1
|
Dash R, Sahoo RN, Pattnaik G, Sarangi AK, Kandi V, Mishra S, Verma S, Mohapatra RK. An open call for nano-based therapy to address COVID-19 and oncological clinical conditions. Int J Surg 2024; 110:2430-2432. [PMID: 36974677 PMCID: PMC11020012 DOI: 10.1097/js9.0000000000000071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/18/2022] [Indexed: 03/29/2023]
Affiliation(s)
- Rasmita Dash
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University)
| | - Rudra N. Sahoo
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha
| | - Ashish K. Sarangi
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Balangir, Odisha
| | - Venkataramana Kandi
- Department of Microbiology, Prathima Institute of Medical Sciences, Karimnagar, Telangana
| | - Snehasish Mishra
- School of Biotechnology, Campus-11, KIIT (Deemed-to-be-University), Bhubaneswar, Odisha
| | - Sarika Verma
- Academy of Council Scientific and Industrial Research – Advanced Materials and Processes Research Institute (AMPRI)
- Council of Scientific and Industrial Research – Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| |
Collapse
|
2
|
Xu M, Liu Y, Yang K, Li S, Wang M, Wang J, Yang D, Shkunov M, Silva SRP, Castro FA, Zhao Y. Minimally invasive power sources for implantable electronics. EXPLORATION (BEIJING, CHINA) 2024; 4:20220106. [PMID: 38854488 PMCID: PMC10867386 DOI: 10.1002/exp.20220106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/08/2023] [Indexed: 06/11/2024]
Abstract
As implantable medical electronics (IMEs) developed for healthcare monitoring and biomedical therapy are extensively explored and deployed clinically, the demand for non-invasive implantable biomedical electronics is rapidly surging. Current rigid and bulky implantable microelectronic power sources are prone to immune rejection and incision, or cannot provide enough energy for long-term use, which greatly limits the development of miniaturized implantable medical devices. Herein, a comprehensive review of the historical development of IMEs and the applicable miniaturized power sources along with their advantages and limitations is given. Despite recent advances in microfabrication techniques, biocompatible materials have facilitated the development of IMEs system toward non-invasive, ultra-flexible, bioresorbable, wireless and multifunctional, progress in the development of minimally invasive power sources in implantable systems has remained limited. Here three promising minimally invasive power sources summarized, including energy storage devices (biodegradable primary batteries, rechargeable batteries and supercapacitors), human body energy harvesters (nanogenerators and biofuel cells) and wireless power transfer (far-field radiofrequency radiation, near-field wireless power transfer, ultrasonic and photovoltaic power transfer). The energy storage and energy harvesting mechanism, configurational design, material selection, output power and in vivo applications are also discussed. It is expected to give a comprehensive understanding of the minimally invasive power sources driven IMEs system for painless health monitoring and biomedical therapy with long-term stable functions.
Collapse
Affiliation(s)
- Ming Xu
- Advanced Technology Institute University of Surrey Guildford Surrey UK
| | - Yuheng Liu
- Department of Chemical and Process Engineering University of Surrey Guildford Surrey UK
| | - Kai Yang
- Advanced Technology Institute University of Surrey Guildford Surrey UK
| | - Shaoyin Li
- Advanced Technology Institute University of Surrey Guildford Surrey UK
| | - Manman Wang
- Advanced Technology Institute University of Surrey Guildford Surrey UK
| | - Jianan Wang
- Department of Environmental Science and Engineering Xi'an Jiaotong University Xi'an China
| | - Dong Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an China
| | - Maxim Shkunov
- Advanced Technology Institute University of Surrey Guildford Surrey UK
| | - S Ravi P Silva
- Advanced Technology Institute University of Surrey Guildford Surrey UK
| | - Fernando A Castro
- Advanced Technology Institute University of Surrey Guildford Surrey UK
- National Physical Laboratory Teddington Middlesex UK
| | - Yunlong Zhao
- National Physical Laboratory Teddington Middlesex UK
- Dyson School of Design Engineering Imperial College London London UK
| |
Collapse
|
3
|
Desai DN, Mahal A, Varshney R, Obaidullah AJ, Gupta B, Mohanty P, Pattnaik P, Mohapatra NC, Mishra S, Kandi V, Rabaan AA, Mohapatra RK. Nanoadjuvants: Promising Bioinspired and Biomimetic Approaches in Vaccine Innovation. ACS OMEGA 2023; 8:27953-27968. [PMID: 37576639 PMCID: PMC10413842 DOI: 10.1021/acsomega.3c02030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Adjuvants are the important part of vaccine manufacturing as they elicit the vaccination effect and enhance the durability of the immune response through controlled release. In light of this, nanoadjuvants have shown unique broad spectrum advantages. As nanoparticles (NPs) based vaccines are fast-acting and better in terms of safety and usability parameters as compared to traditional vaccines, they have attracted the attention of researchers. A vaccine nanocarrier is another interesting and promising area for the development of next-generation vaccines for prophylaxis. This review looks at the various nanoadjuvants and their structure-function relationships. It compiles the state-of-art literature on numerous nanoadjuvants to help domain researchers orient their understanding and extend their endeavors in vaccines research and development.
