1
|
Zhao Y, Liang S, Fu X, Guo Y, Wang Y, Wang J, Wang X, Wang Z, Tao H, Han B, Wang J. Anti-Inflammatory and Antidiarrheal Effects of Two Strains of Lactic Acid Bacteria Isolated from Healthy Pets on Escherichia coli K88-Induced Diarrhea in Mice. Microorganisms 2025; 13:239. [PMID: 40005605 PMCID: PMC11857690 DOI: 10.3390/microorganisms13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Lactic acid bacteria play a crucial role in maintaining the health of the host's gut microbiota. In this study, the anti-inflammatory properties of Limosilactobacillus reuteri LR20-6 and Lacticplantibacillus plantarum L272 were evaluated using a mouse model of diarrhea induced by Escherichia coli. We also investigated their effects on gut microbiota regulation. The results indicated that both Lacticplantibacillus plantarum and Limosilactobacillus reuteri could reduce inflammation by inhibiting the expression of inflammatory factors IL-6 and TNF-α and blocking the MyD88 and NF-kB/p65 signaling pathways. Additionally, after intervention with these strains, the relative abundance of Lactobacillus was significantly increased. This suggested that Lacticplantibacillus plantarum and Limosilactobacillus reuteri could mitigate the severity of E. coli-induced diarrhea and enhance the abundance of beneficial probiotics in the gut of animals.
Collapse
Affiliation(s)
- Ya Zhao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (S.L.); (X.F.); (Y.G.); (Y.W.); (J.W.); (X.W.); (Z.W.); (H.T.)
| | - Shukun Liang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (S.L.); (X.F.); (Y.G.); (Y.W.); (J.W.); (X.W.); (Z.W.); (H.T.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoxin Fu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (S.L.); (X.F.); (Y.G.); (Y.W.); (J.W.); (X.W.); (Z.W.); (H.T.)
| | - Yaping Guo
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (S.L.); (X.F.); (Y.G.); (Y.W.); (J.W.); (X.W.); (Z.W.); (H.T.)
| | - Yu Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (S.L.); (X.F.); (Y.G.); (Y.W.); (J.W.); (X.W.); (Z.W.); (H.T.)
| | - Jiaxue Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (S.L.); (X.F.); (Y.G.); (Y.W.); (J.W.); (X.W.); (Z.W.); (H.T.)
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (S.L.); (X.F.); (Y.G.); (Y.W.); (J.W.); (X.W.); (Z.W.); (H.T.)
| | - Zhenlong Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (S.L.); (X.F.); (Y.G.); (Y.W.); (J.W.); (X.W.); (Z.W.); (H.T.)
| | - Hui Tao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (S.L.); (X.F.); (Y.G.); (Y.W.); (J.W.); (X.W.); (Z.W.); (H.T.)
| | - Bing Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (S.L.); (X.F.); (Y.G.); (Y.W.); (J.W.); (X.W.); (Z.W.); (H.T.)
| | - Jinquan Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (S.L.); (X.F.); (Y.G.); (Y.W.); (J.W.); (X.W.); (Z.W.); (H.T.)
