1
|
Wang J, Chen Y, Song Y, Xu W, Li W, Ma W, Yang C, Chen Z, Chen S. Three hepcidins from the spotted knifejaw (Oplegnathus punctatus) promote antimicrobial activity via TLR/NFκB pathway. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109958. [PMID: 39396559 DOI: 10.1016/j.fsi.2024.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Hepcidin belongs to a class of small cationic antimicrobial peptides rich in cysteine. It is synthesized by liver and is widely involved in host antimicrobial, antiviral and other immune responses. We identified and characterized three hepcidin genes (OpHep1, OpHep2 and OpHep3) in spotted knifejaw. All the OpHeps shared high identities with hepcidins in other teleost, containing alpha helix and β-sheets. Three OpHeps were all detected in healthy tissues, with the abundant expression in liver. They were significantly increased after Vibrio harveyi infection in the six immune-relevant tissues (liver, kidney, spleen, gill, skin and intestine). OpHeps knockdown in spotted knifejaw liver cells affected the mRNA levels of inflammation-related genes, including il1β, il6, il8, and nfκb. Further, the recombinant hepcidin proteins were effective in suppressing the growth of both Gram-negative and Gram-positive bacteria. To identify the function of OpHeps in vivo, we performed the overexpression of three OpHeps in zebrafish, and found OpHeps could significantly induce immune-related genes expression in transgenic zebrafish, including myd88, il10, il21, il16, tlr1, tlr3 and lysozyme. When infected with V. harveyi, OpHeps transgenic zebrafishes had a higher survival rate than wild-type zebrafishes. The expression of myd88, il10, il8, il1β, nfκb and lysozyme were all significantly up-regulated in transgenic fishes during bacterial infection. In summary, these results indicated that hepcidin could protect fish fight against pathogen through TLR/NFκB signaling cascade and Lysozyme. Three OpHeps would be potential targets for prevention of bacterial infections in aquaculture industry of spotted knifejaw, which provided a new idea for the molecular breeding of fish disease resistance.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yadong Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| | - Yu Song
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Wenteng Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| | - Wensheng Li
- Laizhou Mingbo Aquatic CO., Ltd., Laizhou, 261418, Shandong, China.
| | - Wenhui Ma
- Laizhou Mingbo Aquatic CO., Ltd., Laizhou, 261418, Shandong, China.
| | - Chuanjun Yang
- Laizhou Mingbo Aquatic CO., Ltd., Laizhou, 261418, Shandong, China.
| | - Zhangfan Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Liu H, Wang S, Zhang Z, Yan H, He T, Wei X, Shi Y, Chen Y, Wang W, Li X. Nanopore-based full-length transcriptome sequencing of the skin in Pseudopleuronectes yokohamae identifies novel antimicrobial peptide genes. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109957. [PMID: 39393612 DOI: 10.1016/j.fsi.2024.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
The marbled flounder (Pseudopleuronectes yokohamae) is highly esteemed for its exceptional nutritional value and delicious taste. However, this species has extremely limited transcriptome data, which can offer priceless information for disease protection. In the study, the skin transcriptomic sequencing of P. yokohamae revealed 7.72 GB of clean data using the Nanopore sequencing platform. The results revealed 30,498 transcripts of functional annotations in the P. yokohamae transcriptome. All transcripts were searched in eight functional databases. A total of 10,337 ORFs were obtained, of which 6081 complete ORFs accounted for 58.83% of all predicted CDS. Moreover, 10,195 SSRs were detected. Meanwhile, the non-pecific immunity pathways were investigated for better understanding of the immunological reaction in P. yokohamae, and seven innate immune pathways were identified. The innate-immune related genes were highly expressed in the NOD-like receptor signaling pathway, followed by the C-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and Cytosolic DNA-sensing pathway. In this study, four families of antimicrobial peptides (AMPs) in P. yokohamae were analysed for the first time, including piscidins, hepcidins, liver-expressed antimicrobial peptide and defensins. Seven AMPs, including Pypleurocidin-like WF3, Pypleurocidin-like WFX, Pyhepcidin 1, Pyhepcidin-like 1, PyLEAP-2, Pybeta-defensin and Pybeta-defensin-like 1, were further identified. The seven AMPs showed a highly identity in their cDNA and genomic structures and an inducible expression pattern preferable to skin in response to pathogens. The transcriptomic data and investigation of AMPs from P. yokohamae promote a deeper awareness of fish mucosal immunity and provide information in the prevention of fish diseases.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Shuai Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zheng Zhang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian, China
| | - Huixiang Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Tingting He
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xiaoyan Wei
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yanyan Shi
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| | - Xuejie Li
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| |
Collapse
|
3
|
Zhang W, Li B, Yu R, Xu W, Liu X, Su J, Yuan G. Hepcidin contributes to largemouth bass (Micropterus salmoides) against bacterial infections. Int J Biol Macromol 2024; 266:131144. [PMID: 38556234 DOI: 10.1016/j.ijbiomac.2024.131144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/16/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
The increasing emergence and dissemination of bacterial pathogens in largemouth bass culture accelerate the desire for new treatment measures. Antimicrobial peptides as the host's antimicrobial source dominate the preferred molecules for discovering antibacterial agents. Here, the potential of Hepcidin-1 from largemouth bass (Micropterus salmoides) (MsHep-1) against bacterial infection is demonstrated. MsHep-1 not only improved the survival rate in infection experiments involving Nocardia seriolae (12 %) and Aeromonas hydrophila (18 %) but also coped with iron overload conditions in vivo. Moreover, the antibacterial activity of MsHep-1 in vitro was identified against both gram-negative and gram-positive bacteria. Mechanistic studies show MsHep-1 leads to bacterial death by changing the bacterial membrane potential and disrupting the bacterial membrane structure. These findings demonstrate that MsHep-1 may play an important role in the host response to bacterial infection. It provides promising strategies in the application of immunosuppression prevention and control in fish. AMPs may be a promising and available reservoir for treating the current bacterial diseases.
