1
|
Yousuf S, Tyagi A, Singh R. Probiotic Supplementation as an Emerging Alternative to Chemical Therapeutics in Finfish Aquaculture: a Review. Probiotics Antimicrob Proteins 2023; 15:1151-1168. [PMID: 35904730 DOI: 10.1007/s12602-022-09971-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 12/26/2022]
Abstract
Aquaculture is a promising food sector to fulfil nutritional requirements of growing human population. Live weight aquaculture production reached up to 114.5 million tonnes in 2018 and it is further expected to grow by 32% by year 2030. Among total aquaculture production, major product harvested is finfish and its contribution has reached 46% in recent years. Frequent outbreaks of infectious diseases create obstacle in finfish production, result in economic losses to the farmers and threaten the sustainability of aquaculture industry itself. In spite of following the best management practices, the use of antibiotics, chemotherapeutics and phytochemicals often become the method of choice in finfish culture. Among these, phytochemicals have shown lesser effect in animal welfare while antibiotics and other chemotherapeutics have led to negative consequences like emergence of drug-resistant bacteria, and accumulation of residues in host and culture system, resulting in quality degradation of aqua products. Making use of probiotics as viable alternative has paved a way for sustainable aquaculture and minimise the use of antibiotics and other chemotherapeutics that pose adverse effect on host and culture system. This review paper elucidates the knowledge about antibiotics and other chemicals, compilation of probiotics and their effects on health status of finfish as well as overall culture environment. Besides, concoction of probiotics and prebiotics for simultaneous application has also been discussed briefly.
Collapse
Affiliation(s)
- Sufiara Yousuf
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Anuj Tyagi
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Rahul Singh
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India.
| |
Collapse
|
2
|
Chakraborty M, Acharya D, Dutta TK. Diversity analysis of hilsa (Tenualosa ilisha) gut microbiota using culture-dependent and culture-independent approaches. J Appl Microbiol 2023; 134:lxad208. [PMID: 37699793 DOI: 10.1093/jambio/lxad208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
AIMS The bacterial communities associated with the gastrointestinal (GI) tract are primarily involved in digestion, physiology, and the immune response against pathogenic bacteria for the overall development and health of the host. Hilsa shad (Tenualosa ilisha), a tropical anadromous fish, found predominantly in Bangladesh and India, has so far been poorly investigated for its gut bacterial communities. In this study, both culture-based and metagenomic approaches were used to detect intestinal isolates of hilsa, captured from both freshwater and seawater to investigate the community structure of intestinal microbiota. METHODS AND RESULTS Culture-dependent approach allowed to isolate a total of 23 distinct bacterial species comprising 16 Gram-negative, and 7 Gram-positive isolates, where Proteobacteria and Firmicutes were identified as the two most dominant phyla. While metagenomic approach explored a wide range of important GI bacteria, primarily dominated by Proteobacteria, Firmicutes, and Bacteroidetes, with Proteobacteria and Firmicutes, being the most abundant in freshwater and seawater samples, respectively. CONCLUSIONS A combination of these approaches provided the differential GI-associated bacterial diversity in freshwater and seawater hilsa with the prediction of overall functional potential. IMPACT STATEMENT The study explored the diversity of gut microbiota in hilsa, one of the most preferred nutritious dietary fish, captured from freshwater and seawater habitats, which may encourage to comprehend the composition of the gut microbiome in relation to the migratory behavior and polyunsaturated fatty acid profile of anadromous fish in general.
