1
|
Tocantins C, Martins JD, Rodrigues ÓM, Grilo LF, Diniz MS, Stevanovic-Silva J, Beleza J, Coxito P, Rizo-Roca D, Santos-Alves E, Moreno AJ, Ascensão A, Magalhães J, Oliveira PJ, Pereira SP. Maternal heart exhibits metabolic and redox adaptations post-uncomplicated pregnancy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167539. [PMID: 39378968 DOI: 10.1016/j.bbadis.2024.167539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Pregnancy may be a challenging period for the maternal systems and has been regarded as a stress test, as imperceptible/mild dysfunctions eventually present may be exacerbated during this period. The cardiovascular system is no exception, and several morphological and functional adaptations accompanying pregnancy have been described. However, long-term pregnancy-induced cardiac molecular alterations remain highly unexplored. The postpartum is marked by reverse remodeling of the pregnancy-induced cardiovascular adaptations, representing a possible critical period for assessing future maternal cardiovascular health. The current study explored the molecular and metabolic alterations in the cardiac tissue eight weeks after a physiological uncomplicated pregnancy. Female Sprague-Dawley rats were fed a chow diet through pregnancy, lactation, and weaning and compared to their non-pregnant counterparts. Eight weeks postpartum, increased levels of the phosphorylated form of AMPKα (Thr172) and its ratio to total AMPKα indicated possible alterations in cardiac metabolic flexibility, accompanied by increased Pparα and Hif1α transcripts levels. Additionally, postpartum hearts exhibited higher mitochondrial ATP and NADH levels without major changes in mitochondrial respiratory function. Elevated Nrf2 levels in the cardiac tissue suggested potential implications for cardiac redox balance, further supported by increased levels or activity of proteins directly regulated by Nrf2. The findings herein reported suggest that at eight weeks postpartum, molecular alterations induced by pregnancy, especially regarding redox balance, are still observed in the mothers' heart. These alterations present at late postpartum may open new avenues to understand the different risk for cardiovascular complications development after normal pregnancies.
Collapse
Affiliation(s)
- Carolina Tocantins
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, PDBEB - Doctoral Programme in Experimental Biology and Biomedicine, Coimbra, Portugal
| | - João D Martins
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
| | - Óscar M Rodrigues
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
| | - Luís F Grilo
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, PDBEB - Doctoral Programme in Experimental Biology and Biomedicine, Coimbra, Portugal
| | - Mariana S Diniz
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, PDBEB - Doctoral Programme in Experimental Biology and Biomedicine, Coimbra, Portugal
| | - Jelena Stevanovic-Silva
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Jorge Beleza
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - David Rizo-Roca
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Estela Santos-Alves
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - António J Moreno
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; Department of Life Sciences, School of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Paulo J Oliveira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
| | - Susana P Pereira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal.
| |
Collapse
|
2
|
Kandelouei T, Houghton ME, Lewis MR, Keller CC, Marchetti M, Kang X, Edgar BA. Mating and ecdysone signaling modify growth, metabolism, and digestive efficiency in the female Drosophila gut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624434. [PMID: 39605564 PMCID: PMC11601506 DOI: 10.1101/2024.11.19.624434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Adaptive changes in organ size and physiology occur in most adult animals, but how these changes are regulated is not well understood. Previous research found that mating in Drosophila females drives not only increases in gut size and stem cell proliferation but also alters feeding behavior, intestinal gene expression, and whole-body lipid storage, suggesting altered gut metabolism. Here, we show that mating dramatically alters female gut metabolism and digestive function. In addition to promoting a preference for a high-protein diet, mating also altered levels of TCA cycle intermediates and fatty acids in the gut, increased total gut lipids and protein, reduced relative carbohydrate levels, and enhanced the efficiency of protein digestion relative to carbohydrate digestion. The expression of genes that mediate each of these metabolic processes was similarly altered. In addition, we noted the mating-dependent downregulation of oxidative stress response and autophagy genes. Mating-dependent increases in ecdysone signaling played an important role in re-programming many, but not all, of these changes in the female gut. This study contributes to our understanding of how steroid signaling alters gut physiology to adapt to the demands of reproduction.