| |
Collapse
|
2
|
Ma F, Zhang W, Zhou G, Qi Y, Mao HR, Chen J, Lu Z, Wu W, Zou X, Deng D, Lv S, Xiang N, Wang X. Epimedii Folium decoction ameliorates osteoporosis in mice through NLRP3/caspase-1/IL-1β signalling pathway and gut-bone axis. Int Immunopharmacol 2024; 137:112472. [PMID: 38897131 DOI: 10.1016/j.intimp.2024.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
AIM OF THE STUDY This study aimed to determine the effect of Epimedium brevicornu Maxim. (EF) on osteoporosis (OP) and its underlying molecular mechanisms, and to explore the existence of the "Gut-Bone Axis". MATERIAL AND METHODS The impact of EF decoction (EFD) on OP was evaluated using istopathological examination and biochemical assays. Targeted metabolomics was employed to identify key molecules and explore their molecular mechanisms. Alterations in the gut microbiota (GM) were evaluated by 16S rRNA gene sequencing. The role of the GM was clarified using an antibiotic cocktail and faecal microbiota transplantation. RESULTS EFD significantly increased the weight (14.06%), femur length (4.34%), abdominal fat weight (61.14%), uterine weight (69.86%), and insulin-like growth factor 1 (IGF-1) levels (59.48%), while reducing serum type I collagen cross-linked carboxy-terminal peptide (CTX-I) levels (15.02%) in osteoporotic mice. The mechanism of action may involve the regulation of the NLRP3/cleaved caspase-1/IL-1β signalling pathway in improving intestinal tight junction proteins and bone metabolism. Additionally, EFD modulated the abundance of related GM communities, such as Lactobacillus, Coriobacteriaceae, bacteria of family S24-7, Clostridiales, and Prevotella, and increased propionate and butyrate levels. Antibiotic-induced dysbiosis of gut bacteria disrupted OP regulation of bone metabolism, which was restored by the recovery of GM. CONCLUSIONS Our study is the first to demonstrate that EFD works in an OP mouse model by utilising GM and butyric acid. Thus, EF shows promise as a potential remedy for OP in the future.
Collapse
Affiliation(s)
- Fuqiang Ma
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China; The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, 24 Jinghua Road, Luoyang, Henan 471003, PR China
| | - Weiming Zhang
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China; Department of Dermatology, Wuhan No.1 Hospital, 215 Zhongshan Avenue, Wuhan, Hubei 430022, PR China
| | - Guangwen Zhou
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - Yu Qi
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - He-Rong Mao
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - Jie Chen
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - Zhilin Lu
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - Wenjing Wu
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China
| | - Xinrong Zou
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China
| | - Danfang Deng
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China
| | - Shenhui Lv
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China.
| | - Nan Xiang
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China.
| | - Xiaoqin Wang
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China.
| |
Collapse
|
3
|
Ondrašovičová S, Zigo F, Gogoľa J, Lacková Z, Farkašová Z, Arvaiová J, Almášiová V, Rehan IF. The Effects of Humic Acids on the Early Developmental Stages of African Cichlids during Artificial Breeding. Life (Basel) 2023; 13:life13051071. [PMID: 37240716 DOI: 10.3390/life13051071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of this study was to compare the effect of humic acid (HA) obtained by extraction from alginate on the incubation of roes and fry development in African cichlids, Labidochormis caeruleus, as well as their influence on the stabilization of the physicochemical parameters of water in an aquarium during artificial breeding. The roes were obtained by extruding from a female buccal cavity immediately after fertilization. For the experiment, 4 groups of 40 roes were formed in an incubator with an artificial hatchery. Groups 1-3 were exposed to 1%, 5%, and 10% concentrations of HA, respectively. The control group C was not exposed to HA. In all groups, the mortality and size differences of the fry, as well as the temperature, pH, hardness, nitrite, and nitrate levels in the tanks, were determined during a 30-day monitoring period until the resorption of the yolk sac. The results of this study indicated the ability of HA in 5% and 10% concentrations to reduce nitrite and nitrate levels in the aquatic environment, which significantly reduced the mortality of roes and the survivability of the fry. The determination of the morphological measurements of the fry revealed an increased body length in the groups exposed to 5% and 10% HA concentrations compared to the control group by the end of the monitored period. It was also noted that the yolk sac was resorbed two days earlier in the same groups than in the control. Thus, the results showed that HAs are suitable for use in the artificial aquarium incubation of roes and fry development, which are increasingly exposed to adverse environmental factors. The knowledge obtained in this study and its transfer into practice can allow even less experienced aquarists to successfully breed aquarium fish species that could not normally be bred under artificial conditions without the addition of HA.