Collapse
Affiliation(s)
- Weixiang Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruying Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyan Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Anooja VV, Archana K, Athira PP, Anju MV, Neelima S, Muhammed Musthafa S, Dhaneesha M, Sajeevan TP, Singh ISB, Philip R. Antibacterial activity and modes of action of a novel hepcidin isoform from the shrimp scad, Alepes djedaba (Forsskål, 1775). FISH & SHELLFISH IMMUNOLOGY 2024; 146:109406. [PMID: 38278338 DOI: 10.1016/j.fsi.2024.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Hepcidin, initially identified in human blood ultrafiltrate as cysteine rich Liver Expressed Antimicrobial Peptide (LEAP-1), is a core molecular conduit between iron trafficking and immune response. Though a great share of studies has been focused on the iron regulatory function of hepcidins, investigations on the antimicrobial aspects are relatively less. The present study is aimed at identification of hepcidin from a teleost fish, Alepes djedaba followed by its recombinant expression, testing antibacterial property, stability and evaluation of cytotoxicity. Modes of action on bacterial pathogens were also examined. A novel hepcidin isoform, Ad-Hep belonging to the HAMP1 (Hepcidin antimicrobial peptide 1) group of hepcidins was identified from the shrimp scad, Alepes djedaba. Ad-Hep with 2.9 kDa size was found to be a cysteine rich, cationic peptide (+4) with antiparallel beta sheet conformation, a furin cleavage site (RXXR) and 'ATCUN' motif. It was heterologously expressed in E. coli Rosettagami B(DE3)PLysS cells and the recombinant peptide, rAd-Hep was found to have significant antibacterial activity, especially against Edwardsiella tarda, Vibrio parahaemolyticus and Escherichia coli. Membrane depolarization followed by membrane permeabilization and Reactive Oxygen Species (ROS) production were found to be the modes of action of rAd-Hep on bacterial cells. Ad-Hep was found to be non-haemolytic to hRBC and non-cytotoxic in mammalian cell line. Stability of the peptide at varying temperature, pH and metal salts qualify them for applications in vivo. With significant bactericidal activity coupled with direct killing mechanisms, the rAd-Hep can be a promising drug candidate for therapeutic applications in medicine and fish culture systems.
Collapse
Affiliation(s)
- V V Anooja
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - K Archana
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - P P Athira
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - M V Anju
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - S Neelima
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - S Muhammed Musthafa
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - M Dhaneesha
- National Center for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - T P Sajeevan
- National Center for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - I S Bright Singh
- National Center for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India.
| |
Collapse
|
5
|
Zhang Z, Zhou Y, Zhang H, Du X, Cao Z, Wu Y, Liu C, Sun Y. Antibacterial Activity and Mechanisms of TroHepc2-22, a Derived Peptide of Hepcidin2 from Golden Pompano ( Trachinotus ovatus). Int J Mol Sci 2023; 24:ijms24119251. [PMID: 37298202 DOI: 10.3390/ijms24119251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Hepcidin, a cysteine-rich antimicrobial peptide, has a highly conserved gene structure in teleosts, and it plays an essential role in host immune response against various pathogenic bacteria. Nonetheless, few studies on the antibacterial mechanism of hepcidin in golden pompano (Trachinotus ovatus) have been reported. In this study, we synthesized a derived peptide, TroHepc2-22, from the mature peptide of T. ovatus hepcidin2. Our results showed that TroHepc2-22 has superior antibacterial abilities against both Gram-negative (Vibrio harveyi and Edwardsiella piscicida) and Gram-positive (Staphylococcus aureus and Streptococcus agalactiae) bacteria. Based on the results of a bacterial membrane depolarization assay and propidium iodide (PI) staining assay in vitro, TroHepc2-22 displayed antimicrobial activity by inducing the bacterial membrane depolarization and changing the bacterial membrane permeability. Scanning electron microscopy (SEM) visualization illustrated that TroHepc2-22 brought about membrane rupturing and the leakage of the cytoplasm for the bacteria. In addition, TroHepc2-22 was verified to have hydrolytic activity on bacterial genomic DNA in view of the results of the gel retardation assay. In terms of the in vivo assay, the bacterial loads of V. harveyi in the tested immune tissues (liver, spleen, and head kidney) were significantly reduced in T. ovatus, revealing that TroHepc2-22 significantly enhanced the resistance against V. harveyi infection. Furthermore, the expressions of immune-related genes, including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin 1-β (IL-1β), IL-6, Toll-like receptor 1 (TLR1), and myeloid differentiation factor 88 (MyD88) were significantly increased, indicating that TroHepc2-22 might regulate inflammatory cytokines and activate immune-related signaling pathways. To summarize, TroHepc2-22 possesses appreciable antimicrobial activity and plays a vital role in resisting bacterial infection. The observation of our present study unveils the excellent application prospect of hepcidin as a substitute for antibiotics to resist pathogenic microorganisms in teleosts.
Collapse
Affiliation(s)
- Zhengshi Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| | - Yongcan Zhou
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| | - Han Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
| | - Xiangyu Du
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
| | - Zhenjie Cao
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| | - Ying Wu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
| | - Chunsheng Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| | - Yun Sun
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Jin Z, Shen M, Wang L, Wang C, Gao M, Yu G, Chang Z, Zhang X. Antibacterial and immunoregulatory activity of an antimicrobial peptide hepcidin in loach (Misgurnus anguillicaudatus). Int J Biol Macromol 2023; 242:124833. [PMID: 37207751 DOI: 10.1016/j.ijbiomac.2023.124833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Antimicrobial peptides (AMPs) are members of humoral immunity and particpate in resisting microbial invasion. In this study, an AMP gene hepcidin was obtained from the oriental loach Misgurnus anguillicaudatus and named Ma-Hep. This Ma-Hep encodes a peptide of 90 amino acids, with a predicted active peptide segment (Ma-sHep) of 25 amino acids at C terminus. Stimulation by a bacterial pathogen Aeromonas hydrophila resulted in significant up-regulation of Ma-Hep transcripts in loach midgut, head kidney, and gill. Ma-Hep and Ma-sHep proteins were expressed in Pichia pastoris and their antibacterial activity was examined. Results showed that Ma-sHep possessed stronger antibacterial activity against various Gram-positive and Gram-negative bacteria, compared to Ma-Hep. Scanning electron microscopy showed that Ma-sHep might kill bacteria by destroying bacterial cell membranes. Moreover, we found that Ma-sHep had an inhibitory effect on blood cell apoptosis induced by A. hydrophila and facilitated the bacterial phagocytosis and clearance in loach. Histopathological analysis indicated Ma-sHep could protect liver and gut of loach from bacterial infection. Ma-sHep has high thermal stability and PH stability, which is conducive to further feed addition. Feed supplemented with Ma-sHep expressing yeast improved the intestinal flora of loach by increasing the dominant bacteria and decreasing the harmful bacteria. Feed supplemented with Ma-sHep expressing yeast also regulated the expression of inflammatory related factors in various tissues of loach and reduced the mortality of loach upon bacterial infection. These findings show that the antibacterial peptide Ma-sHep is involved in the antibacterial defense of loach and can be used as a candidate for new antimicrobial agents in aquaculture.