Collapse
Affiliation(s)
- Tahmineh Kandelouei
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, U.S.A
| | - Madeline E. Houghton
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, U.S.A
| | - Mitchell R. Lewis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, U.S.A
| | - Caroline C. Keller
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, U.S.A
| | - Marco Marchetti
- Eccles Institute of Human Genetics, 3i-UCGD Bioinformatics Core, University of Utah, Salt Lake City, Utah, U.S.A
| | - Xiaoyu Kang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, U.S.A
| | - Bruce A. Edgar
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, U.S.A
| |
Collapse
|
3
|
Li D, Franco S, Pennell PB. The impact of pregnancy-related hormonal and physiological changes on antiseizure medications: expert perspective. Expert Rev Clin Pharmacol 2024; 17:655-663. [PMID: 38748860 DOI: 10.1080/17512433.2024.2356617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Epilepsy is a disorder of recurrent, unprovoked seizures affecting approximately 15 million individuals of childbearing potential worldwide. Patients with epilepsy rely on regular daily therapy with antiseizure medications (ASMs). Furthermore, ASMs are also prescribed for other neuropsychiatric indications (e.g. bipolar disorder, pain, migraines) with over 2% of the pregnancies in the United States involving prenatal exposure to ASMs. AREAS COVERED ASM concentrations are affected by hormonal and physiological changes in pregnancy, including increases in renal and hepatic blood flow, decreased protein binding, and changes in enzyme activity. Clearance changes typically reverse within a few weeks after delivery. During pregnancy, many ASMs, such as lamotrigine, levetiracetam, and oxcarbazepine, should have serum concentrations monitored and doses increased to maintain the individualized target range for seizure control. ASMs metabolized via glucuronidation, primarily lamotrigine, undergo marked increases in clearance throughout pregnancy, requiring about 3-fold the pre-pregnancy daily dose by delivery. Postpartum, ASM doses are usually decreased over several weeks to prevent drug toxicity. EXPERT OPINION In the future, the development of a physiologically-based pharmacokinetic model for various ASMs may enable empiric dose adjustments in pregnancy without the difficulties of frequent therapeutic drug monitoring.
Collapse
Affiliation(s)
- Denise Li
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Susannah Franco
- Department of Pharmacy, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Page B Pennell
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
4
|
FUJIMOTO N, TANIGUCHI Y, SONODA H, KANEKO Y, MATSUZAKI T, ITOH T, HIRAI T, UCHIDA K, IKEDA M. Expression patterns of aquaporins 1, 3, 5 in canine mammary gland carcinomas. J Vet Med Sci 2024; 86:168-179. [PMID: 38123327 PMCID: PMC10898980 DOI: 10.1292/jvms.23-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Aquaporins (AQPs) are water channel proteins, and the expression of AQPs in carcinoma cells has received much attention over the last 15 years. In the veterinary field, however, little is known about the expression of AQPs. In the present study using immunohistochemistry, we examined the expression of AQP1, AQP3, and AQP5 in canine mammary gland carcinomas. The 27 samples comprised 10 grade I, 12 grade II, and 5 grade III samples (See Materials and Methods section for grade classification method). AQP1 was expressed in only 2 of the grade III carcinomas, and the expression was limited to spindle-shaped cells in the solid structure and on the outside of the solid mass. AQP3-positive cells were observed in 20 of 22 grade I and II samples. On the other hand, among grade III carcinomas, AQP3 was expressed only in spindle-shaped cells in 1 sample. AQP5 was expressed in all grade I and II carcinomas but not in the grade III tumors. In addition, enhanced expression of basolateral AQP3 and apical AQP5 was observed in lobular hyperplastic cells. These results suggest that the expression patterns of AQP3 and AQP5 can be of help for judging the grading of canine mammary tumors and that AQP1 is likely to be involved in metastasis. Moreover, AQP3 and AQP5 might be relevant to lactation in female dogs.
Collapse
Affiliation(s)
- Naruki FUJIMOTO
- Department of Veterinary Pharmacology, University of
Miyazaki, Miyazaki, Japan
| | - Yoshiki TANIGUCHI
- Department of Veterinary Pharmacology, University of
Miyazaki, Miyazaki, Japan
| | - Hiroko SONODA
- Department of Veterinary Pharmacology, University of
Miyazaki, Miyazaki, Japan
| | - Yasuyuki KANEKO
- Veterinary Teaching Hospital, University of Miyazaki,
Miyazaki, Japan
| | - Toshiyuki MATSUZAKI
- Department of Anatomy and Cell Biology, Gunma University
Graduate School of Medicine, Gunma, Japan
| | - Teruo ITOH
- Division of Animal Medical Research, Hassen-kai, Miyazaki,
Japan
| | - Takuya HIRAI
- Department of Veterinary Pathology, University of Miyazaki,
Miyazaki, Japan
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of
Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masahiro IKEDA
- Department of Veterinary Pharmacology, University of
Miyazaki, Miyazaki, Japan
| |
Collapse
|
5
|
Giffen PS, Kilgour JD, Jacobsen M, Thacker K, Holmberg AA. The Nonclinical Assessment of Trans-1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), a Near Zero Global Warming Potential Propellant for Use in Metered Dose Inhalation Products. Int J Toxicol 2024; 43:4-18. [PMID: 37860941 PMCID: PMC10851632 DOI: 10.1177/10915818231206025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
HFO-1234ze (E) is proposed as a near zero global warming propellant for use in metered dose inhaled (MDI) products. This paper describes the non-clinical safety assessment in mice, rats, and dogs and supplements previously reported data (genetic toxicology, short-term toxicology, and reproductive toxicology). In all species, HFO-1234ze (E) was only detectable in blood for a short period after dosing with no evidence of accumulation. HFO-1234ze (E) was without any toxicological effects at very high doses in subchronic (13-week mouse) and chronic (39-week dog) studies. Chronic (26-week) administration to rats at very high doses was associated with an exacerbation of rodent progressive cardiomyopathy, a well-documented background finding in rodents. In a 2-generation study, extremely high doses were associated with the early euthanasia of some lactating female rats. This finding was considered to be significantly influenced by a state of negative energy balance, reflecting the specific vulnerability of rats during lactation. These findings are considered to not pose a risk to humans with typical MDI use given they occurred at doses which far exceed those expected in patients. Overall, the nonclinical safety data for HFO-1234ze (E) support its further development as an MDI propellant.
