposite-direction differentially expressed genes, among three comparison groups, respectively. The pathway enrichment analysis of codifferentially expressed genes from the Kyoto Encyclopedia of Genes and Genomes showed dynamic changes in signaling pathways involved in carapacial ridge development. Especially, the results revealed that the Wnt signaling pathway and MAPK signaling pathway may play important roles in turtle carapacial ridge development. In addition, Wnt and Fgf were expressed during the carapacial ridge development. Furthermore, we discovered that Wnt5a regulated carapacial ridge development through the Wnt5a/JNK pathway. Therefore, our studies uncover that the morphogenesis of the turtle carapace might function through the co-operation between conserved WNT and FGF signaling pathways. Consequently, our findings revealed the dynamic signaling pathways acting on the carapacial ridge development of Chinese soft-shell turtle and provided new insights into uncover the molecular mechanism underlying turtle shell morphogenesis.
Collapse
|
13
|
Lyson TR, Bever GS. Origin and Evolution of the Turtle Body Plan. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The origin of turtles and their uniquely shelled body plan is one of the longest standing problems in vertebrate biology. The unfulfilled need for a hypothesis that both explains the derived nature of turtle anatomy and resolves their unclear phylogenetic position among reptiles largely reflects the absence of a transitional fossil record. Recent discoveries have dramatically improved this situation, providing an integrated, time-calibrated model of the morphological, developmental, and ecological transformations responsible for the modern turtle body plan. This evolutionary trajectory was initiated in the Permian (>260 million years ago) when a turtle ancestor with a diapsid skull evolved a novel mechanism for lung ventilation. This key innovation permitted the torso to become apomorphically stiff, most likely as an adaption for digging and a fossorial ecology. The construction of the modern turtle body plan then proceeded over the next 100 million years following a largely stepwise model of osteological innovation.
Collapse
Affiliation(s)
- Tyler R. Lyson
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
| | - Gabriel S. Bever
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
14
|
Urošević A, Ajduković M, Arntzen JW, Ivanović A. Morphological integration and serial homology: A case study of the cranium and anterior vertebrae in salamanders. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Aleksandar Urošević
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković” National Institute of Republic of Serbia University of Belgrade Belgrade Serbia
| | - Maja Ajduković
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković” National Institute of Republic of Serbia University of Belgrade Belgrade Serbia
| | | | - Ana Ivanović
- Naturalis Biodiversity Center Leiden The Netherlands
- Institute of Zoology Faculty of Biology University of Belgrade Belgrade Serbia
| |
Collapse
|
15
|
Cordero GA. Transcriptomic similarities and differences between the limb bud AER and unique carapacial ridge of turtle embryos. Evol Dev 2020; 22:370-383. [PMID: 32862496 DOI: 10.1111/ede.12351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/10/2020] [Accepted: 08/02/2020] [Indexed: 01/04/2023]
Abstract
Evolutionary innovation may arise via major departures from an ancestral condition. Turtle shell morphogenesis depends on a unique structure known as the carapacial ridge (CR). This lateral tissue protrusion in turtle embryos exhibits similar properties as the apical ectodermal ridge (AER)-a well-known molecular signaling center involved in limb development. Still, how the CR influences shell morphogenesis is not entirely clear. The present study aimed to describe the CR transcriptome shortly before ribs were halted within its mesenchyme, as required for shell development. Analyses exposed that the mesenchymal marker VIM was one of the most highly co-expressed genes and numerous appendage formation genes were situated within the core of CR and AER co-expression networks. However, there were tissue-specific differences in the activity of these genes. For instance, WNT5A was most frequently assigned to appendage-related annotations of the CR network core, but not in the AER. Several homeobox transcription factors known to regulate limb bud patterning exhibited their highest expression levels in the AER, but were underexpressed in the CR. The results of this study corroborate that novel body plans often originate via alterations of pre-existing genetic networks. Altogether, this exploratory study enhances the groundwork for future experiments on the molecular underpinnings of turtle shell development and evolution.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
16
|
Scaal M. Development of the amniote ventrolateral body wall. Dev Dyn 2020; 250:39-59. [PMID: 32406962 DOI: 10.1002/dvdy.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
In vertebrates, the trunk consists of the musculoskeletal structures of the back and the ventrolateral body wall, which together enclose the internal organs of the circulatory, digestive, respiratory and urogenital systems. This review gives an overview on the development of the thoracic and abdominal wall during amniote embryogenesis. Specifically, I briefly summarize relevant historical concepts and the present knowledge on the early embryonic development of ribs, sternum, intercostal muscles and abdominal muscles with respect to anatomical bauplan, origin and specification of precursor cells, initial steps of pattern formation, and cellular and molecular regulation of morphogenesis.
