1
|
Jabbar M, Baboo I, Majeed H, Farooq Z, Palangi V. Characterization and antibacterial application of peppermint essential oil nanoemulsions in broiler. Poult Sci 2024; 103:104432. [PMID: 39481301 PMCID: PMC11564008 DOI: 10.1016/j.psj.2024.104432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/17/2024] [Accepted: 10/12/2024] [Indexed: 11/02/2024] Open
Abstract
In order to mitigate the risk of antibiotic resistance in poultry, scientists nowadays consider plant secondary metabolites to be a major organic antibacterial substitute. This study aimed to characterize and investigate the in silico, in vitro, and in vivo antibacterial effects of peppermint essential oil (PEO) in the form of a nanoemulsion (NE), termed PEONE. Menthol as a major compound of PEO has been identified by gas chromatography and mass spectroscopy (GCMS) analysis as 32.3 %, while lower droplet size, polydispersity Index (PDI), and optimum zeta potential values depicted the stability of PEONE have been observed and validated by transmission electron microscopy (TEM) micrograph image. In silico antibacterial activity was studied by molecular docking of menthol and enrofloxacin with Topoisomerase IV protein (PDB: 1s16;) of Escherichia coli K12 MG1655 and this effect was validated by in vitro and in vivo analysis. In vitro analysis, sustained release of PEONE has been observed against Escherichia coli and Staphylococcus aureus. In this study for in vivo experiments (n = 90) day-old broiler chicks were distributed into 6 dietary treatments with 5 replicates of 3 birds per replication. Dietary treatments included 1) Negative control (basal diet), 2) Positive control (basal diet + 200 µl enrofloxacin), 3) 25 µl PEONE + basal diet, 4) 50 µl PEONE + basal diet, 5) 75 µl PEONE + basal diet, and 6) 100 µl PEONE + basal diet. Analyzed data by different statistical tools confirmed that PEONE significantly affected body weight gain (BWG) with an improved feed conversion ratio (FCR) compared to the control group. A significant increase in cecal Lactobacillus count and a decrease in total coliform was observed. Positive effects on physiological parameters, visceral organs, and meat quality characteristics have been observed. In conclusion, our experiments suggest that PEONE can be used in the broiler industry as a substitute for antibiotics to minimize bacterial resistance.
Collapse
Affiliation(s)
- Muhammad Jabbar
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Irfan Baboo
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan.
| | - Hamid Majeed
- Department of Food Science and Technology, Cholistans University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Zahid Farooq
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Valiollah Palangi
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100, Izmir, Türkiye; Visiting Researcher at Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| |
Collapse
|
2
|
Jabbar M, Baboo I, Majeed H, Farooq Z, Palangi V, Lackner M. Preparation and Characterization of Cumin Essential Oil Nanoemulsion (CEONE) as an Antibacterial Agent and Growth Promoter in Broilers: A Study on Efficacy, Safety, and Health Impact. Animals (Basel) 2024; 14:2860. [PMID: 39409810 PMCID: PMC11475229 DOI: 10.3390/ani14192860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
This research characterized and explored the effect of cumin essential oil nanoemulsion (CEONE) on broiler growth performance, serum biochemistry, hematological parameters, and cecal microbial count. Day-old (n = 96) broilers (Ross 308) were randomly assigned to six treatments with five replicates of three broilers each. The dietary treatments consisted of negative control (only basal diet), positive control (basal diet + 200 µL of enrofloxacin), 25 µL (basal diet + 25 µL of CEONE), 50 µL (basal diet + 50 µL of CEONE), 75 µL (basal diet + 75 µL of CEONE), and 100 µL (basal diet + 100 µL of CEONE). The broiler's body weight gain (BWG) after 42 days of treatment exhibited increased weight in the CEONE group (976.47 ± 11.82-1116.22 ± 29.04). The gain in weight was further evidenced by the beneficial microbe load (107 log) compared to the pathogenic strain. All the biochemical parameters were observed in the normal range, except for a higher level of HDL and a lower LDL value. This safety has been validated by pKCSM toxicity analysis showing a safe and highly tolerable dose of cuminaldehyde. In conclusion, this research observed the potential of CEONE as a multifunctional agent. It is a valuable candidate for further application in combating bacterial infections and enhancing animal health and growth.