Collapse
Affiliation(s)
- Paul S. Giffen
- Department of Respiratory & Immunology Toxicology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | - Matthew Jacobsen
- Department of Pathology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Karen Thacker
- Department of Regulatory Toxicology and Safety Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ann A. Holmberg
- Department of Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
6
|
Chapman OS, McLean BS. Seasonal and sex-specific changes in the gastrointestinal tracts of Peromyscus maniculatus. J Mammal 2023; 104:1364-1376. [PMID: 38059007 PMCID: PMC10697414 DOI: 10.1093/jmammal/gyad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/08/2023] [Indexed: 12/08/2023] Open
Abstract
Functional traits are phenotypic characteristics that contribute to fitness of individuals in dynamic and changing environments. In mammals, both categorical and continuous (e.g., quantitative) functional traits have been extensively utilized as proxies for diet, locomotion, and other aspects of species ecology, but there has been less focus on form and function of soft tissues. This is particularly true for the digestive system, which varies in size and complexity across Class Mammalia and plays a major role in the energetics of species. To guide more effective utilization of gastrointestinal (GI) morphology as a functional proxy in small mammal ecology, we examined how GI tracts (lengths and masses of four GI sections) varied within a population of deer mice (Peromyscus maniculatus) in the Southern Appalachian Mountains of North Carolina, United States. We collected samples of adult P. maniculatus monthly for 1 year and measured GI tracts to quantify variation with respect to seasonality and trophic level, providing insight into plasticity in this soft tissue trait over time. We found that season had a significant effect on the total length and wet mass of the GI tract, with January mice having the longest GI tracts and lengths being shortest in the summer. The relative shortening of the GI tract in summer corresponded with a partial trophic increase detected by stable isotope signatures. GI length and wet mass also were affected by reproduction, but males and females responded in sex-specific ways to demands of reproduction, with reproductively active males having shorter and lighter GI tracts than nonreproductively active males. Our study provides proof-of-concept for understanding population-level plasticity in a rarely collected soft tissue trait, which may also be complementary to standard craniodental measurements as a functional dietary proxy to understand mammalian ecology and community assembly.
Collapse
Affiliation(s)
- Olivia S Chapman
- Department of Biology, University of North Carolina at Greensboro, 325 McIver Street, Greensboro, North Carolina 27412, USA
| | - Bryan S McLean
- Department of Biology, University of North Carolina at Greensboro, 325 McIver Street, Greensboro, North Carolina 27412, USA
| |
Collapse
|
7
|
AK N, TUZ Z, AYDIN E, FERHATOĞLU F, SARI M, PAKSOY N, DOĞAN İ, YILDIZ A, DİŞÇİ R, SAİP PM. The effect of parity, breastfeeding history, and duration on clinical and pathological characteristics of breast cancer patients. Turk J Med Sci 2023; 54:229-238. [PMID: 38812646 PMCID: PMC11031182 DOI: 10.55730/1300-0144.5784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 02/15/2024] [Accepted: 11/18/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim The study is aimed to determine the relationship between the delivery and breastfeeding history of the patients and the clinicopathological properties of breast cancer. Materials and methods A questionnaire was utilized for the study, which included the age of diagnosis, the number of children at the time of diagnosis, the age of the children, and the breastfeeding period of each child. Results The study included 828 patients. The median age at diagnosis was 47 years for parous women and 42 years for nonparous women (p < 0.001). The tumor size of the patients diagnosed within the breastfeeding period was significantly larger compared to the other patients. Estrogen and progesterone receptor positivity were lower in patients diagnosed during breastfeeding. Additionally, the mean number of positive lymph nodes, dissected lymph nodes, and positive lymph node/dissected lymph node ratio in parous and breastfed patients with a nonmetastatic disease were statistically significantly higher in multivariable analysis than those patients who were nulliparous and have not breastfed. Conclusion Breast cancer is seen at a later age in patients who are parous than those who have never given birth. Patients who are parous and have breastfed tend to present with a higher stage of the disease.