Collapse
Affiliation(s)
- Silvia Ondrašovičová
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - František Zigo
- Department of Nutrition and Animal Breeding, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Július Gogoľa
- Private Veterinary Clinic, Zvolenská Slatina SNP 367/25, 962 01 Zvolen, Slovakia
| | - Zuzana Lacková
- Department of Nutrition and Animal Breeding, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Zuzana Farkašová
- Department of Nutrition and Animal Breeding, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Juliana Arvaiová
- Department of Nutrition and Animal Breeding, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Viera Almášiová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Ibrahim F Rehan
- Department of Husbandry and Development of Animal Health, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom 32511, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku-ku, Nagoya-shi 468-8503, Japan
| |
Collapse
|
4
|
Yu Z, Chen J, Liu Y, Meng Q, Liu H, Yao Q, Song W, Ren X, Chen X. The role of potential probiotic strains Lactobacillus reuteri in various intestinal diseases: New roles for an old player. Front Microbiol 2023; 14:1095555. [PMID: 36819028 PMCID: PMC9932687 DOI: 10.3389/fmicb.2023.1095555] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Lactobacillus reuteri (L. reuteri), a type of Lactobacillus spp., is a gut symbiont that can colonize many mammals. Since it was first isolated in 1962, a multitude of research has been conducted to investigate its function and unique role in different diseases as an essential probiotic. Among these, the basic functions, beneficial effects, and underlying mechanisms of L. reuteri have been noticed and understood profoundly in intestinal diseases. The origins of L. reuteri strains are diverse, with humans, rats, and piglets being the most common. With numerous L. reuteri strains playing significant roles in different intestinal diseases, DSM 17938 is the most widely used in humans, especially in children. The mechanisms by which L. reuteri improves intestinal disorders include protecting the gut barrier, suppressing inflammation and the immune response, regulating the gut microbiota and its metabolism, and inhibiting oxidative stress. While a growing body of studies focused on L. reuteri, there are still many unknowns concerning its curative effects, clinical safety, and precise mechanisms. In this review, we initially interpreted the basic functions of L. reuteri and its related metabolites. Then, we comprehensively summarized its functions in different intestinal diseases, including inflammatory bowel disease, colorectal cancer, infection-associated bowel diseases, and pediatric intestinal disorders. We also highlighted some important molecules in relation to the underlying mechanisms. In conclusion, L. reuteri has the potential to exert a beneficial impact on intestinal diseases, which should be further explored to obtain better clinical application and therapeutic effects.
Collapse
Affiliation(s)
- Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jihua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingguo Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Hang Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinyan Yao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenxuan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangfeng Ren
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China,*Correspondence: Xin Chen ✉
| |
Collapse
|
5
|
Mazkour S, Shekarforoush SS, Basiri S, Namazi F, Zarei‐Kordshouli F. Protective effects of oral administration of mixed probiotic spores of
Bacillus subtilis
and
Bacillus coagulans
on gut microbiota changes and intestinal and liver damage of rats infected with
Salmonella
Typhimurium
. J Food Saf 2022. [DOI: 10.1111/jfs.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Somaye Mazkour
- Department of Food Hygiene and Public Health School of Veterinary Medicine, Shiraz University Shiraz Iran
| | | | - Sara Basiri
- Department of Food Hygiene and Public Health School of Veterinary Medicine, Shiraz University Shiraz Iran
| | - Fatemeh Namazi
- Department of Pathology School of Veterinary Medicine, Shiraz University Shiraz Iran
| | | |
Collapse
|
6
|