Collapse
Affiliation(s)
- Martin Scaal
- Faculty of Medicine, Institute of Anatomy II, University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Ferreira GS, Lautenschlager S, Evers SW, Pfaff C, Kriwet J, Raselli I, Werneburg I. Feeding biomechanics suggests progressive correlation of skull architecture and neck evolution in turtles. Sci Rep 2020; 10:5505. [PMID: 32218478 PMCID: PMC7099039 DOI: 10.1038/s41598-020-62179-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
The origin of turtles is one of the most long-lasting debates in evolutionary research. During their evolution, a series of modifications changed their relatively kinetic and anapsid skull into an elongated akinetic structure with a unique pulley system redirecting jaw adductor musculature. These modifications were thought to be strongly correlated to functional adaptations, especially to bite performance. We conducted a series of Finite Element Analyses (FEAs) of several species, including that of the oldest fully shelled, Triassic stem-turtle Proganochelys, to evaluate the role of force distribution and to test existing hypotheses on the evolution of turtle skull architecture. We found no support for a relation between the akinetic nature of the skull or the trochlear mechanisms with increased bite forces. Yet, the FEAs show that those modifications changed the skull architecture into an optimized structure, more resistant to higher loads while allowing material reduction on specific regions. We propose that the skull of modern turtles is the result of a complex process of progressive correlation between their heads and highly flexible necks, initiated by the origin of the shell.
Collapse
Affiliation(s)
- Gabriel S Ferreira
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, Brazil. .,Fachbereich Geowissenschaften der Eberhard Karls Universität Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany.
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, United Kingdom
| | - Serjoscha W Evers
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK.,Department of Geosciences, University of Fribourg, Chemin du musée, 1700, Fribourg, Switzerland
| | - Cathrin Pfaff
- University of Vienna, Department of Palaeontology, Althanstraße 14, 1090, Vienna, Austria
| | - Jürgen Kriwet
- University of Vienna, Department of Palaeontology, Althanstraße 14, 1090, Vienna, Austria
| | - Irena Raselli
- Jurassica Museum, Route de Fontenais 21, 2900, Porrentruy, Switzerland.,Department of Geosciences, University of Fribourg, Chemin du musée, 1700, Fribourg, Switzerland
| | - Ingmar Werneburg
- Fachbereich Geowissenschaften der Eberhard Karls Universität Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany. .,Senckenberg Center for Human Evolution and Palaeoenvironment (HEP) an der Eberhard Karls Universität, Sigwartstraße 10, 72076, Tübingen, Germany.
| |
Collapse
|
18
|
Evolution, Diversity, and Development of the Craniocervical System in Turtles with Special Reference to Jaw Musculature. HEADS, JAWS, AND MUSCLES 2019. [DOI: 10.1007/978-3-319-93560-7_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Joyce WG. The origin of turtles: a paleontological perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:181-93. [PMID: 25712176 DOI: 10.1002/jez.b.22609] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022]
Abstract
The origin of turtles and their unusual body plan has fascinated scientists for the last two centuries. Over the course of the last decades, a broad sample of molecular analyses have favored a sister group relationship of turtles with archosaurs, but recent studies reveal that this signal may be the result of systematic biases affecting molecular approaches, in particular sampling, non-randomly distributed rate heterogeneity among taxa, and the use of concatenated data sets. Morphological studies, by contrast, disfavor archosaurian relationships for turtles, but the proposed alternative topologies are poorly supported as well. The recently revived paleontological hypothesis that the Middle Permian Eunotosaurus africanus is an intermediate stem turtle is now robustly supported by numerous characters that were previously thought to be unique to turtles and that are now shown to have originated over the course of tens of millions of years unrelated to the origin of the turtle shell. Although E. africanus does not solve the placement of turtles within Amniota, it successfully extends the stem lineage of turtles to the Permian and helps resolve some questions associated with the origin of turtles, in particular the non-composite origin of the shell, the slow origin of the shell, and the terrestrial setting for the origin of turtles.