Collapse
Affiliation(s)
- Megha Chakraborty
- Department of Microbiology, Bose Institute, Kolkata 700091, West Bengal, India
| | - Debarun Acharya
- Department of Microbiology, Bose Institute, Kolkata 700091, West Bengal, India
| | - Tapan K Dutta
- Department of Microbiology, Bose Institute, Kolkata 700091, West Bengal, India
| |
Collapse
|
3
|
Eze OC, Berebon DP, Emencheta SC, Evurani SA, Okorie CN, Balcão VM, Vila MMDC. Therapeutic Potential of Marine Probiotics: A Survey on the Anticancer and Antibacterial Effects of Pseudoalteromonas spp. Pharmaceuticals (Basel) 2023; 16:1091. [PMID: 37631006 PMCID: PMC10458718 DOI: 10.3390/ph16081091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Due to the increasing limitations and negative impacts of the current options for preventing and managing diseases, including chemotherapeutic drugs and radiation, alternative therapies are needed, especially ones utilizing and maximizing natural products (NPs). NPs abound with diverse bioactive primary and secondary metabolites and compounds with therapeutic properties. Marine probiotics are beneficial microorganisms that inhabit marine environments and can benefit their hosts by improving health, growth, and disease resistance. Several studies have shown they possess potential bioactive and therapeutic actions against diverse disease conditions, thus opening the way for possible exploitation of their benefits through their application. Pseudoalteromonas spp. are a widely distributed heterotrophic, flagellated, non-spore-forming, rod-shaped, and gram-negative marine probiotic bacteria species with reported therapeutic capabilities, including anti-cancer and -bacterial effects. This review discusses the basic concepts of marine probiotics and their therapeutic effects. Additionally, a survey of the anticancer and antibacterial effects of Pseudoalteromonas spp. is presented. Finally, marine probiotic production, advances, prospects, and future perspectives is presented.
Collapse
Affiliation(s)
- Osita C. Eze
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Dinebari P. Berebon
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Stephen C. Emencheta
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil; (V.M.B.); (M.M.D.C.V.)
| | - Somtochukwu A. Evurani
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Chibundo N. Okorie
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Victor M. Balcão
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil; (V.M.B.); (M.M.D.C.V.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - Marta M. D. C. Vila
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil; (V.M.B.); (M.M.D.C.V.)
| |
Collapse
|
4
|
Sánchez-Cueto P, Stavrakidis-Zachou O, Clos-Garcia M, Bosch M, Papandroulakis N, Lladó S. Mediterranean Sea heatwaves jeopardize greater amberjack's (Seriola dumerili) aquaculture productivity through impacts on the fish microbiota. ISME COMMUNICATIONS 2023; 3:36. [PMID: 37095196 PMCID: PMC10125963 DOI: 10.1038/s43705-023-00243-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
Climate change is dramatically increasing the frequency and severity of marine heatwaves (MHWs) in the Mediterranean basin, strongly affecting marine food production systems. However, how it will shape the ecology of aquaculture systems, and the cascading effects on productivity, is still a major knowledge gap. The present work aims to increase our understanding of future impacts, caused by raising water temperatures, on the interaction between water and fish microbiotas, and consequential effects upon fish growth. Thus, the bacterial communities present in the water tanks, and mucosal tissues (skin, gills and gut), of greater amberjack farmed in recirculatory aquaculture systems (RAS), at three different temperatures (24, 29 and 33 °C), were characterized in a longitudinal study. The greater amberjack (Seriola dumerili) is a teleost species with high potential for EU aquaculture diversification due to its fast growth, excellent flesh quality and global market. We show that higher water temperatures disrupt the greater amberjack's microbiota. Our results demonstrate the causal mediation exerted by this bacterial community shifts on the reduction of fish growth. The abundance of members of the Pseudoalteromonas is positively correlated with fish performance, whereas members of the Psychrobacter, Chryseomicrobium, Paracoccus and Enterovibrio are suggested as biomarkers for dysbiosis, at higher water temperatures. Hence, opening new evidence-based avenues for the development of targeted microbiota-based biotechnological tools, designed to increase the resilience and adaptation to climate change of the Mediterranean aquaculture industry.
Collapse
Affiliation(s)
| | - Orestis Stavrakidis-Zachou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500, Heraklion, Greece
| | | | - Montse Bosch
- LEITAT Technological Center, 08225, Terrassa, Spain
| | - Nikos Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500, Heraklion, Greece
| | - Salvador Lladó
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, E-08028, Barcelona, Spain.