Collapse
Affiliation(s)
- Muhammad Jabbar
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.J.); (Z.F.)
| | - Irfan Baboo
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.J.); (Z.F.)
| | - Hamid Majeed
- Department of Food Science and Technology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan;
| | - Zahid Farooq
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.J.); (Z.F.)
| | - Valiollah Palangi
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100 Izmir, Türkiye;
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, 17 Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
3
|
Nwagwu C, Onugwu A, Echezona A, Uzondu S, Agbo C, Kenechukwu F, Ogbonna J, Ugorji L, Nwobi L, Nwobi O, Mmuotoo O, Ezeibe E, Loretz B, Tarirai C, Mbara KC, Agumah N, Nnamani P, Ofokansi K, Lehr CM, Attama A. Biopolymeric and lipid-based nanotechnological strategies for the design and development of novel mosquito repellent systems: recent advances. NANOSCALE ADVANCES 2024:d4na00474d. [PMID: 39247861 PMCID: PMC11378059 DOI: 10.1039/d4na00474d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
Mosquitoes are the most medically important arthropod vectors of several human diseases. These diseases are known to severely incapacitate and debilitate millions of people, resulting in countless loss of lives. Over the years, several measures have been put in place to control the transmission of mosquito-borne diseases, one of which is using repellents. Repellents are one of the most effective personal protective measures against mosquito-borne diseases. However, conventional delivery systems of repellents (e.g., creams, gels, and sprays) are plagued with toxicity and short-term efficacy issues. The application of biopolymeric and lipid-based systems has been explored over the years to develop better delivery systems for active pharmaceutical ingredients including mosquito repellents. These delivery systems (e.g., solid lipid micro/nanoparticles, micro/nanoemulsions, or liposomes) possess desirable properties such as high biocompatibility, versatility, and controlled/sustained drug delivery, and thus are very important in tackling the clinical challenges of conventional repellent systems. Their capability for controlled/sustained drug release has improved patient compliance as it removes the need for consistent reapplication of repellents. They can also be engineered to reduce repellents' skin permeation, consequently improving their safety. However, despite the benefits that these systems offer very few of them have been successfully translated to the global market for commercial use, a vital challenge that previous reports have not thoroughly examined. The issue of limited clinical translation of novel repellent systems is a vital aspect to consider, as the ultimate goal is to move these systems from bench to bedside. As such, this study seeks to highlight the recent advances in the use of biopolymeric and lipid-based systems for the development of novel mosquito-repellent systems and also analyze the challenges that have limited the clinical translation of these systems while proposing possible strategies to overcome these challenges.
Collapse
Affiliation(s)
- Chinekwu Nwagwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
- Helmholtz Institute for Pharmaceutical Research Saarland Saarbrucken Germany
| | - Adaeze Onugwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Adaeze Echezona
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Samuel Uzondu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Chinazom Agbo
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Frankline Kenechukwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - John Ogbonna
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Lydia Ugorji
- Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria Nsukka Nigeria
| | - Lotanna Nwobi
- Department of Veterinary Physiology and Pharmacology, University of Nigeria Nsukka Nigeria
| | - Obichukwu Nwobi
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria Nsukka Enugu State Nigeria
| | - Oluchi Mmuotoo
- Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Ezinwanne Ezeibe
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria Nsukka Nigeria
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland Saarbrucken Germany
| | - Clemence Tarirai
- Department of Pharmaceutical Sciences, Faculty of Sciences, Tshwane University of Technology Pretoria South Africa
| | - Kingsley Chimaeze Mbara
- Department of Pharmaceutical Sciences, Faculty of Sciences, Tshwane University of Technology Pretoria South Africa
| | - Nnabuife Agumah
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University Nigeria
| | - Petra Nnamani
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
- Helmholtz Institute for Pharmaceutical Research Saarland Saarbrucken Germany
| | - Kenneth Ofokansi
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Claus-Micheal Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland Saarbrucken Germany
| | - Anthony Attama
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria Nsukka Nigeria
| |
Collapse
|
4
|