Cao G, Yu Y, Wang H, Liu J, Zhang X, Yu Y, Li Z, Zhang Y, Yang C. Effects of Oral Administration of Bamboo (Dendrocalamus membranaceus) Leaf Flavonoids on the Antioxidant Capacity, Caecal Microbiota, and Serum Metabolome of Gallus gallus domesticus. Front Nutr 2022; 9:848532. [PMID: 35308272 PMCID: PMC8930276 DOI: 10.3389/fnut.2022.848532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/11/2022] [Indexed: 12/23/2022] Open
Abstract
The consumption of bamboo leaf flavonoids (BLFs) as novel dietary antioxidants has increased owing to their beneficial biological and pharmacological functions. This study assessed the in vivo effects of BLFs on antioxidant capacity, as well as caecal microbiota, serum metabolome, and health status. The Gallus gallus domesticus model and the oral administration approach were used with four treatment groups (basal diet, basal diet with 20 mg bacitracin/kg, basal diet with 50 mg BLF/kg, and basal diet with 250 mg BLF/kg). Ultra-high-performance liquid chromatography triple-quadrupole mass spectrometry analysis indicated that vitexin, fumaric acid, orientin, isoorientin, and p-coumaric acid were the predominant BLF components. From days 1 to 21, BLF increased the average daily gain and decreased the feed:gain of broilers. Moreover, BLF enhanced the serum antioxidant capacity and immune responses. Further, 16S rRNA sequencing showed that BLF modulated the caecal microbial community structure, which was dominated by Betaproteobacteriales, Erysipelatoclostridium, Parasutterella, Lewinella, Lactobacillus, and Candidatus Stoquefichus in BLF broilers. Among the 22 identified serum metabolites in BLF broilers, sphinganine, indole-3-acetaldehyde retinol, choline, 4-methylthio-2-oxobutanoic acid, and L-phenylalanine were recognised as biomarkers. In summary, BLFs appeared to modulate the caecal microbiome, alter the serum metabolome, and indirectly improve antioxidant capacity and health status.
Collapse
Affiliation(s)
- Guangtian Cao
- College of Standardisation, China Jiliang University, Hangzhou, China
| | - Yang Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Huixian Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd, Anji, China
| | - Xiping Zhang
- Zhejiang Vegamax Biotechnology Co., Ltd, Anji, China
| | - Yue Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yan Zhang
- Zhejiang Vegamax Biotechnology Co., Ltd, Anji, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
- *Correspondence: Caimei Yang,
| |
Collapse
|
7
|
Andrejčáková Z, Sopková D, Vlčková R, Hertelyová Z, Gancarčíková S, Nemcová R. The Application of Lactobacillus reuteri CCM 8617 and Flaxseed Positively Improved the Health of Mice Challenged with Enterotoxigenic E. coli O149:F4. Probiotics Antimicrob Proteins 2021; 12:937-951. [PMID: 31410766 DOI: 10.1007/s12602-019-09578-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of our study was to monitor the effects of dietary synbiotics on experimentally infected mice. Sixty mice were divided into the following three groups: negative control group C1, positive control group C2 (mice infected with enterotoxigenic Escherichia coli O149:F4NAL), and experimental group LF (Lactobacillus reuteri CCM 8617RIF + 10% flaxseed + E. coli O149:F4NAL). Supplements were administered for 42 days. Microbiological, hematological, and biochemical analyses, electrophoretic analysis of lactate dehydrogenase (LDH) isoenzymes, and analysis of fatty acids using gas chromatography and isotachophoresis were performed. We recorded higher numbers of jejunal and ileal lactic acid bacteria, lower Enterobacteriaceae counts in the feces of the animals, and an increased production of organic acids in the synbiotic-fed group. The supplements applied favored n-3 polyunsaturated fatty acid (PUFA) metabolism and inhibited n-6 PUFA metabolism; thus, they influenced the n-6 to n-3 and eicosapentaenoic to arachidonic acid ratios. Additionally, the incorporation of n-3 PUFAs to the cell membrane decreased the activity of LDH, transaminases, and alkaline phosphatase. Results obtained in our study indicate the positive effect of continuous supplementation of combination of probiotic cheese enriched with L. reuteri CCM 8617RIF and crushed flaxseed on composition of intestinal microflora and alleviation of the course of infection induced by pathogenic bacterium E. coli O149:F4NAL.