| |
Collapse
|
5
|
Rahman MM, Paul SI, Rahman A, Haque MS, Ador MAA, Foysal MJ, Islam MT, Rahman MM. Suppression of Streptococcosis and Modulation of the Gut Bacteriome in Nile Tilapia ( Oreochromis niloticus) by the Marine Sediment Bacteria Bacillus haynesii and Advenella mimigardefordensis. Microbiol Spectr 2022; 10:e0254222. [PMID: 36453920 PMCID: PMC9769507 DOI: 10.1128/spectrum.02542-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Streptococcosis is one of the major threats to Nile tilapia (Oreochromis niloticus) in most regions of the world. Recently, Enterococcus faecalis has been widely reported to be involved in streptococcosis in O. niloticus in Asia and Africa. This study aimed to isolate beneficial marine bacteria to evaluate their effects on growth, hematological parameters, nonspecific immunity, the gut bacteriome, and streptococcosis prevention efficacy in O. niloticus. A total of 36 marine soil bacteria were isolated, and in vitro screening was conducted to determine their antibacterial activities against fish pathogens. Two antagonistic bacteria were identified based on 16S rRNA gene sequencing, Bacillus haynesii CD223 and Advenella mimigardefordensis SM421. These bacteria were incorporated into fish feed and fed to O. niloticus for 90 days. The application of these strains via incorporation into fish feed significantly promoted growth, improved hematological parameters and immunoglobulin M (IgM) levels, modulated the gut bacteriome by reducing the load of pathogenic Enterococcus spp., and developed disease prevention efficacy in O. niloticus. Furthermore, in vivo assays revealed that the inclusion of extracellular products (ECPs) (at 250 μg mL-1) of CD223 and SM421 with feed significantly enhanced the rate of survival (100%) of O. niloticus from streptococcosis compared to the controls (only 30%). The ECPs of these bacteria also prevented 90 to 100% of fish from developing streptococcosis. These strains could be promising for safe use in O. niloticus farming to prevent and control the emergence of streptococcosis caused by E. faecalis. IMPORTANCE Nile tilapia (Oreochromis niloticus) is one of the most economically important cultured fish species throughout the world. Streptococcosis is a significant threat to global Nile tilapia farming. Enterococcus faecalis has recently emerged as an important pathogen of streptococcosis in Asia and Africa. The application of antibiotics and probiotics and vaccination are the major ways to combat streptococcosis. However, the extensive use of antibiotics leads to the development of antibiotic resistance in pathogenic as well as environmental bacteria, which is a great threat to public health. There is no study on preventing streptococcosis caused by E. faecalis using beneficial bacteria. For the first time, the present study demonstrated that two marine bacteria, Bacillus haynesii strain CD223 and Advenella mimigardefordensis strain SM421, have great potential for controlling streptococcosis in Nile tilapia. These bacteria also enhanced the growth, improved hematological parameters and IgM levels, and positively modulated the gut bacteriome of Nile tilapia.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Sulav Indra Paul
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Ashikur Rahman
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Shameul Haque
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Ali Arman Ador
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Javed Foysal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Mahbubur Rahman
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
6
|
Ben Taheur F, Mansour C, Mechri S, Laaouar H, Safta Skhiri S, Bouricha M, Jaouadi B, Mzoughi R, Zouari N. Protective effects of dietary Kefir against aflatoxin B1-induced hepatotoxicity in Nile tilapia fish, Oreochromis niloticus. Food Sci Nutr 2022; 10:2300-2311. [PMID: 35844919 PMCID: PMC9281925 DOI: 10.1002/fsn3.2838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/09/2022] Open
Abstract
The effect of dietary Kefir supplementation on the biometric, biochemical, and histological parameters of Nile tilapia (Oreochromis niloticus) exposed to aflatoxin B1 (AFB1, 200 µg/kg diet) contamination was studied. The yeasts were dominant in Kefir followed by lactic and acetic acid bacteria. The Kefir showed relatively interesting antioxidant potential in the DPPH• (IC50 = 0.9 ± 0.02 mg/ml) and ABTS•+ (IC50 = 2.2 ± 0.03 mg/ml) scavenging activities, Fe3+-reducing power (EC0.5 = 1.2 ± 0.01 mg/ml), and β-carotene bleaching assay (IC50 = 3.3 ± 0.02 mg/ml). Three hundred and sixty Nile tilapia weighing 23 ± 5 g were divided into four groups (30 fish/group with 3 replicates), and fed with diets containing Kefir (D2), AFB1 (D3), and Kefir+AFB1 (D4) for 4 weeks, whereas D1 was kept as control group where fish were fed with basal diet. The Kefir supplementation in D4 group significantly increased (p < .05) the percent weight gain as compared to D3 group. Moreover, Kefir improved the antioxidant enzymes in the liver, such as catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) activities, that significantly increased (p < .05) by 2-, 3-, and 1.5-folds, respectively, as compared to D3 group. The Kefir treatment significantly decreased (p < .05) the liver malonaldehyde content by ~50% as compared to D3 group. Histopathological analysis revealed the hepatoprotective effects of Kefir by showing normal liver histological architecture in D4 group, as compared to degenerative changes observed in D3 group. These results suggest that Kefir could be considered as a potential probiotic in Nile tilapia feed to mitigate the AFB1 harmful effects.