Lokole PB, Byamungu GG, Mutwale PK, Ngombe NK, Mudogo CN, Krause RWM, Nkanga CI. Plant-based nanoparticles targeting malaria management. Front Pharmacol 2024; 15:1440116. [PMID: 39185312 PMCID: PMC11341498 DOI: 10.3389/fphar.2024.1440116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Malaria is one of the most devastating diseases across the globe, particularly in low-income countries in Sub-Saharan Africa. The increasing incidence of malaria morbidity is mainly due to the shortcomings of preventative measures such as the lack of vaccines and inappropriate control over the parasite vector. Additionally, high mortality rates arise from therapeutic failures due to poor patient adherence and drug resistance development. Although the causative pathogen (Plasmodium spp.) is an intracellular parasite, the recommended antimalarial drugs show large volumes of distribution and low-to no-specificity towards the host cell. This leads to severe side effects that hamper patient compliance and promote the emergence of drug-resistant strains. Recent research efforts are promising to enable the discovery of new antimalarial agents; however, the lack of efficient means to achieve targeted delivery remains a concern, given the risk of further resistance development. New strategies based on green nanotechnologies are a promising avenue for malaria management due to their potential to eliminate malaria vectors (Anopheles sp.) and to encapsulate existing and emerging antimalarial agents and deliver them to different target sites. In this review we summarized studies on the use of plant-derived nanoparticles as cost-effective preventative measures against malaria parasites, starting from the vector stage. We also reviewed plant-based nanoengineering strategies to target malaria parasites, and further discussed the site-specific delivery of natural products using ligand-decorated nanoparticles that act through receptors on the host cells or malaria parasites. The exploration of traditionally established plant medicines, surface-engineered nanoparticles and the molecular targets of parasite/host cells may provide valuable insights for future discovery of antimalarial drugs and open new avenues for advancing science toward the goal of malaria eradication.
Collapse
Affiliation(s)
- Pathy B. Lokole
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Galilée G. Byamungu
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
- Department of Chemistry, Faculty of Sciences and Technology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Paulin K. Mutwale
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Nadège K. Ngombe
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Celestin N. Mudogo
- Unit of Molecular Biology, Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Rui W. M. Krause
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Christian I. Nkanga
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
5
|
Sanei-Dehkordi A, Heiran R, Montaseri Z, Elahi N, Abbasi Z, Osanloo M. Promising Larvicidal Effects of Nanoliposomes Containing Carvone and Mentha spicata and Tanacetum balsamita Essential Oils Against Anopheles stephensi. Acta Parasitol 2024; 69:216-226. [PMID: 37979013 DOI: 10.1007/s11686-023-00735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE The use of synthetic pesticides to control the spread of mosquito-borne diseases has caused environmental pollution and insecticide resistance in mosquitoes. Developments of new green insecticides have thus received more attention to overcome these problems. METHODS Nanoliposomes containing carvone and essential oils were first prepared. The nanoliposome physicochemical characteristics (particle size, morphology, and successful loading) were then evaluated by Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), and the Attenuated Total Reflection-Fourier Transform InfraRed (ATR-FTIR) analyses. Larvicidal effects of carvone, Mentha spicata, and Tanacetum balsamita essential oils were investigated against the main malaria vector, Anopheles stephensi, in non-formulated and nanoformulated states. RESULTS The larvicidal effects of nanoformulated states were significantly more potent (7.2 folds, 3.5 folds, and 8 folds) than non-formulated states. Nanoliposomes containing M. spicata and T. balsamita essential oils with particle sizes of 175 ± 8 and 184 ± 5 nm showed the best efficacies (LC50 values = 9.74 and 9.36 μg/mL). CONCLUSION The prepared samples could be used as new green potent larvicides against An stephensi mosquito in further field trials. It is also recommended to investigate their efficacies against other mosquitoes.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Department of Biology and Control of Disease Vectors, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Roghayeh Heiran
- Estahban Higher Education Center- Shiraz University, Estahban, Iran
| | - Zahra Montaseri
- Department of Infectious Diseases, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Elahi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Abbasi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
6
|
Godase SS, Kulkarni NS, Dhole SN. A Comprehensive Review on Novel Lipid-Based Nano Drug Delivery. Adv Pharm Bull 2024; 14:34-47. [PMID: 38585464 PMCID: PMC10997939 DOI: 10.34172/apb.2024.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 02/21/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Novel drug delivery system opens the doors towards nano/micro formulation strategies to overcome the challenges associated with the poorly soluble and permeable drugs. Lipid based nanoparticles are widely accepted that includes liposomes, niosomes and micelles which are FDA approved. Such lipid based drug delivery allows delivery for natural phytoconstituents, biopharmaceutical classification system (BCS) class II and class IV drugs are effectively delivered to improve its solubility, permeability and bioavailability. The article provides the recent advances and application of lipid based dosage form for improvement of therapeutic efficacy.