Collapse
Affiliation(s)
- Dhruv N. Desai
- Department
of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ahmed Mahal
- Department
of Medical Biochemical Analysis, College of Health Technology, Cihan University−Erbil, Erbil, Kurdistan Region, Iraq
| | - Rajat Varshney
- Department
of Veterinary Microbiology, FVAS, Banaras
Hindu University, Mirzapur 231001, India
| | - Ahmad J. Obaidullah
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Bhawna Gupta
- School
of Biotechnology, KIIT Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | - Pratikhya Mohanty
- Bioenergy
Lab, BDTC, School of Biotechnology, KIIT
Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | | | | | - Snehasish Mishra
- Bioenergy
Lab, BDTC, School of Biotechnology, KIIT
Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | - Venkataramana Kandi
- Department
of Microbiology, Prathima Institute of Medical
Sciences, Karimnagar 505 417, Telangana, India
| | - Ali A. Rabaan
- Molecular
Diagnostic Laboratory, Johns Hopkins Aramco
Healthcare, Dhahran 31311, Saudi Arabia
- College
of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department
of Public Health and Nutrition, The University
of Haripur, Haripur 22610, Pakistan
| | - Ranjan K. Mohapatra
- Department
of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India
| |
Collapse
|
4
|
Gholizadeh O, Yasamineh S, Amini P, Afkhami H, Delarampour A, Akbarzadeh S, Karimi Matloub R, Zahedi M, Hosseini P, Hajiesmaeili M, Poortahmasebi V. Therapeutic and diagnostic applications of nanoparticles in the management of COVID-19: a comprehensive overview. Virol J 2022; 19:206. [PMID: 36463213 PMCID: PMC9719161 DOI: 10.1186/s12985-022-01935-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
In December 2019, Coronavirus Disease 2019 (COVID-19) was reported in Wuhan, China. Comprehensive strategies for quick identification, prevention, control, and remedy of COVID-19 have been implemented until today. Advances in various nanoparticle-based technologies, including organic and inorganic nanoparticles, have created new perspectives in this field. These materials were extensively used to control COVID-19 because of their specific attribution to preparing antiviral face masks, various safety sensors, etc. In this review, the most current nanoparticle-based technologies, applications, and achievements against the coronavirus were summarized and highlighted. This paper also offers nanoparticle preventive, diagnostic, and treatment options to combat this pandemic.
Collapse
Affiliation(s)
- Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Parya Amini
- Department of Microbiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Abbasali Delarampour
- Microbiology Department, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Mahlagha Zahedi
- Department of Pathology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parastoo Hosseini
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Hajiesmaeili
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
He Z, Liu C, Li Z, Chu Z, Chen X, Chen X, Guo Y. Advances in the use of nanomaterials for nucleic acid detection in point-of-care testing devices: A review. Front Bioeng Biotechnol 2022; 10:1020444. [DOI: 10.3389/fbioe.2022.1020444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/23/2022] [Indexed: 01/03/2023] Open
Abstract
The outbreak of the coronavirus (COVID-19) has heightened awareness of the importance of quick and easy testing. The convenience, speed, and timely results from point-of-care testing (POCT) in all vitro diagnostic devices has drawn the strong interest of researchers. However, there are still many challenges in the development of POCT devices, such as the pretreatment of samples, detection sensitivity, specificity, and so on. It is anticipated that the unique properties of nanomaterials, e.g., their magnetic, optical, thermal, and electrically conductive features, will address the deficiencies that currently exist in POCT devices. In this review, we mainly analyze the work processes of POCT devices, especially in nucleic acid detection, and summarize how novel nanomaterials used in various aspects of POCT products can improve performance, with the ultimate aims of offering new ideas for the application of nanomaterials and the overall development of POCT devices.