Collapse
Affiliation(s)
- Fadia Ben Taheur
- Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and ProductsFaculty of PharmacyUniversity of MonastirMonastirTunisia
- Higher Institute of Applied Biology of Medenine (ISBAM)University of GabesMedenineTunisia
| | - Chalbia Mansour
- Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and ProductsFaculty of PharmacyUniversity of MonastirMonastirTunisia
| | - Sondes Mechri
- Higher Institute of Applied Biology of Medenine (ISBAM)University of GabesMedenineTunisia
- Laboratory of Microbial Biotechnology, Enzymatic and BiomoleculesCentre of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | | | - Sihem Safta Skhiri
- ABCDF LaboratoryFaculty of Dental MedicineUniversity of MonastirMonastirTunisia
| | - Mohamed Bouricha
- Ministry of Agriculture, Hydraulic Resources and Fisheries. Agricultural Development CommissionershipGabesTunisia
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology, Enzymatic and BiomoleculesCentre of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Ridha Mzoughi
- Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and ProductsFaculty of PharmacyUniversity of MonastirMonastirTunisia
| | - Nacim Zouari
- Higher Institute of Applied Biology of Medenine (ISBAM)University of GabesMedenineTunisia
| |
Collapse
|
7
|
Sumon MAA, Sumon TA, Hussain MA, Lee SJ, Jang WJ, Sharifuzzaman SM, Brown CL, Lee EW, Hasan MT. Single and Multi-Strain Probiotics Supplementation in Commercially Prominent Finfish Aquaculture: Review of the Current Knowledge. J Microbiol Biotechnol 2022; 32:681-698. [PMID: 35722672 PMCID: PMC9628892 DOI: 10.4014/jmb.2202.02032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022]
Abstract
The Nile tilapia Oreochromis niloticus, Atlantic salmon Salmo salar, rainbow trout Oncorhynchus mykiss, olive flounder Paralichthys olivaceus, common carp Cyprinus carpio, grass carp Ctenopharyngodon idella and rohu carp Labeo rohita are farmed commercially worldwide. Production of these important finfishes is rapidly expanding, and intensive culture practices can lead to stress in fish, often reducing resistance to infectious diseases. Antibiotics and other drugs are routinely used for the treatment of diseases and sometimes applied preventatively to combat microbial pathogens. This strategy is responsible for the emergence and spread of antimicrobial resistance, mass killing of environmental/beneficial bacteria, and residual effects in humans. As an alternative, the administration of probiotics has gained acceptance for disease control in aquaculture. Probiotics have been found to improve growth, feed utilization, immunological status, disease resistance, and to promote transcriptomic profiles and internal microbial balance of host organisms. The present review discusses the effects of single and multi-strain probiotics on growth, immunity, heamato-biochemical parameters, and disease resistance of the above-mentioned finfishes. The application and outcome of probiotics in the field or open pond system, gaps in existing knowledge, and issues worthy of further research are also highlighted.
Collapse
Affiliation(s)
- Md Afsar Ahmed Sumon
- Department of Marine Biology, King Abdulaziz University, Jeddah-21589, Saudi Arabia
| | - Tofael Ahmed Sumon
- Department of Fish Health Management, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md. Ashraf Hussain
- Department of Fisheries Technology and Quality Control, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Su-Jeong Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Won Je Jang
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea,Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - S. M. Sharifuzzaman
- Institute of Marine Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Christopher L. Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan 48513, Republic of Korea
| | - Eun-Woo Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea,Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - Md. Tawheed Hasan
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea,Department of Aquaculture, Sylhet Agricultural University, Sylhet-3100, Bangladesh,Corresponding author Phone: +880-821-761952 Fax: + 880-821-761980 E-mail:
| |
Collapse
|
8
|
Gong W, Zhu Y, Shi X, Zhang W, Wen P. Influence of Tissue Type on the Bacterial Diversity and Community in Pork Bacon. Front Microbiol 2021; 12:799332. [PMID: 34925308 PMCID: PMC8678503 DOI: 10.3389/fmicb.2021.799332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
In current study, bacterial diversity and community in different tissues of pork bacon were determined using high-throughput sequencing. In total, six phyla and 111 bacterial genera were identified. Among them, three dominant genera (Staphylococcus, Acinetobacter, and Macrococcus) were shared by all bacon samples. The linear discriminant analysis showed that 24 bacterial taxa significantly differentiated between the tissues. Results of non-metric Multidimensional Scaling and redundancy analysis showed that physicochemical characteristics of the tissue prominently structured the bacterial communities. Network analysis also illustrated that tissue type was an important factor impacting the bacterial interactions in different types of tissue. The results of current study can add valuable insights to the traditional homemade pork bacon.