Collapse
Affiliation(s)
| | - Nilesh Shrikant Kulkarni
- Department of Pharmaceutics, PES Modern college of Pharmacy (for ladies) Moshi, Pune. Affiliated to Savitribai Phule Pune University, Pune, Maharashtra, India
| | | |
Collapse
|
7
|
Zarenezhad E, Sanei-Dehkordi A, Babaalizadeh B, Qasmei H, Osanloo M. Repellent efficacy of the nanogel containing Acroptilon repens essential oil in comparison with DEET against Anopheles stephensi. BMC Res Notes 2023; 16:261. [PMID: 37814316 PMCID: PMC10561488 DOI: 10.1186/s13104-023-06538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE Malaria is a vector-borne disease that causes many deaths worldwide; repellents are a practical approach to malaria prevention, especially in endemic regions. RESULTS Gas chromatography-mass spectrometry analysis was used to identify compounds in Acroptilon repens essential oil (EO). Alpha-copaene (15.67%), α-cubenen (3.76%), caryophyllene oxide (14.00%), 1-heptadecane (5.61%), and δ-cadinene (2.84) were five major compounds. After that, the nanoemulsion containing the EO with a particle size of 46 ± 4 nm, SPAN 0.85, PDI 0.4, and zeta potential - 5.7 ± 0.4 mV was prepared. Then, it was gellified by adding CMC (carboxymethyl cellulose) to the nanoemulsion. Besides, ATR-FTIR analysis (Attenuated Total Reflection-Fourier Transform InfraRed) was used to confirm the EO's successful loading in the nanogel. Finally, the protection time and repellent activity of nanogel compared to DEET (N, N-diethyl-meta-toluamide) were investigated against Anopheles stephensi. Interestingly, the nanogel with a protection time of 310 ± 45 min was significantly more potent than DEET (160 ± 17 min). It could thus be considered for future investigation against other mosquitoes.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Alireza Sanei-Dehkordi
- Department of Biology and Control of Disease Vectors, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behina Babaalizadeh
- Department of Biochemistry, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hajar Qasmei
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
8
|
Visakh NU, Pathrose B, Chellappan M, Ranjith MT, Sindhu PV, Mathew D. Extraction and chemical characterisation of agro-waste from turmeric leaves as a source of bioactive essential oils with insecticidal and antioxidant activities. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:1-10. [PMID: 37384969 DOI: 10.1016/j.wasman.2023.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Turmeric (Curcuma longa L.) is a significant crop that has historically been used worldwide as a medicinal plant, spice, food colouring agent, and a significant ingredient in cosmetic industries. After harvesting rhizomes, leaves are considered waste material. This research study aims to extract and chemically characterise the essential oil from the leaves waste of turmeric with an evaluation of different insecticidal, antioxidant, and phytotoxic activities. Subsequently, the contact toxicity, fumigant toxicity, and repellent activity were evaluated against two key stored grain insect species. The gas chromatography-mass spectrometry (GC-MS) characterisation revealed that α-phellandrene (28.95%), 2-carene (16.51%), eucalyptol (10.54%) and terpinolene (10.24%) were the major chemical constituents. The study's findings on the insecticidal effects of essential oils extracted from turmeric leaves revealed noteworthy repellent, contact (at 24 h, LC50 = 6.51 mg/cm2 for Tribolium castaneum and LC50 = 4.74 mg/cm2 for Rhyzopertha dominica) and fumigant toxicities (at 24 h, LC50 = 2.57 mg/L air for T. castaneum and LC50 = 2.83 mg/L air for R. dominica), against two key stored grain insects. In addition, turmeric leaf essential oil showed notable antioxidant activity (IC50 = 10.04 ± 0.03 µg/mL for DPPH assay; IC50 = 14.12 ± 0.21 µg/mL for ABTS assay. Furthermore, a phytotoxicity study was carried out on stored paddy seeds and no toxic effects were found on germination rate and seedling growth. So, it might be expected that the essential oils extracted from the turmeric leaf waste could be valorised and demonstrate their potential as safe botanical insecticides against stored-product insects, with noble antioxidant properties.