Collapse
|
6
|
Jiang Y, Zhang WJ, Mi XJ, Huang GJ, Xie HF, Feng X, Peng LJ, Yang Z. Antibacterial property, corrosion and discoloration resistance of pure copper containing Zn or Ni. RARE METALS 2022; 41:4041-4046. [PMID: 36157376 PMCID: PMC9483388 DOI: 10.1007/s12598-022-02098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 05/08/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED This study focused on the effects of Zn and Ni addition on the antibacterial properties and corrosion resistance of copper alloys. The antimicrobial properties of copper and copper alloys were evaluated using Escherichia coli ATCC 8739 bacterial strain by employing the overlay and plate counting methods. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface composition of the alloy after contact with bacteria. A salt spray method was used to simulate an artificial sweat contact environment to test the discoloration and corrosion resistance of the alloy, and scanning electron microscopy (SEM) was used to analyze the film layer and surface material composition of the corroded samples. The addition of Ni reduced the antibacterial performance of pure copper; however, the antibacterial performance of the alloy remained fast and efficient after the addition of Zn. Moreover, the addition of Zn and Ni significantly improved the corrosion resistance and surface discoloration of copper alloys in artificial sweat environments. This study provided support for the future application of copper alloys as antimicrobial surface-contact materials with safer public and medical environments in the face of diseases spread by large populations. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12598-022-02098-8.
Collapse
Affiliation(s)
- Yun Jiang
- State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., Ltd, Beijing, 100088 China
- GRIMAT Engineering Institute Co., Ltd, Beijing, 101407 China
- General Research Institute for Nonferrous Metals, Beijing, 100088 China
| | - Wen-Jing Zhang
- State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., Ltd, Beijing, 100088 China
- GRIMAT Engineering Institute Co., Ltd, Beijing, 101407 China
- General Research Institute for Nonferrous Metals, Beijing, 100088 China
| | - Xu-Jun Mi
- State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., Ltd, Beijing, 100088 China
- GRIMAT Engineering Institute Co., Ltd, Beijing, 101407 China
- General Research Institute for Nonferrous Metals, Beijing, 100088 China
| | - Guo-Jie Huang
- State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., Ltd, Beijing, 100088 China
- GRIMAT Engineering Institute Co., Ltd, Beijing, 101407 China
- General Research Institute for Nonferrous Metals, Beijing, 100088 China
| | - Hao-Feng Xie
- State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., Ltd, Beijing, 100088 China
- GRIMAT Engineering Institute Co., Ltd, Beijing, 101407 China
- General Research Institute for Nonferrous Metals, Beijing, 100088 China
| | - Xue Feng
- State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., Ltd, Beijing, 100088 China
- GRIMAT Engineering Institute Co., Ltd, Beijing, 101407 China
- General Research Institute for Nonferrous Metals, Beijing, 100088 China
| | - Li-Jun Peng
- State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., Ltd, Beijing, 100088 China
- GRIMAT Engineering Institute Co., Ltd, Beijing, 101407 China
- General Research Institute for Nonferrous Metals, Beijing, 100088 China
| | - Zhen Yang
- State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., Ltd, Beijing, 100088 China
- GRIMAT Engineering Institute Co., Ltd, Beijing, 101407 China
- General Research Institute for Nonferrous Metals, Beijing, 100088 China
| |
Collapse
|
7
|
Limongi T, Susa F. An Opinion on How Nanobiotechnology is Assisting Humankind to Overcome the Coronavirus Disease 2019. Front Bioeng Biotechnol 2022; 10:916165. [PMID: 35769099 PMCID: PMC9234451 DOI: 10.3389/fbioe.2022.916165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
|
8
|
Hamdy NM, Shaker FH, Zhan X, Basalious EB. Tangled quest of post-COVID-19 infection-caused neuropathology and what 3P nano-bio-medicine can solve? EPMA J 2022; 13:261-284. [PMID: 35668839 PMCID: PMC9160520 DOI: 10.1007/s13167-022-00285-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