Collapse
Affiliation(s)
- Zeyu Jin
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Manli Shen
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Liuen Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Cui Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Miaomiao Gao
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guoying Yu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhongjie Chang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xiaowen Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, Henan, China.
| |
Collapse
|
7
|
Liu MY, Zhang YR, Zhang JH, Miao L, Dang YF, Fei CJ, Li CH, Chen J. Molecular characterization and antimicrobial activity of NK-lysin in black scraper (Thamnaconus modestus). FISH & SHELLFISH IMMUNOLOGY 2023; 136:108703. [PMID: 36948366 DOI: 10.1016/j.fsi.2023.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
NK-lysin (NKL) is a positively charged antimicrobial peptide with broad-spectrum bactericidal activities. In this study, the cDNA sequence of NKL (TmNKL) from black scraper (Thamnaconus modestus) was cloned, which encodes a predicted polypeptide of 150 amino acids that contains a surfactant protein B domain with three disulfide bonds. Phylogenetically, TmNKL was most closely related to its teleost counterpart from tiger puffer (Takifugu rubripes). Expression analysis demonstrated that TmNKL transcripts were constitutively expressed in all tested tissues, with the highest expression levels in the gills. Its expression was significantly upregulated in the gills, head kidney, and spleen after infection with Vibrio parahaemolyticus. A linear peptide (TmNKLP40L) and a disulfide-type peptide (TmNKLP40O) were further synthesized and results showed that disulfide bonds are not essential for bactericidal activities of TmNKL, and that both forms of TmNKL exhibited potent bactericidal activities against 4 gram- negative bacteria, including V. parahaemolyticus, V. alginolyticus, Edwardsiella tarda, and V. harveyi. Observed antimicrobial activities are likely due to the effects of TmNKLP40L and TmNKLP40O treatment on disrupting the integrity of both inner and outer membrane of V. parahaemolyticus, resulting in hydrolysis of bacterial genomic DNA. Damaged cell membranes and leakage of intracellular contents were further confirmed using scanning and transmission microscopy. Moreover, administration of 1.0 μg/g TmNKLP40L or TmNKLP40O significantly decreased bacterial load in tissues and thus, pronouncedly enhanced the survival of V. parahaemolyticus-infected fish. Overall, our results demonstrated that TmNKL is a potent innate effector and provides protective effects against bacterial infection.
Collapse
Affiliation(s)
- Mei-Yi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Yi-Rong Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Jian-Hua Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Liang Miao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Yun-Fei Dang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China.
| | - Chang-Hong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| |
Collapse
|
8
|
Chen J, Zhang CY, Chen JY, Seah RWX, Zhang L, Ma L, Ding GH. Host defence peptide LEAP2 contributes to antimicrobial activity in a mustache toad (Leptobrachium liui). BMC Vet Res 2023; 19:47. [PMID: 36765333 PMCID: PMC9921027 DOI: 10.1186/s12917-023-03606-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND The liver-expressed antimicrobial peptide 2 (LEAP2) is essential in host immunity against harmful pathogens and is only known to act as an extracellular modulator to regulate embryonic development in amphibians. However, there is a dearth of information on the antimicrobial function of amphibian LEAP2. Hence, a LEAP2 homologue from Leptobrachium liui was identified, characterized, and chemically synthesized, and its antibacterial activities and mechanisms were determined. RESULTS In this study, LEAP2 gene (Ll-LEAP2) cDNA was cloned and sequenced from the Chong'an Moustache Toad (Leptobrachium liui). The predicted amino acid sequence of Ll-LEAP2 comprises a signal peptide, a mature peptide, and a prodomain. From sequence analysis, it was revealed that Ll-LEAP2 belongs to the cluster of amphibian LEAP2 and displays high similarity to the Tropical Clawed Frog (Xenopus tropicalis)'s LEAP2. Our study revealed that LEAP2 protein was found in different tissues, with the highest concentration in the kidney and liver of L. liui; and Ll-LEAP2 mRNA transcripts were expressed in various tissues with the kidney having the highest mRNA expression level. As a result of Aeromonas hydrophila infection, Ll-LEAP2 underwent a noticeable up-regulation in the skin while it was down-regulated in the intestines. The chemically synthesized Ll-LEAP2 mature peptide was selective in its antimicrobial activity against several in vitro bacteria including both gram-positive and negative bacteria. Additionally, Ll-LEAP2 can kill specific bacteria by disrupting bacterial membrane and hydrolyzing bacterial gDNA. CONCLUSIONS This study is the first report on the antibacterial activity and mechanism of amphibian LEAP2. With more to uncover, the immunomodulatory functions and wound-healing activities of Ll-LEAP2 holds great potential for future research.
Collapse
Affiliation(s)
- Jie Chen
- grid.440824.e0000 0004 1757 6428Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000 China
| | - Chi-Ying Zhang
- grid.440824.e0000 0004 1757 6428Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000 China
| | - Jing-Yi Chen
- grid.440824.e0000 0004 1757 6428Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000 China
| | - Rachel Wan Xin Seah
- grid.4280.e0000 0001 2180 6431Department of Biological Science, National University of Singapore, Singapore, 117558 Singapore
| | - Le Zhang
- grid.440824.e0000 0004 1757 6428School of Medicine, Lishui University, Lishui, 323000 China
| | - Li Ma
- grid.440824.e0000 0004 1757 6428Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000 China
| | - Guo-Hua Ding
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, China.
| |
Collapse
|
9
|
Zhu QY, Chen RY, Yu J, Ding GH, Seah RWX, Chen J. Antimicrobial peptide hepcidin contributes to restoration of the intestinal flora after Aeromonas hydrophila infection in Acrossocheilus fasciatus. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109486. [PMID: 36216305 DOI: 10.1016/j.cbpc.2022.109486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Hepcidin is a cysteine-rich antimicrobial peptide that serves an important role in the immunity system of fishes. It exhibits antibacterial, antifungal, antiviral, and antitumor activities. However, the exact role of fish hepcidin in the regulation of the intestinal flora still remains a mystery. In our study, we sequenced and characterized hepcidin from the liver of Acrossocheilus fasciatus. Phylogenetic tree analysis showed that A. fasciatus hepcidin and Gobiocypris rarus hepcidin were the most closely related, and both belonged to the fish HAMP1 cluster. Studies conducted on in vivo tissue distribution showed that the expression of hepcidin was highest in healthy A. fasciatus liver. Aeromonas hydrophila infection was confirmed by the increased expression of pro-inflammatory cytokine genes and bacterial loads in A. fasciatus tissues. After A. hydrophila infection, hepcidin expression significantly increased in the liver, spleen, and head kidney. In vitro antibacterial assays showed that hepcidin exhibits strong broad spectrum antibacterial activity. Furthermore, we examined the regulatory effect of hepcidin on the intestinal flora and found that A. fasciatus hepcidin restored the reduced diversity and compositional changes in intestinal flora caused by A. hydrophila infection. Our results suggest that hepcidin could regulate the intestinal flora in fishes; however, the underlying mechanisms need to be explored in greater detail.