Collapse
Affiliation(s)
- Walter G Joyce
- Department of Geoscience, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
20
|
Rice R, Riccio P, Gilbert SF, Cebra-Thomas J. Emerging from the rib: resolving the turtle controversies. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:208-20. [PMID: 25675951 DOI: 10.1002/jez.b.22600] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/29/2014] [Indexed: 12/15/2022]
Abstract
Two of the major controversies in the present study of turtle shell development involve the mechanism by which the carapacial ridge initiates shell formation and the mechanism by which each rib forms the costal bones adjacent to it. This paper claims that both sides of each debate might be correct-but within the species examined. Mechanism is more properly "mechanisms," and there is more than one single way to initiate carapace formation and to form the costal bones. In the initiation of the shell, the rib precursors may be kept dorsal by either "axial displacement" (in the hard-shell turtles) or "axial arrest" (in the soft-shell turtle Pelodiscus), or by a combination of these. The former process would deflect the rib into the dorsal dermis and allow it to continue its growth there, while the latter process would truncate rib growth. In both instances, though, the result is to keep the ribs from extending into the ventral body wall. Our recent work has shown that the properties of the carapacial ridge, a key evolutionary innovation of turtles, differ greatly between these two groups. Similarly, the mechanism of costal bone formation may differ between soft-shell and hard-shell turtles, in that the hard-shell species may have both periosteal flattening as well as dermal bone induction, while the soft-shelled turtles may have only the first of these processes.
Collapse
Affiliation(s)
- Ritva Rice
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
21
|
Nagashima H, Sugahara F, Takechi M, Sato N, Kuratani S. On the homology of the shoulder girdle in turtles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:244-54. [PMID: 25052382 DOI: 10.1002/jez.b.22584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/30/2014] [Accepted: 06/16/2014] [Indexed: 12/15/2022]
Abstract
The shoulder girdle in turtles is encapsulated in the shell and has a triradiate morphology. Due to its unique configuration among amniotes, many theories have been proposed about the skeletal identities of the projections for the past two centuries. Although the dorsal ramus represents the scapular blade, the ventral two rami remain uncertain. In particular, the ventrorostral process has been compared to a clavicle, an acromion, and a procoracoid based on its morphology, its connectivity to the rest of the skeleton and to muscles, as well as with its ossification center, cell lineage, and gene expression. In making these comparisons, the shoulder girdle skeleton of anurans has often been used as a reference. This review traces the history of the debate on the homology of the shoulder girdle in turtles. And based on the integrative aspects of developmental biology, comparative morphology, and paleontology, we suggest acromion and procoracoid identities for the two ventral processes.
Collapse
Affiliation(s)
- Hiroshi Nagashima
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | |
Collapse
|
22
|
Nagashima H, Shibata M, Taniguchi M, Ueno S, Kamezaki N, Sato N. Comparative study of the shell development of hard- and soft-shelled turtles. J Anat 2014; 225:60-70. [PMID: 24754673 PMCID: PMC4089346 DOI: 10.1111/joa.12189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2014] [Indexed: 12/23/2022] Open
Abstract
The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used - the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin.