Collapse
Affiliation(s)
- Wenjuan Gong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yan Zhu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - XiXiong Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Weibing Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - PengCheng Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
Pharmacological Effects of Marine-Derived Enterococcus faecium EA9 against Acute Lung Injury and Inflammation in Cecal Ligated and Punctured Septic Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5801700. [PMID: 34912891 PMCID: PMC8668278 DOI: 10.1155/2021/5801700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/12/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
Microorganisms obtained from the marine environment may represent a potential therapeutic value for multiple diseases. This study explored the possible protective role of marine-derived potential probiotic Enterococcus faecium EA9 (E. faecium) against pulmonary inflammation and oxidative stress using the cecal ligation and puncture (CLP) model of sepsis in Wistar rats. Animals were pretreated with E. faecium for 10 days before either sham or CLP surgeries. Animals were sacrificed 72 hours following the surgical intervention. The histological architecture of lung tissues was evaluated as indicated by the lung injury score. In addition, the extend of pulmonary edema was determined as wet/dry weight ratio. The inflammatory cytokines were estimated in lung tissues, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) using the enzyme-linked-immunosorbent-assay (ELISA) technique. Moreover, markers for lipid peroxidation such as thiobarbituric acid reaction substances (TBARs), and endogenous antioxidants, including reduced glutathione (GSH) were determined in lung tissues. Finally, the enzymatic activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) were assayed in the lungs. Pretreatment with E. faecium markedly attenuated CLP-induced lung injury and pulmonary edema. Markers for inflammation, including TNF-α, IL-6, and IL-1β were augmented in the lung tissues of CLP animals, while E. faecium ameliorated their augmented levels. E. faecium pretreatment also restored the elevated TBARS levels and the prohibited CAT, SOD, and GPx enzymatic activities in CLP animals. GSH levels were corrected by E. faecium in CLP animals. The inflammatory and lipid peroxidation mediators were positively correlated, while antioxidant enzymatic activities were negatively correlated with CLP-induced lung injury and pulmonary edema. Collectively, marine-derived Enterococcus faecium EA9 might be considered as a prospective therapeutic tool for the management of pulmonary dysfunction associated with sepsis.
Collapse
|
10
|
Isolation of a new Streptomyces virginiae W18 against fish pathogens and its effect on disease resistance mechanism of Carassius auratus. Microb Pathog 2021; 161:105273. [PMID: 34740811 DOI: 10.1016/j.micpath.2021.105273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
The Streptomyces virginiae strain W18 was screened from soil, which exhibited broad-spectrum antibacterial activity against fish pathogens. Safety assays showed that strain W18 had no toxicity to fish. Additionally, strain W18 promoted the growth performance of Carassius auratus after feeding in feed mixed with bacteria for one month. Moreover, the activities of AKP, ACP, and SOD in the serum of C. auratus were significantly increased, while the activity of LZM did not greatly change. To detect the expression levels of the genes related to immune factors in the livers, kidneys, and spleens of C. auratus, qRT-PCR was performed. The expression levels of KEAP1, IL-8, TNF-α, IL-β, and C3 were upregulated in all three organs compared to the control, but LZM expression was downregulated in the kidney. The challenge experiment illustrated that the probability of infection with Aeromonas veronii was reduced by 60% and 40% when C. auratus was fed with two different doses of strain W18 in advance. The whole genome of strain W18 was sequenced, and the gene clusters of secondary metabolites in strain W18 were analyzed by AntiSMASH. The results showed that strain W18 contained a total of 26 gene clusters, and functional annotation analysis was conducted by using the non-coding databases COG and KEGG. All of the above results indicated that the use of strain W18 as a feed additive could enhance the resistance of C. auratus toward pathogenic bacteria and disease. In conclusion, an antagonistic strain (W18) against fish pathogenic bacteria was obtained in this study, which is of great significance for finding new treatment methods for bacterial diseases in the aquaculture industry.