Collapse
Affiliation(s)
- Qun-Yin Zhu
- College of Ecology, Lishui University, Lishui 323000, China
| | - Ru-Yi Chen
- College of Ecology, Lishui University, Lishui 323000, China
| | - Jing Yu
- College of Ecology, Lishui University, Lishui 323000, China
| | - Guo-Hua Ding
- College of Ecology, Lishui University, Lishui 323000, China
| | - Rachel Wan Xin Seah
- Department of Biological Science, National University of Singapore, Singapore 117558, Singapore
| | - Jie Chen
- College of Ecology, Lishui University, Lishui 323000, China.
| |
Collapse
|
10
|
Xiao W, Chen Z, Zhang Y, Wu Y, Jiang H, Zhang H, Qu M, Lin Q, Qin G. Hepcidin Gene Co-Option Balancing Paternal Immune Protection and Male Pregnancy. Front Immunol 2022; 13:884417. [PMID: 35529860 PMCID: PMC9073008 DOI: 10.3389/fimmu.2022.884417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Viviparity has originated independently more than 150 times in vertebrates, while the male pregnancy only emerged in Syngnathidae fishes, such as seahorses. The typical male pregnancy seahorses have closed sophisticated brood pouch that act as both uterus and placenta, representing an excellent model system for studying the evolutionary process of paternal immune protection. Phylogenetic analysis indicated that the hampII gene family has multiple tandem duplicated genes and shows independent lineage-specific expansion in seahorses, and they had the highest ratio of nonsynonymous substitutions to synonymous substitutions (dN/dS) in the seahorse phylogenetic branch. The expression levels of hampIIs in the brood pouch placenta were significantly higher during pregnancy than non-pregnancy. Both LPS stimulation test in vivo and cytotoxicity test in vitro proved the immunological protection function of hampIIs against pathogen infection in seahorse. Besides, seahorse hampII peptides exhibit weaker antibacterial function, but stronger agglutination and free endotoxin inhibition. We assumed that the modified immunological function seemed to be a trade-off between the resistance to microbial attack and offspring protection. In brief, this study suggests that the rapid co-option of hampIIs contributes to the evolutionary adaption to paternal immune care during male pregnancy.
Collapse
Affiliation(s)
- Wanghong Xiao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zelin Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanhong Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yongli Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Han Jiang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Huixian Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Meng Qu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Qiang Lin
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Geng Qin
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Liu M, Hu R, Li W, Yang W, Xu Q, Chen L. Identification of Antibacterial Activity of Hepcidin From Antarctic Notothenioid Fish. Front Microbiol 2022; 13:834477. [PMID: 35495646 PMCID: PMC9039748 DOI: 10.3389/fmicb.2022.834477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Hepcidin is a small peptide composed of signal peptide, propeptide, and the bioactive mature peptide from N terminal to C terminal. Mature hepcidin is an antibacterial peptide and iron regulator with eight highly conserved cysteines forming four intramolecular disulfide bonds, giving it a β sheet hairpin-like structure. Hepcidin homologs are found in a variety of vertebrates, especially fish, and their diversity may be associated with different habitats and different levels of pathogens. Dissostichus mawsoni, an Antarctic notothenioid fish that lives in the coldest water unlike most places of the world, with at least two hepcidin variants with eight cysteines. We confirmed the formation process of activated mature hepcidins from D. mawsoni in Chinese hamster ovary (CHO) cell line, obtained recombinant hepcidin protein from prokaryotes, and characterized its binding ability and antibacterial activity against varying bacteria. The expression of hepcidin in CHO cell line showed that the prepropeptide of Dmhep_8cysV1 and Dmhep_8cysV2 cleavage into smaller mature peptide. The antibacterial assay and flow cytometry showed that Dmhep_8cysV1, Dmhep_8cysV2, and Drhep bound to different bacteria and killed them with different minimum inhibitory concentration. These data suggest that hepcidin plays an important role in the innate immunity of D. mawsoni and is of great value in improving resistance to pathogens.
Collapse
Affiliation(s)
- Mingli Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ruiqin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wenhao Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wenyi Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
12
|
Liu E, Huang T, Gu W, Wang G, Dong F, Ma H, Zhang L, He X, Yao Z, Jiao W, Li C, Wang B, Xu G. Molecular characterization and antibacterial immunity functional analysis of the antimicrobial peptide hepcidin from Coregonus ussuriensis berg. FISH & SHELLFISH IMMUNOLOGY 2022; 122:78-86. [PMID: 35051564 DOI: 10.1016/j.fsi.2022.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Antimicrobial peptides are immune system molecules existing in different organisms including mollusks, crustaceans and vertebrates. Hepcidins are a group of cysteine rich antimicrobial peptides, which plays an important role in fish response to a variety of pathogens. In this study, we cloned and identified Hepcidin from the Coregonus ussuriensis Berg, and its functions in vivo and in vitro was investigated. Our results showed that, CuHepc contains a 267 bp coding sequence (CDS) region that encodes 88 putative amino acids with a molecular weight of 9.77 kD. Hepcidin transcripts were most abundant in the liver of healthy C. ussuriensis Berg. The synthesized Hepcidin peptide exhibited a wide range of antibacterial activity against Gram-positive and Gram-negative bacteria in vitro, and the results of in vivo bacterial attack assays showed that the CuHepc gene was differentially up-regulated in the six tissues investigated after infection with Aeromonas hydrophila. To analyze the changes in protein levels in C. ussuriensis, we generated Hepc polyclonal antibodies in rabbits and verified that the protein expression was increased after bacterial infection with Western blot assay. MIC assay results showed a geometric mean value of 5.513 μM for CuHepc peptide. In the in vivo experiment, immune-related genes IL-10, NF-κB, TLR3 were up-regulated post-infection CuHepc peptide in liver and intestine. Finally, CuHepc peptide reduced the tissues microbial load compared to infection with Aeromonas hydrophila. The above results indicate that Hepc plays a role in the immune response of C. ussuriensis to exogenous disturbances, indicate that CuHepc might act a candidate for modulation of the innate immune system in C. ussuriensis.