Collapse
Affiliation(s)
- Naduvilthara U Visakh
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - Berin Pathrose
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India.
| | - Mani Chellappan
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - M T Ranjith
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - P V Sindhu
- Department of Agronomy, AICRP on Medicinal, Aromatic Plants and Betelvine, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - Deepu Mathew
- Centre for Plant Biotechnology and Molecular Biology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| |
Collapse
|
9
|
Deshmukh R. Exploring the potential of antimalarial nanocarriers as a novel therapeutic approach. J Mol Graph Model 2023; 122:108497. [PMID: 37149980 DOI: 10.1016/j.jmgm.2023.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
Malaria is a life-threatening parasitic disease that affects millions of people worldwide, especially in developing countries. Despite advances in conventional therapies, drug resistance in malaria parasites has become a significant concern. Hence, there is a need for a new therapeutic approach. To combat the disease effectively means eliminating vectors and discovering potent treatments. The nanotechnology research efforts in nanomedicine show promise by exploring the potential use of nanomaterials that can surmount these limitations occurring with antimalarial drugs, which include multidrug resistance or lack of specificity when targeting parasites directly. Utilizing nanomaterials would possess unique advantages over conventional chemotherapy systems by increasing the efficacy levels while reducing side effects significantly by delivering medications precisely within the diseased area. It also provides cheap yet safe measures against Malaria infections worldwide-ultimately improving treatment efficiency holistically without reinventing new methods therapeutically. This review is an effort to provide an overview of the various stages of malaria parasites, pathogenesis, and conventional therapies, as well as the treatment gap existing with available formulations. It explores different types of nanocarriers, such as liposomes, ethosomal cataplasm, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanocarriers, and metallic nanoparticles, which are frequently employed to boost the efficiency of antimalarial drugs to overcome the challenges and develop effective and safe therapies. The study also highlights the improved pharmacokinetics, enhanced drug bioavailability, and reduced toxicity associated with nanocarriers, making them a promising therapeutic approach for treating malaria.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India.
| |
Collapse
|
10
|
Nasirzadeh Fard Y, Kelidari H, Kazemi Nejad A, Mousavi SJ, Hedayati MT, Mosayebi E, Nabili M, Faeli L, Asare-Addo K, Nokhodchi A, Moazeni M. Enhanced treatment in cutaneous dermatophytosis management by Zataria multiflora-loaded nanostructured lipid carrier topical gel: A randomized double-blind placebo-controlled clinical trial. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Nanogels Containing Foeniculum vulgare Mill. and Mentha piperita L. Essential Oils: Mosquitoes’ Repellent Activity and Antibacterial Effect. Interdiscip Perspect Infect Dis 2022; 2022:4510182. [PMID: 36092390 PMCID: PMC9453018 DOI: 10.1155/2022/4510182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Foeniculum vulgare Mill. and Mentha piperita L. are two common medicinally important plants with a wide range of biological activities such as insecticide and antibacterial effects. In this study, the chemical composition of their essential oils was investigated using GC-MS analysis. After that, their nanoemulsions were prepared; optimum samples with droplet sizes of 74 ± 7 and 136 ± 5 nm were gelified. The viscosity of the prepared nanogels and the successful loading of the essential oil in them were investigated. The efficacy of the nanogel containing M. piperita essential oil as a repellent and antibacterial agent was more potent than the nanogel containing F. vulgare essential oil. Its completely protected time against Anopheles stephensi, the main malaria mosquito vector, was 120 ± 8 min. Moreover, the growth of Escherichia coli and Staphylococcus aureus after treatment with 5000 µg/mL of nanogel containing M. piperita essential oil was reduced by 100 and 65%, respectively. Considering natural constituents, a straightforward preparation method, and high efficacy, the nanogel containing M. piperita essential oil could be introduced for further investigation against other mosquitoes and bacterial species.