Collapse
Affiliation(s)
- Naziye AK
- Department of Medical Oncology, Faculty of Medicine, Demiroğlu Bilim University, İstanbul,
Turkiye
| | - Zeynep TUZ
- Department of Radiology, İstanbul Faculty of Medicine, İstanbul University, İstanbul,
Turkiye
| | - Esra AYDIN
- Department of Medical Oncology, Recep Tayyip Erdogan University, Rize,
Turkiye
| | - Ferhat FERHATOĞLU
- Department of Medical Oncology, Basakşehir Çam ve Sakura City Hospital, İstanbul,
Turkiye
| | - Murat SARI
- Department of Medical Oncology, Marmara Faculty of Medicine, Marmara University, İstanbul,
Turkiye
| | - Nail PAKSOY
- Department of Medical Oncology, Tekirdağ İsmail Fehmi Cumalıoğlu City Hospital, Tekirdağ,
Turkiye
| | - İzzet DOĞAN
- Department of Medical Oncology, Basakşehir Çam ve Sakura City Hospital, İstanbul,
Turkiye
| | - Anıl YILDIZ
- Department of Medical Oncology, İstanbul Faculty of Medicine, İstanbul University, İstanbul,
Turkiye
| | - Rian DİŞÇİ
- Faculty of Biostatistical Science, Beykent University, İstanbul,
Turkiye
| | - Pınar Mualla SAİP
- Department of Medical Oncology, İstanbul Faculty of Medicine, İstanbul University, İstanbul,
Turkiye
| |
Collapse
|
8
|
Bermejo-Haro MY, Camacho-Pacheco RT, Brito-Pérez Y, Mancilla-Herrera I. The hormonal physiology of immune components in breast milk and their impact on the infant immune response. Mol Cell Endocrinol 2023:111956. [PMID: 37236499 DOI: 10.1016/j.mce.2023.111956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
During pregnancy, the maternal body undergoes a considerable transformation regarding the anatomy, metabolism, and immune profile that, after delivery, allows for protection and nourishment of the offspring via lactation. Pregnancy hormones are responsible for the development and functionality of the mammary gland for breast milk production, but little is known about how hormones control its immune properties. Breast milk composition is highly dynamic, adapting to the nutritional and immunological needs that the infant requires in the first months of life and is responsible for the main immune modeling of breastfed newborns. Therefore, alterations in the mechanisms that control the endocrinology of mammary gland adaptation for lactation could disturb the properties of breast milk that prepare the neonatal immune system to respond to the first immunologic challenges. In modern life, humans are chronically exposed to endocrine disruptors (EDs), which alter the endocrine physiology of mammals, affecting the composition of breast milk and hence the neonatal immune response. In this review, we provide a landscape of the possible role of hormones in the control of passive immunity transferred by breast milk and the possible effect of maternal exposure to EDs on lactation, as well as their impacts on the development of neonatal immunity.
Collapse
Affiliation(s)
- Mextli Y Bermejo-Haro
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Rodrigo T Camacho-Pacheco
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Yesenia Brito-Pérez
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Ismael Mancilla-Herrera
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico.
| |
Collapse
|
9
|
Burgos-Gamez X, Morales-Castillo P, Fernandez-Mejia C. Maternal adaptations of the pancreas and glucose homeostasis in lactation and after lactation. Mol Cell Endocrinol 2023; 559:111778. [PMID: 36162635 DOI: 10.1016/j.mce.2022.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023]
Abstract
During lactation, the maternal physiology adapts to bear the nutritional requirements of the offspring. The exocrine and endocrine pancreas are central to nutrient handling, promoting digestion and metabolism. In concert with prolactin, insulin is a determinant factor for milk synthesis. The investigation of the pancreas during lactation has been scattered over several periods. The investigations that laid the foundation of lactating pancreatic physiology and glucose homeostasis were conducted in the decades of 1970-1980. With the development of molecular biology, newer studies have revealed the molecular mechanisms involved in the endocrine pancreas during breastfeeding. There has been a surge of information recently about unexpected changes in the pancreas at the end of the lactation period and after weaning. In this review, we aim to gather information on the changes in the pancreas and glucose homeostasis during and after lactation and discuss the outcomes derived from the current discoveries.
Collapse
Affiliation(s)
- Xadeni Burgos-Gamez
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico
| | - Paulina Morales-Castillo
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico
| | - Cristina Fernandez-Mejia
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico.
| |
Collapse
|
10
|
Taylor VJ. Lactation from the inside out: Maternal homeorhetic gastrointestinal adaptations regulating energy and nutrient flow into milk production. Mol Cell Endocrinol 2023; 559:111797. [PMID: 36243202 DOI: 10.1016/j.mce.2022.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Lactation invokes homeorhetic processes to ramp up and supply milk synthesis components to fulfil nutritional, immunological and microbiological requirements of developing offspring, overseen by complex neuroendocrine networks. The maternal gut meets these intense metabolic demands, supported by hyperphagia and rapid adjustments to process larger food quantities. Enteroplasticity describes an inherent ability of the gastrointestinal tract to harness metabolic and structural adaptations that increase nutrient absorption. Most shifts in response to increased demands are transitory and by secreting milk, the continuous energetic drain out of the maternal body avoids development of pathological metabolic diseases. Lactation has various positive benefits for long-term maternal health but many females do not lactate for long post pregnancy and younger women are increasingly pre-disposed to excessive body mass and/or metabolic complications prior to reproducing. Inadvertently invoking intestinal adaptations to harvest and store excess nutrients has negative health implications with increased risks for both mother and offspring.