Collapse
Affiliation(s)
- Enhui Liu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Tianqing Huang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Wei Gu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Gaochao Wang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Fulin Dong
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Haibing Ma
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Lanlan Zhang
- Heilongjiang Fisheries Technology Extension Center, Harbin, PR China
| | - Xianchen He
- Heilongjiang Aquatic Animal Resource Conservation Center, Harbin, PR China
| | - Zuochun Yao
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Wenlong Jiao
- Gansu Fisheries Research Institute, Lanzhou, PR China
| | - Chunyu Li
- Xinjiang Tianyun Organic Agriculture Limited Liability Company, Yili, PR China
| | - Bingqian Wang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China.
| | - Gefeng Xu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China.
| |
Collapse
|
13
|
Transcriptome analysis revealed multiple immune processes and energy metabolism pathways involved in the defense response of the large yellow croaker Larimichthys crocea against Pseudomonas plecoglossicida. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100886. [PMID: 34418783 DOI: 10.1016/j.cbd.2021.100886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/08/2023]
Abstract
The large yellow croaker (Larimichthys crocea) aquaculture industry is suffering substantial financial losses caused by visceral white nodules disease resulting from Pseudomonas plecoglossicida infection. However, how L. crocea responds to P. plecoglossicida infection remains largely unknown. Here, we characterized the changes in the mRNA profile in the spleen of L. crocea upon P. plecoglossicida infection and explored the related defensive strategies. Sample clustering analysis and qRT-PCR indicated that P. plecoglossicida induced profound and reproducible transcriptome remodeling in the L. crocea spleen. Many innate immune-related genes, such as IL-17 signaling molecules, chemokines and chemokine receptors, complement components, TLR5 signaling molecules, and antimicrobial peptide hepcidins (Hamps), were upregulated by P. plecoglossicida and may play important roles in the L. crocea defense against P. plecoglossicida. The antibacterial activity of Hamp2-5 against P. plecoglossicida was further confirmed by using synthetic mature peptide of Hamp2-5. Additionally, significant enrichment of "Glycolysis/Gluconeogenesis", "Citrate cycle" and "Oxidative phosphorylation" pathways and a significant upregulation of all 6 rate-limiting enzyme genes (HK1, PFK, PKM, CS, IDH2, DLST) in the Glycolysis and Citrate cycle pathways in P. plecoglossicida-infected fish suggested that ATP synthesis may be accelerated to ensure energy supply in response to pathogenic infection. Altogether, our results not only identified the key immune-related genes and immune pathways that participated in the defense response of L. crocea against P. plecoglossicida, but also revealed a novel defensive strategy involving ATP synthesis in this species.
Collapse
|
14
|
Veedu AM, Prahaladhan AP, Vadakkeveettil AV, Krishnakumar A, Surendran N, Philip R. An Antimicrobial peptide hepcidin, St-hep from tuberculated flathead, Sorsogona tuberculata (Cuvier, 1829): Molecular and functional characterization. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Barroso C, Carvalho P, Nunes M, Gonçalves JFM, Rodrigues PNS, Neves JV. The Era of Antimicrobial Peptides: Use of Hepcidins to Prevent or Treat Bacterial Infections and Iron Disorders. Front Immunol 2021; 12:754437. [PMID: 34646277 PMCID: PMC8502971 DOI: 10.3389/fimmu.2021.754437] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
The current treatments applied in aquaculture to limit disease dissemination are mostly based on the use of antibiotics, either as prophylactic or therapeutic agents, with vaccines being available for a limited number of fish species and pathogens. Antimicrobial peptides are considered as promising novel substances to be used in aquaculture, due to their antimicrobial and immunomodulatory activities. Hepcidin, the major iron metabolism regulator, is found as a single gene in most mammals, but in certain fish species, including the European sea bass (Dicentrarchus labrax), two different hepcidin types are found, with specialized roles: the single type 1 hepcidin is involved in iron homeostasis trough the regulation of ferroportin, the only known iron exporter; and the various type 2 hepcidins present antimicrobial activity against a number of different pathogens. In this study, we tested the administration of sea bass derived hepcidins in models of infection and iron overload. Administration with hamp2 substantially reduced fish mortalities and bacterial loads, presenting itself as a viable alternative to the use of antibiotics. On the other hand, hamp1 seems to attenuate the effects of iron overload. Further studies are necessary to test the potential protective effects of hamp2 against other pathogens, as well as to understand how hamp2 stimulate the inflammatory responses, leading to an increased fish survival upon infection.
Collapse
Affiliation(s)
- Carolina Barroso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Iron and Innate Immunity, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Programa Doutoral em Biologia Molecular e Celular (MCbiology), ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Pedro Carvalho
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Magda Nunes
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José F M Gonçalves
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Pedro N S Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Iron and Innate Immunity, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - João V Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Iron and Innate Immunity, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
16
|
Chen J, Lin YF, Chen JH, Chen X, Lin ZH. Molecular characterization of cathelicidin in tiger frog (Hoplobatrachus rugulosus): Antimicrobial activity and immunomodulatory activity. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109072. [PMID: 33965586 DOI: 10.1016/j.cbpc.2021.109072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/03/2021] [Indexed: 01/05/2023]
Abstract
Cathelicidins are an important antimicrobial peptide family and are expressed in many different vertebrates. They play an important role in the innate immune system of the host. However, amphibian cathelicidins are poorly understood. In this study, the cDNA of the cathelicidin gene was obtained from the skin transcriptome of tiger frog (Hoplobatrachus rugulosus). The predicted amino acid sequence of tiger frog cathelicidin (HR-CATH) comprises a signal peptide, a cathelin domain, and a mature peptide. The HR-CATH amino acid sequence alignment with other frog cathelicidins showed that the functional mature peptide is highly variable in amphibians, whereas the cathelin domain is conserved. A phylogenetic tree analysis showed that HR-CATH is most closely related to cathelicidin-NV from Nanorana ventripunctata. HR-CATH was chemically synthesized and its in vitro activity was determined. It had high antibacterial activity against Vibrio parahaemolyticus, Staphylococcus aureus, and the pathogenic bacterium Aeromonas hydrophila. HR-CATH damaged the cell membrane integrity of A. hydrophila according to a lactate dehydrogenase release assay and was able to hydrolyze the genomic DNA from A. hydrophila in a dose-dependent manner. Furthermore, in RAW264.7 cells (mouse leukemic monocyte/macrophage cell line), HR-CATH induced chemotaxis and enhanced respiratory burst. Our study shows that amphibian cathelicidin has antimicrobial activity and an immunomodulatory effect on immune cells.