Collapse
Affiliation(s)
- Z Andrejčáková
- Institute of Physiology, Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovak Republic.
| | - D Sopková
- Institute of Physiology, Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovak Republic
| | - R Vlčková
- Institute of Physiology, Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovak Republic
| | - Z Hertelyová
- Department of Experimental Medicine, Faculty of Medicine, Pavol Jozef Šafarik University, Šrobárova 2, 041 80, Košice, Slovak Republic
| | - S Gancarčíková
- Institute of Microbiology and Gnotobiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovak Republic
| | - R Nemcová
- Institute of Microbiology and Gnotobiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovak Republic
| |
Collapse
|
8
|
Dell’Anno M, Reggi S, Caprarulo V, Hejna M, Sgoifo Rossi CA, Callegari ML, Baldi A, Rossi L. Evaluation of Tannin Extracts, Leonardite and Tributyrin Supplementation on Diarrhoea Incidence and Gut Microbiota of Weaned Piglets. Animals (Basel) 2021; 11:1693. [PMID: 34204108 PMCID: PMC8229630 DOI: 10.3390/ani11061693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
The effects of the dietary administration of a combination of Quebracho and Chestnut tannins, leonardite and tributyrin were evaluated in weaned piglets. A total of 168 weaned piglets (Landrace × Large White) were randomly allotted to two experimental groups (6 pens/group, 14 piglets/pen). Animals were fed a basal control diet (CTRL) and a treatment diet (MIX) supplemented with 0.75% tannin extracts, 0.25% leonardite and 0.20% tributyrin for 28 days. Individual body weight and feed intake were recorded weekly. Diarrhoea incidence was recorded by a faecal scoring scale (0-3; considering diarrhoea ≥ 2). At 0 and 28 days, faecal samples were obtained from four piglets/pen for microbiological and chemical analyses of faecal microbiota, which were then assessed by V3-V4 region amplification sequencing. At 28 days, blood from two piglets/pen was sampled to evaluate the serum metabolic profile. After 28 days, a reduction in diarrhoea incidence was observed in the MIX compared to CTRL group (p < 0.05). In addition, compared to CTRL, MIX showed a higher lactobacilli:coliform ratio and increased Prevotella and Fibrobacter genera presence (p < 0.01). The serum metabolic profile showed a decreased level of low-density lipoproteins in the treated group (p < 0.05). In conclusion, a combination of tannin extract, leonardite and tributyrin could decrease diarrhoea incidence and modulate the gut microbiota.
Collapse
Affiliation(s)
- Matteo Dell’Anno
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Serena Reggi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Valentina Caprarulo
- Department of Molecular and Translational Medicine (DMMT), Università Degli Studi di Brescia, 25123 Brescia, Italy;
| | - Monika Hejna
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Carlo Angelo Sgoifo Rossi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Maria Luisa Callegari
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| |
Collapse
|
9
|
Moturi J, Kim KY, Hosseindoust A, Lee JH, Xuan B, Park J, Kim EB, Kim JS, Chae BJ. Effects of Lactobacillus salivarius isolated from feces of fast-growing pigs on intestinal microbiota and morphology of suckling piglets. Sci Rep 2021; 11:6757. [PMID: 33762614 PMCID: PMC7990948 DOI: 10.1038/s41598-021-85630-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
The study determined the effects of Lactobacillus salivarius (LS) administered early in the life of suckling piglets on their growth performance, gut morphology, and gut microbiota. Thirty litters of 3-day-old crossbreed piglets were randomly assigned to one of the three treatments, and treatments were commenced on day 3 after birth. During the whole period of the experiment, the piglets were kept with their mothers and left to suckle ad libitum while being supplemented with a milk formula with or without the bacterial probiotic supplemented. The control group (CON) was not treated with probiotics, the HLS group was treated with LS144 (HLS) screened from feces of fast-growing pigs with high body mass index (BMI) while the NLS group was supplemented with LS160 (NLS) screened from feces obtained from pigs of normal BMI. At the weaning time, a higher abundance of Actinobacteria, Lentisphaerae, and Elusimicrobia phyla were observed in NLS piglets, whereas the abundance of Fibrobacteres phylum was significantly reduced in NLS and HLS piglets compared with the CON. A greater abundance of Lactobacillus was detected in the HLS treatment compared with the CON. The abundance of Bacteroides and Fibrobacter was higher in the CON piglets compared with the HLS and NLS piglets. Compared with the CON group, the oral administration of LS significantly increased the number of Lactobacillus and villus height in the duodenum, jejunum, and ileum. Moreover, the villus height of the duodenum was significantly improved in the HLS treatment compared with the NLS treatment. Based on the findings in the neonatal piglet model, we suggest that oral supplementation of LS, particularly LS isolated from high BMI pigs, could be beneficial by improving the intestinal villus height.