Collapse
Affiliation(s)
- Vicky J Taylor
- School of Life, Health and Chemical Sciences (LHCS), Faculty of Science, Technology, Engineering and Mathematics (STEM), The Open University, United Kingdom.
| |
Collapse
|
11
|
Dias Duarte de Carvalho Souza M, Mary Ribeiro M, Bueno Ferreira L, Silva do Carmo A, Dos Santos LC. Weight Reduction and Changes in Body Circumferences in Lactating Women as a Function of Differences in Dietary Macronutrient Content. Breastfeed Med 2022; 17:511-518. [PMID: 35353584 DOI: 10.1089/bfm.2021.0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objectives: Investigating waist circumference (WC) and abdominal circumference (AC) evolution in lactating women, based on macronutrient intake adequacy up to 6 months after childbirth. Materials and Methods: Prospective cohort comprising lactating women recruited at a maternity hospital in Minas Gerais State, Brazil, from June 2018 to June 2019. Selected individuals were healthy adult women who had given birth 72 hours before data collection. Sociodemographic, breastfeeding, and anthropometric data were collected. Food intake was determined through 24 hours dietary recalls. Adequate carbohydrate, protein, and lipid intake was herein defined as 45-65%, 10-35%, and 20-35% of the caloric value consumed by participants, respectively. Wilcoxon test and generalized estimating equations were carried out. This research was approved by the Research Ethics Committee, as well as by the National Research Ethics Committee. Results: There was decrease in weight (-4.45 kg), body mass index (-4.43 kg/m2), WC (-4.70 cm), and AC (-4.70 cm) values from the baseline (n = 260) up to 6 months after childbirth (p < 0.001). The evolution of these measurements has indicated that high carbohydrate and low protein intake were associated with the highest AC values. Low protein and high lipid intake have led to lower WC values (p < 0.05). Conclusions: Macronutrient intake adequacy by the investigated lactating women has influenced their WC and AC evolution. This outcome has evidenced the important role played by nutritional monitoring in puerperium to prevent abdominal fat retention after pregnancy.
Collapse
Affiliation(s)
| | - Marinara Mary Ribeiro
- Department of Nutrition, Nursing School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
12
|
Haddad EN, Ferro LE, Russell KEB, Sugino KY, Kerver JM, Comstock SS. Fecal Bacterial Communities Differ by Lactation Status in Postpartum Women and Their Infants. J Hum Lact 2022; 38:270-280. [PMID: 34903081 DOI: 10.1177/08903344211060343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Previous research examined effects of human milk on the infant gut microbiota, but little attention has been given to the microbiota of lactating women. RESEARCH AIM To determine associations between exclusive human milk feeding and gut microbiota characteristics in mothers and infants at 6-weeks postpartum. METHODS A sample of mother-infant dyads (N = 24) provided fecal samples and questionnaire responses at 6-weeks postpartum as part of the Pregnancy, EAting & POstpartum Diapers study. Deoxyribonucleic acid was extracted from stool samples, followed by (V4) 16S ribosomal ribonucleic acid gene amplicon sequencing. Alpha and beta diversity, in addition to taxa differences, were compared by human milk exposure status, exclusive versus non-exclusive. A subset of dyads (those exclusively fed human milk; n = 14) was analyzed for shared bifidobacterial species using polymerase chain reaction. RESULTS Alpha diversity was significantly lower in exclusively human milk-fed infants. Maternal lactation status (exclusive vs. partial) and Shannon diversity were associated in univariate analysis but were no longer associated in multivariable regression including body mass index category in the model. Beta diversity (Sorensen dissimilarity) of fecal samples from women and infants was significantly associated with human milk feeding. Of six infants with Bifidobacterium longum subspecies longum in their fecal samples, all their mothers shared the same species. CONCLUSION Maternal gut microbiotas differ by lactation status, a relationship potentially confounded by body mass index category. Further research is needed to identify whether lactation directly influences the maternal gut microbiota, which may be another mechanism by which lactation influences health.
Collapse
Affiliation(s)
- Eliot N Haddad
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Lynn E Ferro
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Kathleen E B Russell
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Kameron Y Sugino
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Jean M Kerver
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
Hart DA. Sex Differences in Biological Systems and the Conundrum of Menopause: Potential Commonalities in Post-Menopausal Disease Mechanisms. Int J Mol Sci 2022; 23:4119. [PMID: 35456937 PMCID: PMC9026302 DOI: 10.3390/ijms23084119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sex-specific differences in biology and physiology likely start at the time of conception and progress and mature during the pre-puberty time frame and then during the transitions accompanying puberty. These sex differences are impacted by both genetics and epigenetic alterations during the maturation process, likely for the purpose of preparing for successful reproduction. For females, later in life (~45-50) they undergo another transition leading to a loss of ovarian hormone production at menopause. The reasons for menopause are not clear, but for a subset of females, menopause is accompanied by an increased risk of a number of diseases or conditions that impact a variety of tissues. Most research has mainly focused on the target cells in each of the affected tissues rather than pursue the alternative option that there may be commonalities in the development of these post-menopausal conditions in addition to influences on specific target cells. This review will address some of the potential commonalities presented by an integration of the literature regarding tissue-specific aspects of these post-menopausal conditions and data presented by space flight/microgravity (a condition not anticipated by evolution) that could implicate a loss of a regulatory function of the microvasculature in the risk attached to the affected tissues. Thus, the loss of the integration of the paracrine relationships between endothelial cells of the microvasculature of the tissues affected in the post-menopausal environment could contribute to the risk for post-menopausal diseases/conditions. The validation of this concept could lead to new approaches for interventions to treat post-menopausal conditions, as well as provide new understanding regarding sex-specific biological regulation.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery and Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; ; Tel.: +1-403-220-4571