Collapse
Affiliation(s)
- Jie Chen
- College of Ecology, Lishui University, Lishui 323000, China
| | - You-Fu Lin
- College of Ecology, Lishui University, Lishui 323000, China
| | - Jia-Hao Chen
- College of Ecology, Lishui University, Lishui 323000, China
| | - Xiang Chen
- College of Ecology, Lishui University, Lishui 323000, China
| | - Zhi-Hua Lin
- College of Ecology, Lishui University, Lishui 323000, China.
| |
Collapse
|
17
|
Hepcidin Protects Yellow Catfish ( Pelteobagrus fulvidraco) against Aeromonas veronii-Induced Ascites Disease by Regulating Iron Metabolism. Antibiotics (Basel) 2021; 10:antibiotics10070848. [PMID: 34356769 PMCID: PMC8300743 DOI: 10.3390/antibiotics10070848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/26/2022] Open
Abstract
Aeromonas veronii (A. veronii) is one of the main pathogens causing bacterial diseases in aquaculture. Although previous studies have shown that hepcidin as an antimicrobial peptide can promote fish resistance to pathogenic bacterial infections, but the mechanisms remain unclear. Here, we expressed and purified recombinant yellow catfish (Pelteobagrus fulvidraco) hepcidin protein (rPfHep). rPfHep can up-regulate the expression of ferritin and enhance the antibacterial activity in primary hepatocytes of yellow catfish. We employed berberine hydrochloride (BBR) and Fursultiamine (FSL) as agonists and antagonists for hepcidin, respectively. The results indicated that agonist BBR can inhibit the proliferation of pathogenic bacteria, and the antagonist FSL shows the opposite effect. After gavage administration, rPfHep and the agonist BBR can enhance the accumulation of iron in liver, which may hinder the iron transport and limit the amount of iron available to pathogenic bacteria. Moreover, rPfHep and the agonist BBR can also reduce the mortality rate, bacterial load and histological lesions in yellow catfish infected with A. veronii. Therefore, hepcidin is an important mediator of iron metabolism, and it can be used as a candidate target for prevent bacterial infections in yellow catfish. Hepcidin and BBR have potential application value in preventing anti-bacterial infection.
Collapse
|
18
|
Li CH, Chen J, Nie L, Chen J. MOSPD2 is a receptor mediating the LEAP-2 effect on monocytes/macrophages in a teleost, Boleophthalmus pectinirostris. Zool Res 2021; 41:644-655. [PMID: 33124217 PMCID: PMC7671916 DOI: 10.24272/j.issn.2095-8137.2020.211] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP-2) is a cationic peptide that plays an important role in a host's innate immune system. We previously demonstrated that mudskipper ( Boleophthalmus pectinirostris) LEAP-2 (BpLEAP-2) induces chemotaxis and activation of monocytes/ macrophages (MO/MФ). However, the molecular mechanism by which BpLEAP-2 regulates MO/MΦ remains unclear. In this study, we used yeast two-hybrid cDNA library screening to identify mudskipper protein(s) that interacted with BpLEAP-2, and characterized a sequence encoding motile sperm domain-containing protein 2 (BpMOSPD2). The interaction between BpLEAP-2 and BpMOSPD2 was subsequently confirmed by co-immunoprecipitation (Co-IP). Sequence analyses revealed that the predicted BpMOSPD2 contained an N-terminal extracellular portion composed of a CRAL-TRIO domain and a motile sperm domain, a C-terminal transmembrane domain, and a short cytoplasmic tail. Phylogenetic tree analysis indicated that BpMOSPD2 grouped tightly with fish MOSPD2 homologs and was most closely related to that of the Nile tilapia ( Oreochromis niloticus). The recombinant BpMOSPD2 was produced by prokaryotic expression and the corresponding antibody was prepared for protein concentration determination. RNA interference was used to knockdown BpMOSPD2 expression in the mudskipper MO/MФ, and the knockdown efficiency was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Knockdown of BpMOSPD2 significantly inhibited BpLEAP-2-induced chemotaxis of mudskipper MO/MФ and BpLEAP-2-induced bacterial killing activity. Furthermore, knockdown of BpMOSPD2 inhibited the effect of BpLEAP-2 on mRNA expression levels of BpIL-10, BpTNFα, BpIL-1β, and BpTGFβ in MO/MФ. In general, BpMOSPD2 directly interacted with BpLEAP-2, and mediated the effects of BpLEAP-2 on chemotaxis and activation of mudskipper MO/MФ. This is the first identification of MOSPD2 as a receptor for LEAP-2.
Collapse
Affiliation(s)
- Chang-Hong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jie Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
19
|
Chen J, Jiang W, Xu YW, Chen RY, Xu Q. Sequence analysis of hepcidin in barbel steed (Hemibarbus labeo): QSHLS motif confers hepcidin iron-regulatory activity but limits its antibacterial activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103845. [PMID: 32888968 DOI: 10.1016/j.dci.2020.103845] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Fish hepcidin genes are generally classified into two groups: hamp1-and hamp2-type isoforms. Hamp1-type hepcidin exhibits iron regulatory and antimicrobial activity, while hamp2-type shows a unique role in the immune response against various pathogens. An iron-regulatory motif exists at the N-terminus of hamp1-type hepcidin; however, the functional effect of this motif in fish is not well understood. Here, cDNA of the barbel steed (Hemibarbus labeo) hepcidin gene was cloned and sequenced. The predicted amino acid sequence comprised a signal peptide, a prodomain, and a mature peptide. Phylogenetic tree analysis revealed that barbel steed hepcidin belongs to the fish HAMP1 cluster and is closely related to Chinese rare minnow (Gobiocypris rarus) hepcidin. Barbel steed hepcidin is constitutively expressed in healthy fish tissues, predominantly in the liver. Following iron dextran treatment or Aeromonas hydrophila infection, expression of barbel steed hepcidin increased significantly in tested tissues. In vivo administration of intact hepcidin mature peptide (hep25) significantly and dose-dependently reduced ferroportin 1 expression, while truncated hepcidin mature peptide (hep20) lacking a QSHLS motif had no such effect. In vitro treatment of barbel steed monocytes/macrophages with hep25, but not hep20, increased the labile iron pool levels. Hep25 and hep20 conferred antibacterial activity only against A. hydrophila and Vibrio vulnificus, with greater activity of the latter at low concentrations. Neither hep25 nor hep20 impaired the cell membrane integrity of A. hydrophila, but could hydrolyze its genomic DNA; lack of a QSHLS motif enables hep20 to have a better hydrolytic effect. In summary, we identified an iron-regulatory motif in a fish species and demonstrated that this motif confers hamp1-type hepcidin iron-regulatory activity, but attenuates its antibacterial activity.