Collapse
Affiliation(s)
- Hiroshi Nagashima
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
| | - Masahiro Shibata
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
| | - Mari Taniguchi
- Suma Aqualife ParkKobe, Japan
- Sea Turtle Association of JapanHirakata, Japan
| | - Shintaro Ueno
- Suma Aqualife ParkKobe, Japan
- Sea Turtle Association of JapanHirakata, Japan
| | - Naoki Kamezaki
- Suma Aqualife ParkKobe, Japan
- Sea Turtle Association of JapanHirakata, Japan
| | - Noboru Sato
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
| |
Collapse
|
23
|
Hirasawa T, Pascual-Anaya J, Kamezaki N, Taniguchi M, Mine K, Kuratani S. The evolutionary origin of the turtle shell and its dependence on the axial arrest of the embryonic rib cage. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:194-207. [PMID: 24898540 DOI: 10.1002/jez.b.22579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022]
Abstract
Turtles are characterized by their possession of a shell with dorsal and ventral moieties: the carapace and the plastron, respectively. In this review, we try to provide answers to the question of the evolutionary origin of the carapace, by revising morphological, developmental, and paleontological comparative analyses. The turtle carapace is formed through modification of the thoracic ribs and vertebrae, which undergo extensive ossification to form a solid bony structure. Except for peripheral dermal elements, there are no signs of exoskeletal components ontogenetically added to the costal and neural bones, and thus the carapace is predominantly of endoskeletal nature. Due to the axial arrest of turtle rib growth, the axial part of the embryo expands laterally and the shoulder girdle becomes encapsulated in the rib cage, together with the inward folding of the lateral body wall in the late phase of embryogenesis. Along the line of this folding develops a ridge called the carapacial ridge (CR), a turtle-specific embryonic structure. The CR functions in the marginal growth of the carapacial primordium, in which Wnt signaling pathway might play a crucial role. Both paleontological and genomic evidence suggest that the axial arrest is the first step toward acquisition of the turtle body plan, which is estimated to have taken place after the divergence of a clade including turtles from archosaurs. The developmental relationship between the CR and the axial arrest remains a central issue to be solved in future.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The turtle body plan, with its solid shell, deviates radically from those of other tetrapods. The dorsal part of the turtle shell, or the carapace, consists mainly of costal and neural bony plates, which are continuous with the underlying thoracic ribs and vertebrae, respectively. Because of their superficial position, the evolutionary origins of these costo-neural elements have long remained elusive. Here we show, through comparative morphological and embryological analyses, that the major part of the carapace is derived purely from endoskeletal ribs. We examine turtle embryos and find that the costal and neural plates develop not within the dermis, but within deeper connective tissue where the rib and intercostal muscle anlagen develop. We also examine the fossils of an outgroup of turtles to confirm that the structure equivalent to the turtle carapace developed independently of the true osteoderm. Our results highlight the hitherto unravelled evolutionary course of the turtle shell. The evolutionary origins of the costal and neural bony plates of the turtle shell have long remained elusive. Here the authors show, through comparative morphological and embryological analyses, that the most of the carapace is derived from endoskeletal ribs.
Collapse
|
25
|
Alibardi L. Immunocytochemistry suggests that the prevalence of a sub-type of beta-proteins determines the hardness in the epidermis of the hard-shelled turtle. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:54-63. [DOI: 10.1002/jez.b.22548] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/05/2013] [Accepted: 10/11/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna Italy
| |
Collapse
|
26
|
|
27
|
Abstract
The elongated, snake-like skeleton, as it has convergently evolved in numerous reptilian and amphibian lineages, is from a developmental biologist’s point of view amongst the most fascinating anatomical peculiarities in the animal kingdom. This type of body plan is characterized by a greatly increased number of vertebrae, a reduction of skeletal regionalization along the primary body axis and loss of the limbs. Recent studies conducted on both mouse and snakes now hint at how changes inside the gene regulatory circuitries of the Hox genes and the somitogenesis clock likely underlie these striking departures from standard tetrapod morphology, suggesting scenarios by which snakes and other elongated species may have evolved from more ordinarily bodied ancestors.
Collapse
Affiliation(s)
- Joost M Woltering
- University of Geneva, Department of Genetics and Evolution, 30 quai Ernest Ansermet, 1211 CH, Genève, Switzerland
| |
Collapse
|