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
| |
Collapse
|
14
|
Cheema AS, Trevenen ML, Turlach BA, Furst AJ, Roman AS, Bode L, Gridneva Z, Lai CT, Stinson LF, Payne MS, Geddes DT. Exclusively Breastfed Infant Microbiota Develops over Time and Is Associated with Human Milk Oligosaccharide Intakes. Int J Mol Sci 2022; 23:2804. [PMID: 35269946 PMCID: PMC8910998 DOI: 10.3390/ijms23052804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Temporal development of maternal and infant microbiomes during early life impacts short- and long-term infant health. This study aimed to characterize bacterial dynamics within maternal faecal, human milk (HM), infant oral, and infant faecal samples during the exclusive breastfeeding period and to document associations between human milk oligosaccharide (HMO) intakes and infant oral and faecal bacterial profiles. Maternal and infant samples (n = 10) were collected at 2−5, 30, 60, 90 and 120 days postpartum and the full-length 16S ribosomal RNA (rRNA) gene was sequenced. Nineteen HMOs were quantitated using high-performance liquid chromatography. Bacterial profiles were unique to each sample type and changed significantly over time, with a large degree of intra- and inter-individual variation in all sample types. Beta diversity was stable over time within infant faecal, maternal faecal and HM samples, however, the infant oral microbiota at day 2−5 significantly differed from all other time points (all p < 0.02). HMO concentrations and intakes significantly differed over time, and HMO intakes showed differential associations with taxa observed in infant oral and faecal samples. The direct clinical relevance of this, however, is unknown. Regardless, future studies should account for intakes of HMOs when modelling the impact of HM on infant growth, as it may have implications for infant microbiota development.
Collapse
Affiliation(s)
- Ali Sadiq Cheema
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Michelle Louise Trevenen
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia; (M.L.T.); (B.A.T.)
| | - Berwin Ashoka Turlach
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia; (M.L.T.); (B.A.T.)
| | - Annalee June Furst
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Ana Sophia Roman
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Lisa Faye Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Matthew Scott Payne
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia;
- Women and Infants Research Foundation, Subiaco, WA 6008, Australia
| | - Donna Tracy Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| |
Collapse
|
15
|
Piccolo O, Kinshella MLW, Salimu S, Vidler M, Banda M, Dube Q, Kawaza K, Goldfarb DM, Nyondo-Mipando AL. Healthcare worker perspectives on mother's insufficient milk supply in Malawi. Int Breastfeed J 2022; 17:14. [PMID: 35197105 PMCID: PMC8867656 DOI: 10.1186/s13006-022-00460-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background Human milk insufficiency is a significant barrier to implementing breastfeeding, and it is identified as a prevalent concern in 60–90% of mothers in low-and-middle-income countries. Breastmilk insufficiency can lead to hypoglycemia, hypernatremia, nutritional deficiencies, and failure to thrive in newborns and infants. Studies investigating the impact of breastfeeding interventions to improve milk production highlight inconsistencies between healthcare workers and mothers perceived support, as well as gaps in practical knowledge and training. The aim of this study was to determine perceptions surrounding human milk insufficiency from Malawian healthcare workers. Methods This study is a secondary analysis of 39 interviews with healthcare workers from one tertiary and three district hospitals in Malawi employing content analysis. Interviewed healthcare workers included nurses, clinical officers, midwives, and medical doctors. An inclusive coding framework was developed to identify themes related to human milk insufficiency, which were analyzed using an iterative process with NVivo12 software. Researchers focused on themes emerging from perceptions and reasons given by healthcare workers for human milk insufficiency. Results Inability to produce adequate breastmilk was identified as a prevalent obstacle mothers face in the early postpartum period in both district and tertiary facilities in Malawi. The main reasons given by participants for human milk insufficiency were mothers’ perceived normalcy of milk insufficiency, maternal stress, maternal malnutrition, and traditional beliefs around food and eating. Three focused solutions were offered by participants to improve mother’s milk production – improving education for mothers and training for healthcare providers on interventions to improve mother’s milk production, increasing breastfeeding frequency, and ensuring adequate maternal nutrition pre- and post-partum. Conclusion Health care workers perspectives shed light on the complexity of causes and solutions for human milk insufficiency in Malawi. This research highlights that a respectful professional relationship between health care workers and mothers is an essential bridge to improving communication, detecting human milk insufficiency early, and implementing appropriate interventions. The results of this study may help to inform research, clinical practice, and education in Malawi to improve human milk production.