Collapse
Affiliation(s)
- Joseph Moturi
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Kwang Yeol Kim
- Poultry Research Institute, National Institute of Animal Science, Pyeongchang, 25342, Republic of Korea
| | - Abdolreza Hosseindoust
- Department of Animal Resource Science, College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jun Hyung Lee
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Biao Xuan
- Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| | - Jongbin Park
- Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| | - Eun Bae Kim
- Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| | - Jin Soo Kim
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea. .,Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Byung Jo Chae
- Department of Animal Resource Science, College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
10
|
Gutiérrez-Falcón AI, Ramos-Nuez AM, de Los Monteros Y Zayas AE, Castillo DFP, García-Laorden MI, Chamizo-López FJ, Real Valcárcel F, Campelo FA, Benítez AB, Salgueiro PN, Cabrera CD, Rivero-Vera JC, González-Martín JM, Caballero JM, Frías-Beneyto R, Villar J, Martín-Barrasa JL. Probiotic Properties of Alcaligenes faecalis Isolated from Argyrosomus regius in Experimental Peritonitis (Rat Model). Probiotics Antimicrob Proteins 2021; 13:1326-1337. [PMID: 33713309 PMCID: PMC8463381 DOI: 10.1007/s12602-021-09767-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 12/20/2022]
Abstract
A strain of Alcaligenes faecalis A12C (A. faecalis A12C) isolated from Argyrosomus regius is a probiotic in fish. Previous experiments showed that A. faecalis A12C had inhibitory effects on the growth of multidrug-resistant bacteria. We aimed to confirm whether A. faecalis A12C is safe and has adequate intestinal colonization in experimental rats, and evaluate its efficacy in an animal model of peritonitis. We used 30 male rats, randomly divided into 6 groups (n = 5): three groups (HA7, HA15, HA30) received A. faecalis A12C in drinking water (6 × 108 CFU/mL) for 7 days, and three control groups received drinking water only. All groups were evaluated at 7, 15, and 30 days. Survival after A. faecalis A12C administration was 100% in all groups. Mild eosinophilia (1.5%, p < 0.01) and increased aspartate aminotransferase (86 IU/L, p < 0.05) were observed in HA7, followed by progressive normalization. No histological signs of organ injury were found. We observed significant E. coli decline in faeces, parallel to an increase in A. faecalis A12C at 7 days. E. coli had a tendency to recover initial values, while A. faecalis A12C disappeared from the intestinal microbiota at 30 days. To evaluate its efficacy against peritonitis, we studied two additional groups of animals: IA group pretreated with A. faecalis A12C before E. coli intra-abdominal inoculation, and IC group inoculated with no A. faecalis A12C. We found an increase in C-reactive protein, alanine aminotransferase, urea, and eosinophils in IC animals when compared with IA. Peritonitis was more evident in IC than in IA animals. Our findings suggest that A. faecalis A12C altered clinically relevant parameters in sepsis and was associated with a lesser spread of infection.