COVID-19-caused neurological problems are the important post-CoV-2 infection complications, which are recorded in ~ 40% of critically ill COVID-19 patients. Neurodegeneration (ND) is one of the most serious complications. It is necessary to understand its molecular mechanism(s), define research gaps to direct research to, hopefully, design new treatment modalities, for predictive diagnosis, patient stratification, targeted prevention, prognostic assessment, and personalized medical services for this type of complication. Individualized nano-bio-medicine combines nano-medicine (NM) with clinical and molecular biomarkers based on omics data to improve during- and post-illness management or post-infection prognosis, in addition to personalized dosage profiling and drug selection for maximum treatment efficacy, safety with least side-effects. This review will enumerate proteins, receptors, and enzymes involved in CoV-2 entrance into the central nervous system (CNS) via the blood–brain barrier (BBB), and list the repercussions after that entry, ranging from neuroinflammation to neurological symptoms disruption mechanism. Moreover, molecular mechanisms that mediate the host effect or viral detrimental effect on the host are discussed here, including autophagy, non-coding RNAs, inflammasome, and other molecular mechanisms of CoV-2 infection neuro-affection that are defined here as hallmarks of neuropathology related to COVID-19 infection. Thus, a couple of questions are raised; for example, “What are the hallmarks of neurodegeneration during COVID-19 infection?” and “Are epigenetics promising solution against post-COVID-19 neurodegeneration?” In addition, nano-formulas might be a better novel treatment for COVID-19 neurological complications, which raises one more question, “What are the challenges of nano-bio-based nanocarriers pre- or post-COVID-19 infection?” especially in the light of omics-based changes/challenges, research, and clinical practice in the framework of predictive preventive personalized medicine (PPPM / 3P medicine).
Collapse
Affiliation(s)
- Nadia M Hamdy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo Egypt
| | - Fatma H Shaker
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo Egypt
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China.,Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117 People's Republic of China.,Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People's Republic of China
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Al Kasr AlAiny, Cairo, 11562 Egypt
| |
Collapse
|
9
|
Ni YQ, Zeng HH, Song XW, Zheng J, Wu HQ, Liu CT, Zhang Y. Potential metal-related strategies for prevention and treatment of COVID-19. RARE METALS 2022; 41:1129-1141. [PMID: 35068851 PMCID: PMC8761834 DOI: 10.1007/s12598-021-01894-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/28/2021] [Accepted: 10/10/2021] [Indexed: 05/07/2023]
Abstract
Abstract The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed severe threats to human health, public safety, and the global economy. Metal nutrient elements can directly or indirectly take part in human immune responses, and metal-related drugs have served as antiviral drugs and/or enzyme inhibitors for many years, providing potential solutions to the prevention and treatment of COVID-19. Metal-based drugs are currently under a variety of chemical structures and exhibit wide-range bioactivities, demonstrating irreplaceable advantages in pharmacology. This review is an intention to summarize recent progress in the prevention and treatment strategies against COVID-19 from the perspective of metal pharmacology. The current and potential utilization of metal-based drugs is briefly introduced. Specifically, metallohydrogels that have been shown to present superior antiviral activities are stressed in the paper as potential drugs for the treatment of COVID-19. Graphic abstract
Collapse
Affiliation(s)
- Ya-Qiong Ni
- Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
| | - Hui-Hui Zeng
- Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
| | - Xian-Wen Song
- Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
| | - Hui-Qiong Wu
- Hanshan Normal University, Chaozhou, 521041 China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071 China
| | - Chun-Tai Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou, 450002 China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
| |
Collapse
|