Collapse
Affiliation(s)
- Olivia Piccolo
- Department of Health Sciences, McMaster University, Hamilton, Canada
| | - Mai-Lei Woo Kinshella
- Department of Obstetrics and Gynaecology, BC Children's and Women's Hospital and University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, BC Children's and Women's Hospitals and University of British Columbia, Vancouver, Canada
| | - Sangwani Salimu
- Department of Pediatrics and Child Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Marianne Vidler
- Department of Obstetrics and Gynaecology, BC Children's and Women's Hospital and University of British Columbia, Vancouver, Canada
| | - Mwai Banda
- Department of Pediatrics and Child Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Queen Dube
- Department of Pediatrics, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Kondwani Kawaza
- Department of Pediatrics and Child Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Pediatrics, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - David M Goldfarb
- Department of Pathology and Laboratory Medicine, BC Children's and Women's Hospitals and University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
16
|
Sun X, Zhu K, Feng C, Zhu J, Chen S, Tang W, Wang Z, Xiao L, Li H, Geng D, Wang Z. Paeoniflorin Ameliorates Hyperprolactinemia-Induced Inhibition of Osteoblastogenesis by Suppressing the NF- κB Signaling Pathway. Int J Endocrinol 2022; 2022:4572033. [PMID: 35465073 PMCID: PMC9033376 DOI: 10.1155/2022/4572033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/16/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperprolactinemia is a common endocrine disease in women of reproductive age. Research has shown that patients with hyperprolactinemia often have decreased bone mineral density and an increased risk of fractures. However, there is still a lack of effective treatments. Paeoniflorin, one of the primary bioactive components in peony, is widely used in traditional Chinese medicine. Research has shown that paeoniflorin promotes osteoblast differentiation. However, whether paeoniflorin plays a role in hyperprolactinemia-induced osteoblastogenesis inhibition is not yet clear. In this study, we investigated the effect of paeoniflorin on prolactin (PRL)-mediated inhibition of osteoblast function. Our results showed that prolactin significantly reduced the expression of alkaline phosphatase (ALP), Osterix, and runt-related transcription factor 2 (RUNX2) in MC3T3-E1 cells cultured in an osteoblast differentiation medium, suggesting that prolactin inhibited osteoblast function. After treatment with paeoniflorin (PF), the expression of these osteoblast markers was upregulated. In addition, our findings proved that paeoniflorin increased the absorbance values of ALP-positive cells and the areas of alizarin red S (ARS) deposition compared to those in the prolactin group, suggesting that paeoniflorin reversed the PRL-induced reduction in osteoblast differentiation. The PRL-induced activation of nuclear factor kappa B (NF-κB) was significantly reversed by paeoniflorin, indicating that paeoniflorin promoted osteoblast function by inhibiting the NF-κB signaling pathway. In summary, these results showed that paeoniflorin alleviated the inhibitory effect of prolactin on osteoblastogenesis by suppressing the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiaohong Sun
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Keda Zhu
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Chengcheng Feng
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Jie Zhu
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Shuangshuang Chen
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Wenkai Tang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Zhifang Wang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Long Xiao
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hong Li
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhirong Wang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| |
Collapse
|
17
|
Josefson CC, Skibiel AL. Changes in maternal fecal corticosterone metabolites across lactation and in response to chronic stress. Gen Comp Endocrinol 2021; 314:113916. [PMID: 34555412 DOI: 10.1016/j.ygcen.2021.113916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
Maternal exposure to stressors during lactation has previously been demonstrated to impact various aspects of milk synthesis and to have long-term physiological effects on offspring. Much of the current literature investigating the effects of stress during lactation has used acute stressors, and the studies investigating the effects of chronic stressors largely focus on neurological changes. Further, temporal variation in glucocorticoids across lactation in response to stressors has rarely been assessed. The present work uses a novel male intruder paradigm to model the effects of chronic stress on maternal fecal corticosterone metabolites (FCMs) in Sprague-Dawley rats across lactation. FCM levels were elevated in chronically-stressed mothers relative to the control group. Further, FCMs in the stress group were time-dependent either due to repeated exposure to the stressor or lactation stage. Together, this work demonstrates the efficacy of this established paradigm in increasing circulating glucocorticoids in lactating rats. These results highlight the need for repeated temporal sampling, as glucocorticoid levels in response to a chronic stressor may change across lactation.
Collapse
Affiliation(s)
- Chloe C Josefson
- Department of Animal, Veterinary and Food Sciences, University of Idaho, 875 Perimeter Dr., MS 2330, Moscow, ID 83844-2330, USA.
| | - Amy L Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, 875 Perimeter Dr., MS 2330, Moscow, ID 83844-2330, USA.
| |
Collapse
|
18
|
Ruiz TFR, Taboga SR, Leonel ECR. Molecular mechanisms of mammary gland remodeling: A review of the homeostatic versus bisphenol a disrupted microenvironment. Reprod Toxicol 2021; 105:1-16. [PMID: 34343637 DOI: 10.1016/j.reprotox.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022]
Abstract
Mammary gland (MG) undergoes critical points of structural changes throughout a woman's life. During the perinatal and pubertal stages, MG develops through growth and differentiation to establish a pre-mature feature. If pregnancy and lactation occur, the epithelial compartment branches and differentiates to create a specialized structure for milk secretion and nurturing of the newborn. However, the ultimate MG modification consists of a regression process aiming to reestablish the smaller and less energy demanding structure until another production cycle happens. The unraveling of these fascinating physiologic cycles has helped the scientific community elucidate aspects of molecular regulation of proliferative and apoptotic events and remodeling of the stromal compartment. However, greater understanding of the hormonal pathways involved in MG developmental stages led to concern that endocrine disruptors such as bisphenol A (BPA), may influence these specific development/involution stages, called "windows of susceptibility". Since it is used in the manufacture of polycarbonate plastics and epoxy resins, BPA is a ubiquitous chemical present in human everyday life, exerting an estrogenic effect. Thus, descriptions of its deleterious effects on the MG, especially in terms of serum hormone concentrations, hormonal receptor expression, molecular pathways, and epigenetic alterations, have been widely published. Therefore, allied to a didactic description of the main physiological mechanisms involved in different critical points of MG development, the current review provides a summary of key mechanisms by which the endocrine disruptor BPA impacts MG homeostasis at different windows of susceptibility, causing short- and long-term effects.