Collapse
Affiliation(s)
- A I Gutiérrez-Falcón
- Group of Fish Health and Infectious Diseases, Universitary Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Carretera de Trasmontaña s/n, 35416, Arucas, Spain
| | - A M Ramos-Nuez
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Barranco de la Ballena s/n, 35019, Las Palmas de Gran Canaria, Spain
| | - A Espinosa de Los Monteros Y Zayas
- Morphology Department, Universitary Institute of Animal Health and Food Safety (IUSA), Universidad de Las Palmas de Gran Canaria. Arucas, Las Palmas, Spain
| | - D F Padilla Castillo
- Group of Fish Health and Infectious Diseases, Universitary Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Carretera de Trasmontaña s/n, 35416, Arucas, Spain
| | - M Isabel García-Laorden
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Barranco de la Ballena s/n, 35019, Las Palmas de Gran Canaria, Spain
| | - F J Chamizo-López
- Microbiology Department. Hospital,, Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena S/N, 35019, Las Palmas de Gran Canaria, Spain
| | - F Real Valcárcel
- Group of Fish Health and Infectious Diseases, Universitary Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Carretera de Trasmontaña s/n, 35416, Arucas, Spain
| | - F Artilles Campelo
- Microbiology Department. Hospital,, Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena S/N, 35019, Las Palmas de Gran Canaria, Spain
| | - A Bordes Benítez
- Microbiology Department. Hospital,, Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena S/N, 35019, Las Palmas de Gran Canaria, Spain
| | - P Nogueira Salgueiro
- Clinical Biochemistry Department, Hosital Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena S/N, 35019, Las Palmas de Gran Canaria, Spain
| | - C Domínguez Cabrera
- Clinical Biochemistry Department, Hosital Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena S/N, 35019, Las Palmas de Gran Canaria, Spain
| | - J C Rivero-Vera
- Pathology Service. Hospital, Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena S/N, 35019, Las Palmas de Gran Canaria, Spain
| | - J M González-Martín
- Statistics Service. Research Unit, Hospital Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena S/N, 35019, Las Palmas de Gran Canaria, Spain
| | | | - R Frías-Beneyto
- Comparative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Barranco de la Ballena s/n, 35019, Las Palmas de Gran Canaria, Spain
| | - J L Martín-Barrasa
- Group of Fish Health and Infectious Diseases, Universitary Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Carretera de Trasmontaña s/n, 35416, Arucas, Spain. .,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Barranco de la Ballena s/n, 35019, Las Palmas de Gran Canaria, Spain. .,Animal Facility, Research Unit, Hospital Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena S/N, 35019, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
11
|
Lactobacillus animalis pZL8a: a potential probiotic isolated from pig feces for further research. 3 Biotech 2021; 11:132. [PMID: 33680697 DOI: 10.1007/s13205-021-02681-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to screen a potential anti-diarrheal probiotic for pigs to meet the growing demand for antibiotic alternatives in livestock. Six intestinal pathogens, Escherichia coli (O157: H7) ATCC 43888, Staphylococcus aureus ATCC 6538, Listeria monocytogenes ATCC 19115, Salmonella Typhimurium ATCC 14028, Shigella boydii ATCC 9207, and Staphylococcus haemolyticus ZSY2 were employed as indicator bacteria. Our result showed that Lactobacillus animalis pZL8a isolated from pig feces had extensive and higher antibacterial activity against indicator pathogens among 9 tested strains. In addition, valuable attributes of pZL8a such as great tolerance of low pH (3.0) and bile salts (0.3%), high-level adhesion to Caco-2 cells, and similar susceptibility to the reference strain Lactobacillus rhamnosus GG (LGG) were observed. Compared with control, pZL8a supplement significantly improved the level of immunoglobulin G (IgG), immunoglobulin M (IgM), and interleukin-2 (IL-2) in mouse serum. Therefore, L. animalis pZL8a was proposed as a potential probiotic for further research and hope to reduce or replace the application of antibiotics in animal production.