Collapse
|
11
|
Microbiome of the Successful Freshwater Invader, the Signal Crayfish, and Its Changes along the Invasion Range. Microbiol Spectr 2021; 9:e0038921. [PMID: 34494878 PMCID: PMC8557874 DOI: 10.1128/spectrum.00389-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence denotes the role of the microbiome in biological invasions, since it is known that microbes can affect the fitness of the host. Here, we demonstrate differences in the composition of an invader’s microbiome along the invasion range, suggesting that its microbial communities may affect and be affected by range expansion. Using a 16S rRNA gene amplicon sequencing approach, we (i) analyzed the microbiomes of different tissues (exoskeleton, hemolymph, hepatopancreas, and intestine) of a successful freshwater invader, the signal crayfish, (ii) compared them to the surrounding water and sediment, and (iii) explored their changes along the invasion range. Exoskeletal, hepatopancreatic, and intestinal microbiomes varied between invasion core and invasion front populations. This indicates that they may be partly determined by population density, which was higher in the invasion core than in the invasion front. The highly diverse microbiome of exoskeletal biofilm was partly shaped by the environment (due to the similarity with the sediment microbiome) and partly by intrinsic crayfish parameters (due to the high proportion of exoskeleton-unique amplicon sequence variants [ASVs]), including the differences in invasion core and front population structure. Hemolymph had the most distinct microbiome compared to other tissues and differed between upstream (rural) and downstream (urban) river sections, indicating that its microbiome is potentially more driven by the effects of the abiotic environment. Our findings offer an insight into microbiome changes during dispersal of a successful invader and present a baseline for assessment of their contribution to an invader’s overall health and its further invasion success. IMPORTANCE Invasive species are among the major drivers of biodiversity loss and impairment of ecosystem services worldwide, but our understanding of their invasion success and dynamics still has many gaps. For instance, although it is known that host-associated microbial communities may significantly affect an individual’s health and fitness, the current studies on invasive species are mainly focused on pathogenic microbes, while the effects of the remaining majority of microbial communities on the invasion process are almost completely unexplored. We have analyzed the microbiome of one of the most successful crayfish invaders in Europe, the signal crayfish, and explored its changes along the signal crayfish invasion range in the Korana River, Croatia. Our study sets the perspective for future research required to assess the contribution of these changes to an individual’s overall health status and resilience of dispersing populations and their impact on invasion success.
Collapse
|
12
|
Borges N, Keller-Costa T, Sanches-Fernandes GMM, Louvado A, Gomes NCM, Costa R. Bacteriome Structure, Function, and Probiotics in Fish Larviculture: The Good, the Bad, and the Gaps. Annu Rev Anim Biosci 2020; 9:423-452. [PMID: 33256435 DOI: 10.1146/annurev-animal-062920-113114] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aquaculture is the fastest-growing sector in food production worldwide. For decades, research on animal physiology, nutrition, and behavior established the foundations of best practices in land-based fish rearing and disease control. Current DNA sequencing, bioinformatics, and data science technologies now allow deep investigations of host-associated microbiomes in a tractable fashion. Adequate use of these technologies can illuminate microbiome dynamics and aid the engineering of microbiome-based solutions to disease prevention in an unprecedented manner. This review examines molecular studies of bacterial diversity, function, and host immunitymodulation at early stages of fish development, where microbial infections cause important economic losses. We uncover host colonization and virulence factors within a synthetic assemblage of fish pathogens using high-end comparative genomics and address the use of probiotics and paraprobiotics as applicable disease-prevention strategies in fish larval and juvenile rearing. We finally propose guidelines for future microbiome research of presumed relevance to fish larviculture.
Collapse
Affiliation(s)
- Nuno Borges
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - Gracinda M M Sanches-Fernandes
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - António Louvado
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; ,
| | - Newton C M Gomes
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; ,
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , , .,Centre of Marine Sciences, Algarve University, 8005-139 Faro, Portugal.,Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|