Collapse
Affiliation(s)
- Thalles Fernando Rocha Ruiz
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil.
| | - Sebastião Roberto Taboga
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil.
| | - Ellen Cristina Rivas Leonel
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil; Federal University of Goiás (UFG), Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Goiânia, Brazil.
| |
Collapse
|
19
|
Lorenzetti S, Plösch T, Teller IC. Antioxidative Molecules in Human Milk and Environmental Contaminants. Antioxidants (Basel) 2021; 10:550. [PMID: 33916168 PMCID: PMC8065843 DOI: 10.3390/antiox10040550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
Breastfeeding provides overall beneficial health to the mother-child dyad and is universally recognized as the preferred feeding mode for infants up to 6-months and beyond. Human milk provides immuno-protection and supplies nutrients and bioactive compounds whose concentrations vary with lactation stage. Environmental and dietary factors potentially lead to excessive chemical exposure in critical windows of development such as neonatal life, including lactation. This review discusses current knowledge on these environmental and dietary contaminants and summarizes the known effects of these chemicals in human milk, taking into account the protective presence of antioxidative molecules. Particular attention is given to short- and long-term effects of these contaminants, considering their role as endocrine disruptors and potential epigenetic modulators. Finally, we identify knowledge gaps and indicate potential future research directions.
Collapse
Affiliation(s)
- Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
| | - Torsten Plösch
- Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
20
|
Prolactin: A hormone with diverse functions from mammary gland development to cancer metastasis. Semin Cell Dev Biol 2020; 114:159-170. [PMID: 33109441 DOI: 10.1016/j.semcdb.2020.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 01/14/2023]
Abstract
Prolactin has a rich mechanistic set of actions and signaling in order to elicit developmental effects in mammals. Historically, prolactin has been appreciated as an endocrine peptide hormone that is responsible for final, functional mammary gland development and lactation. Multiple signaling pathways impacted upon by the microenvironment contribute to cell function and differentiation. Endocrine, autocrine and paracrine signaling are now apparent in not only mammary development, but also in cancer, and involve multiple cell types including those of the immune system. Multiple ligands agonists are capable of binding to the prolactin receptor, potentially expanding receptor function. Prolactin has an important role not only in tumorigenesis of the breast, but also in a number of hormonally responsive cancers such as prostate, ovarian and endometrial cancer, as well as pancreatic and lung cancer. Although pituitary and extra-pituitary sources of prolactin such as the epithelium are important, stromal sourced prolactin is now also being recognized as an important factor in tumor progression, all of which potentially signal to multiple cell types in the tumor microenvironment. While prolactin has important roles in milk production including calcium and bone homeostasis, in the disease state it can also affect bone homeostasis. Prolactin also impacts metastatic cancer of the breast to modulate the bone microenvironment and promote bone damage. Prolactin has a fascinating contribution in both physiologic and pathologic settings of mammals.
Collapse
|
21
|
Cabezuelo MT, Zaragozá R, Barber T, Viña JR. Role of Vitamin A in Mammary Gland Development and Lactation. Nutrients 2019; 12:E80. [PMID: 31892157 PMCID: PMC7019238 DOI: 10.3390/nu12010080] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Vitamin A (all-trans-retinol), its active derivatives retinal and retinoic acid, and their synthetic analogues constitute the group of retinoids. It is obtained from diet either as preformed vitamin A or as carotenoids. Retinal plays a biological role in vision, but most of the effects of vitamin A are exerted by retinoic acid, which binds to nuclear receptors and regulates gene transcription. Vitamin A deficiency is an important nutritional problem, particularly in the developing world. Retinol and carotenoids from diet during pregnancy and lactation influence their concentration in breast milk, which is important in the long term, not only for the offspring, but also for maternal health. In this study, we review the role of vitamin A in mammary gland metabolism, where retinoid signaling is required not only for morphogenesis and development of the gland and for adequate milk production, but also during the weaning process, when epithelial cell death is coupled with tissue remodeling.
Collapse
Affiliation(s)
- M. Teresa Cabezuelo
- Department of Physiology, Universitat de València, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain;
- University Hospital Doctor Peset, Gaspar Aguilar, 90, 46017 Valencia, Spain
| | - Rosa Zaragozá
- Department of Human Anatomy and Embryology-INCLIVA Biomedical Research Institute, Universitat de València, 46010 Valencia, Spain
| | - Teresa Barber
- Department of Biochemistry and Molecular Biology-INCLIVA Biomedical Research Institute, Universitat de València, 46010 Valencia, Spain; (T.B.); (J.R.V.)
| | - Juan R. Viña
- Department of Biochemistry and Molecular Biology-INCLIVA Biomedical Research Institute, Universitat de València, 46010 Valencia, Spain; (T.B.); (J.R.V.)
| |
Collapse
|