Collapse
|
12
|
Vemuri R, Gundamaraju R, Shinde T, Perera AP, Basheer W, Southam B, Gondalia SV, Karpe AV, Beale DJ, Tristram S, Ahuja KDK, Ball M, Martoni CJ, Eri R. Lactobacillus acidophilus DDS-1 Modulates Intestinal-Specific Microbiota, Short-Chain Fatty Acid and Immunological Profiles in Aging Mice. Nutrients 2019; 11:E1297. [PMID: 31181695 PMCID: PMC6627711 DOI: 10.3390/nu11061297] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023] Open
Abstract
Distribution of the microbiota varies according to the location in the gastrointestinal (GI) tract. Thus, dysbiosis during aging may not be limited to faecal microbiota and extend to the other parts of the GI tract, especially the cecum and colon. Lactobacillus acidophilus DDS-1, a probiotic strain, has been shown to modulate faecal microbiota and its associated metabolic phenotype in aging mice. In the present study, we investigated the effect of L. acidophilus DDS-1 supplementation on caecal- and mucosal-associated microbiota, short-chain fatty acids (SCFAs) and immunological profiles in young and aging C57BL/6J mice. Besides differences in the young and aging control groups, we observed microbial shifts in caecal and mucosal samples, leading to an alteration in SCFA levels and immune response. DDS-1 treatment increased the abundances of beneficial bacteria such as Akkermansia spp. and Lactobacillus spp. more effectively in caecal samples than in mucosal samples. DDS-1 also enhanced the levels of butyrate, while downregulating the production of inflammatory cytokines (IL-6, IL-1β, IL-1α, MCP-1, MIP-1α, MIP-1β, IL-12 and IFN-γ) in serum and colonic explants. Our findings suggest distinct patterns of intestinal microbiota, improvements in SCFA and immunological profiles with DDS-1 supplementation in aging mice.
Collapse
Affiliation(s)
- Ravichandra Vemuri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| | - Rohit Gundamaraju
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| | - Tanvi Shinde
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| | - Agampodi Promoda Perera
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| | - Waheedha Basheer
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| | - Benjamin Southam
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| | - Shakuntla V Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia.
| | - Avinash V Karpe
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences Precinct, Dutton Park, Queensland, 4102, Australia.
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences Precinct, Dutton Park, Queensland, 4102, Australia.
| | - Stephen Tristram
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| | - Kiran D K Ahuja
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| | - Madeleine Ball
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3082 Australia.
| | | | - Rajaraman Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| |
Collapse
|
13
|
Wang K, Cao G, Zhang H, Li Q, Yang C. Effects of Clostridium butyricum and Enterococcus faecalis on growth performance, immune function, intestinal morphology, volatile fatty acids, and intestinal flora in a piglet model. Food Funct 2019; 10:7844-7854. [DOI: 10.1039/c9fo01650c] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We investigated the effects of Clostridium butyricum and Enterococcus faecalis (probiotics) in a piglet model.
Collapse
Affiliation(s)
- Kangli Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province
- Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology
- College of Animal Science and Technology
- Zhejiang A & F University
- Hangzhou 311300
| | - Guangtian Cao
- College of Standardisation
- China Jiliang University
- Hangzhou 310018
- China
| | - Haoran Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province
- Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology
- College of Animal Science and Technology
- Zhejiang A & F University
- Hangzhou 311300
| | - Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province
- Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology
- College of Animal Science and Technology
- Zhejiang A & F University
- Hangzhou 311300
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province
- Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology
- College of Animal Science and Technology
- Zhejiang A & F University
- Hangzhou 311300
| |
Collapse
|