Collapse
Affiliation(s)
- Jie Chen
- College of Ecology, Lishui University, Lishui 323000, China.
| | - Wei Jiang
- College of Ecology, Lishui University, Lishui 323000, China
| | - Ya-Wen Xu
- College of Ecology, Lishui University, Lishui 323000, China
| | - Ru-Yi Chen
- College of Ecology, Lishui University, Lishui 323000, China
| | - Qian Xu
- College of Ecology, Lishui University, Lishui 323000, China
| |
Collapse
|
20
|
Shen HY, Zhou Y, Zhou QJ, Li MY, Chen J. Mudskipper interleukin-34 modulates the functions of monocytes/macrophages via the colony-stimulating factor-1 receptor 1. Zool Res 2020; 41:123-137. [PMID: 32150792 PMCID: PMC7109011 DOI: 10.24272/j.issn.2095-8137.2020.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interleukin-34 (IL-34) is a novel cytokine that plays an important role in innate immunity and inflammatory processes by binding to the colony-stimulating factor-1 receptor (CSF-1R). However, information on the function of IL-34 in fish remains limited. In the present study, we identified an IL-34 homolog from mudskippers (Boleophthalmus pectinirostris). In silico analysis showed that the mudskipper IL-34 (BpIL-34) was similar to other known IL-34 variants in sequence and structure and was most closely related to an orange-spotted grouper (Epinephelus coioides) homolog. BpIL-34 transcripts were constitutively expressed in various tissues, with the highest level of expression found in the brain. Edwardsiella tarda infection significantly up-regulated the mRNA expression of BpIL-34 in the mudskipper tissues. The recombinant mature BpIL-34 peptide (rBpIL-34) was purified and used to produce anti-rBpIL-34 IgG. Western blot analysis combined with PNGase F digestion revealed that native BpIL-34 in monocytes/macrophages (MOs/MФs) was N-glycosylated. In vitro, rBpIL-34 treatment enhanced the phagocytotic and bactericidal activity of mudskipper MOs/MФs, as well as the mRNA expression of pro-inflammatory cytokines like tumor necrosis factor α (BpTNF-α) and BpIL-1β in these cells. Furthermore, the knockdown of mudskipper CSF-1R1 (BpCSF-1R1), but not mudskipper BpCSF-1R2, significantly inhibited the rBpIL-34-mediated enhanced effect on MO/MФ function. In conclusion, our results indicate that mudskipper BpIL-34 modulates the functions of MOs/MФs via BpCSF-1R1.
Collapse
Affiliation(s)
- Hai-Yu Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yan Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Qian-Jin Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China. E-mail: .,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Ming-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315832, China E-mail: jchen1975@ 163.com
| |
Collapse
|
21
|
Hu Y, Kurobe T, Liu X, Zhang YA, Su J, Yuan G. Hamp Type-1 Promotes Antimicrobial Defense via Direct Microbial Killing and Regulating Iron Metabolism in Grass Carp ( Ctenopharyngodon idella). Biomolecules 2020; 10:biom10060825. [PMID: 32481513 PMCID: PMC7356000 DOI: 10.3390/biom10060825] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
Hepcidin is an antimicrobial peptide and regulator of iron homeostasis which has two isoforms in most fishes and some mammals. Previous studies have reported that the two hepcidin isoforms have different roles. Hamp type-1 plays a regulatory role in iron metabolism and hamp type-2 mostly performs an antimicrobial role. In this study, we found that Ctenopharyngodon idella (C. idella) have only one hepcidin isoform (hamp type-1), which showed both broad-spectrum antibacterial and iron regulatory functions. C. idella hepcidin mature peptide (hepcidin-25) and truncated peptide (hepcidin-20) exhibited bactericidal activities against both Gram-positive and Gram-negative bacteria in a dose-dependent manner in part through membrane rupture and binding to bacterial genomic DNA. The data from challenge tests demonstrated that the administration of hepcidin-25 significantly reduced mortality rates of C. idella by A. hydrophila infection, probably due to direct bactericidal activities of the peptide and a reduction of iron content in the fish serum. In addition, a comparison between hepcidin-20 and -25 suggests that the N terminal 5 amino acids play a critical role in reducing iron content in fish serum. Our findings revealed an important role of hamp type-1 in maintaining iron homeostasis and fighting against bacterial infections, suggesting the hepcidin has implications for the prevention and control of bacterial infection in aquaculture.
Collapse
Affiliation(s)
- Yazhen Hu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (X.L.); (Y.-A.Z.); (J.S.)
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| | - Tomofumi Kurobe
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (X.L.); (Y.-A.Z.); (J.S.)
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| | - Yong-An Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (X.L.); (Y.-A.Z.); (J.S.)
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (X.L.); (Y.-A.Z.); (J.S.)
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (X.L.); (Y.-A.Z.); (J.S.)
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
- Correspondence: ; Tel./Fax: +86-27-87285211
| |
Collapse
|
22
|
Cai SY, Nie L, Chen J. C-reactive protein/serum amyloid P promotes pro-inflammatory function and induces M1-type polarization of monocytes/macrophages in mudskipper, Boleophthalmus pectinirostris. FISH & SHELLFISH IMMUNOLOGY 2019; 94:318-326. [PMID: 31513914 DOI: 10.1016/j.fsi.2019.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/24/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
C-reactive protein (CRP) and serum amyloid P (SAP) play essential roles in the phagocytic cell-mediated innate immune response of mammals. In-depth studies into CRP and SAP have been completed in mammals; however, such studies, particularly those relating to the functions of CRP and SAP, are rare in fish species. In this study, a homolog of CRP/SAP (BpCRP/SAP) was identified in mudskipper (Boleophthalmus pectinirostris), which had the typical characteristics of a fish short pentraxin protein. Phylogenetic tree analysis revealed that BpCRP/SAP was most closely related to mudskipper CRP/SAP-l3. BpCRP/SAP transcripts were detected in all tested tissues, with the highest level observed in the liver; transcripts in the immune tissues and protein expression in the serum were induced in response to Edwardsiella tarda infection. The active recombinant BpCRP/SAP (rBpCRP/SAP) was able to augment the mRNA expression of pro-inflammatory cytokines and attenuate the mRNA expression of anti-inflammatory cytokines in monocytes/macrophages (MO/MΦ). In addition, phagocytosis and bacterial killing of E. tarda by mudskipper MO/MΦ were boosted by rBpCRP/SAP stimulation. rBpCRP/SAP also promoted M1-type MO/MΦ polarization, but inhibited M2-type polarization. In conclusion, the present research describes the pro-inflammatory function of BpCRP/SAP in mudskipper against E. tarda infection.
Collapse
Affiliation(s)
- Shi-Yu Cai
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Li Nie
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
23
|
Ding FF, Li CH, Chen J. Molecular characterization of the NK-lysin in a teleost fish, Boleophthalmus pectinirostris: Antimicrobial activity and immunomodulatory activity on monocytes/macrophages. FISH & SHELLFISH IMMUNOLOGY 2019; 92:256-264. [PMID: 31200076 DOI: 10.1016/j.fsi.2019.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
NK-lysin (NKL) is a cationic host defense peptide that plays an important role in host immune responses against various pathogens. However, the immunomodulatory activity of NKL in fishes is rarely investigated. In this study, we characterized a cDNA sequence encoding an NK-lysin homolog (BpNKL) from the fish, mudskipper (Boleophthalmus pectinirostris). Sequence analysis revealed that BpNKL is most closely related to tiger puffer (Takifugu rubripes) NKL. BpNKL transcript was detected in all the tested tissues, with the highest level in the gill, followed by the spleen and kidney. Upon Edwardsiella tarda infection, the mRNA expression of BpNKL in the mudskipper was significantly upregulated in the spleen, kidney, and gill. A shortened peptide derived from BpNKL, BpNKLP40, was then chemically synthesized and its biological functions were investigated. BpNKLP40 exhibited a direct antibacterial activity against some Gram-negative bacteria, including E. tarda, Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio harveyi, and induced hydrolysis of E. tarda genomic DNA. Intraperitoneal injection of 1.0 μg/g BpNKLP40 significantly improved the survival of mudskipper following E. tarda infection and reduced the bacterial burden in tissues and blood. Moreover, 1.0 μg/ml BpNKLP40 treatment had an enhanced effect on the intracellular killing of E. tarda by monocytes/macrophages (MO/MФ) as well as on the mRNA expression of pro-inflammatory cytokines in MO/MФ. In conclusion, our study reveals that BpNKL plays a role against E. tarda infection in the mudskipper by not only directly killing bacteria but also through an immunomodulatory activity on MO/MФ.
Collapse
Affiliation(s)
- Fei-Fei Ding
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Chang-Hong Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
24
|
Chen J, Lv YP, Dai QM, Hu ZH, Liu ZM, Li JH. Host defense peptide LEAP-2 contributes to monocyte/macrophage polarization in barbel steed (Hemibarbus labeo). FISH & SHELLFISH IMMUNOLOGY 2019; 87:184-192. [PMID: 30641185 DOI: 10.1016/j.fsi.2019.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
The liver-expressed antimicrobial peptide 2 (LEAP-2) plays a vital role in host immunity against pathogenic organisms. In the present study, cDNA of the LEAP-2 gene was cloned and sequenced from the barbel steed (Hemibarbus labeo). The predicted amino acid sequence of the barbel steed LEAP-2 comprises a signal peptide and a prodomain, which is followed by the mature peptide. Sequence analysis revealed that barbel steed LEAP-2 belongs to the fish LEAP-2A cluster and that it is closely related to zebrafish LEAP-2A. We found that barbel steed LEAP-2 transcripts were expressed in a wide range of tissues, with the highest mRNA levels detected in the liver. In response to lipopolysaccharide (LPS) treatment, LEAP-2 was significantly upregulated in the liver, head kidney, spleen, gill, and mid intestine. A chemically synthesized LEAP-2 mature peptide exhibited selective antimicrobial activity against several bacteria in vitro. Moreover, LEAP-2, alone or in combination with LPS or phorbol 12-myristate 13-acetate, strongly induced a pro-inflammatory reaction in barbel steed monocytes/macrophages (MO/MФ), involving the induction of iNOS activity, respiratory burst, and the pro-inflammatory cytokines IFN-γ, TNF-α, and IL-1β. Collectively, the results of this study indicate the importance of fish LEAP-2 in the M1-type polarization of MO/MΦ.
Collapse
Affiliation(s)
- Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Yao-Ping Lv
- College of Ecology, Lishui University, Lishui, 323000, China.
| | - Qing-Min Dai
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Ze-Hui Hu
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, 316021, China
| | - Zi-Ming Liu
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Ji-Heng Li
- College of Ecology, Lishui University, Lishui, 323000, China
| |
Collapse
|
25
|
Liu ZM, Chen J, Lv YP, Hu ZH, Dai QM, Fan XL. Molecular characterization of a hepcidin homologue in starry flounder (Platichthys stellatus) and its synergistic interaction with antibiotics. FISH & SHELLFISH IMMUNOLOGY 2018; 83:45-51. [PMID: 30195905 DOI: 10.1016/j.fsi.2018.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Hepcidins are small cysteine-rich antimicrobial peptides that play an important role in host immunity against pathogenic organisms. Most fish hepcidins exert bactericidal activities against a wide range of pathogens. In this study, we identified a cDNA sequence encoding a hepcidin homologue (PsHepcidin) in the starry flounder Platichthys stellatus. The predicted amino acid sequence of PsHepcidin comprises a signal peptide and a prodomain, which are followed by the mature peptide. Sequence analysis revealed that PsHepcidin belongs to the fish HAMP2 cluster and that it is closely related to mudskipper hepcidin-2. Expression of PsHepcidin mRNA was detected in all examined immune-related tissues, with the highest transcript levels being found in the liver. In response to lipopolysaccharide treatment, PsHepcidin was significantly up-regulated in the liver, kidney, and spleen in a time-dependent manner. Chemically synthesized mature peptides of PsHepcidin were found to exhibit broad antimicrobial activity in vitro. We also investigated the combined effect of PsHepcidin and conventional antibiotics and found that these combinations showed synergistic effects against most of the examined bacterial strains. Collectively, the results of this study indicate that PsHepcidin exhibits potent antibacterial activity both independently and when used in combination with conventional antibiotics.
Collapse
Affiliation(s)
- Zi-Ming Liu
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Yao-Ping Lv
- College of Ecology, Lishui University, Lishui, 323000, China.
| | - Ze-Hui Hu
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, 316021, China
| | - Qing-Min Dai
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Xiao-Li Fan
- College of Ecology, Lishui University, Lishui, 323000, China
| |
Collapse
|
26
|
Teleosts Genomics: Progress and Prospects in Disease Prevention and Control. Int J Mol Sci 2018; 19:ijms19041083. [PMID: 29617353 PMCID: PMC5979277 DOI: 10.3390/ijms19041083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/11/2018] [Accepted: 03/29/2018] [Indexed: 12/26/2022] Open
Abstract
Genome wide studies based on conventional molecular tools and upcoming omics technologies are beginning to gain functional applications in the control and prevention of diseases in teleosts fish. Herein, we provide insights into current progress and prospects in the use genomics studies for the control and prevention of fish diseases. Metagenomics has emerged to be an important tool used to identify emerging infectious diseases for the timely design of rational disease control strategies, determining microbial compositions in different aquatic environments used for fish farming and the use of host microbiota to monitor the health status of fish. Expounding the use of antimicrobial peptides (AMPs) as therapeutic agents against different pathogens as well as elucidating their role in tissue regeneration is another vital aspect of genomics studies that had taken precedent in recent years. In vaccine development, prospects made include the identification of highly immunogenic proteins for use in recombinant vaccine designs as well as identifying gene signatures that correlate with protective immunity for use as benchmarks in optimizing vaccine efficacy. Progress in quantitative trait loci (QTL) mapping is beginning to yield considerable success in identifying resistant traits against some of the highly infectious diseases that have previously ravaged the aquaculture industry. Altogether, the synopsis put forth shows that genomics studies are beginning to yield positive contribution in the prevention and control of fish diseases in aquaculture.
Collapse
|