Collapse
|
12
|
de Andrade LRM, Guilger-Casagrande M, Germano-Costa T, de Lima R. Polymeric Nanorepellent Systems Containing Geraniol and Icaridin Aimed at Repelling Aedes aegypti. Int J Mol Sci 2022; 23:8317. [PMID: 35955452 PMCID: PMC9368950 DOI: 10.3390/ijms23158317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Repellents are among the leading products used against diseases transmitted by the Aedes aegypti mosquito. However, their indiscriminate use or high concentrations can cause severe adverse reactions, particularly in children and pregnant women. To protect them, nanotechnology is a promising tool to encapsulate active compounds against degradation, increase their effectiveness, and decrease their toxicity, as it can promote the modified release of the active compound. This study aimed to develop polymeric nanocapsules containing the repellent actives geraniol and icaridin using low concentrations of the active component, with the objective of promoting effective activity and greater safety against adverse reactions. The nanocapsules were developed by the interfacial deposition method, and the physicochemical properties of the nanocapsules were evaluated using dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), zeta potential, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), release kinetics assay, and mathematical modeling. Cell viability was assessed by the MTT assay and genotoxicity analysis using the comet assay. The developed nanocapsules containing geraniol and icaridin showed mean diameters of 260 nm and 314 nm, respectively, with a polydispersity index < 0.2. The nanocapsules showed encapsulation efficiency values of 73.7 ± 0.1% for icaridin and 98.7 ± 0.1% for geraniol. Morphological analysis showed spherical nanocapsules with low polydispersity. The kinetic parameters calculated using the Korsmeyer−Peppas model indicated an anomalous release profile. Cell viability and genotoxicity analyses showed that the nanocapsules did not alter cell viability or damage DNA. The results demonstrate a promising nanostructured system with good physicochemical characteristics and good stability, with repellent activity against Aedes aegypti.
Collapse
Affiliation(s)
| | | | | | - Renata de Lima
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (L.R.M.d.A.); (M.G.-C.); (T.G.-C.)
| |
Collapse
|
13
|
Osanloo M, Firoozian S, Zarenezhad E, Montaseri Z, Satvati S. A Nanoliposomal Gel Containing Cinnamomum zeylanicum Essential Oil with Effective Repellent against the Main Malaria Vector Anopheles stephensi. Interdiscip Perspect Infect Dis 2022; 2022:1645485. [PMID: 35784810 PMCID: PMC9242819 DOI: 10.1155/2022/1645485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023] Open
Abstract
Malaria is the most important vector-borne disease; however, mosquito repellents are still a practical approach for controlling malaria, especially in endemic regions. Due to the side effects of synthetic repellents such as N, N-diethyl-meta-toluamide (DEET), the development of natural repellents has received much attention. In this study, nanoliposomes containing 0.5 and 2.5% w/v Cinnamomum zeylanicum essential oil were firstly prepared with particle sizes of 119 ± 6 and 195 ± 9 nm. Their morphologies and loading of the essential oil in the particles were then investigated using transmission electron microscopy (TEM) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) analyses. The nanoliposomes were finally jellified to increase their viscosity and facilitate topical usage. The complete protection time of the nanoliposomal gel containing 2.5% C. zeylanicum essential oil was significantly longer than that of 2.5% DEET against Anopheles stephensi: 303 ± 10 > 242 ± 12 min, p < 0.001. Moreover, the prepared nanoformulation was stable for at least six months at 4 and 26°C. Therefore, the prepared prototype could be considered a natural repellent against the main malaria mosquito vector in field conditions. In addition, it is suggested to be investigated against other important factors mosquitoes.
Collapse
Affiliation(s)
- Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Samira Firoozian
- Urmia Health Center, Disease Control Unit, Urmia University of Medical Sciences, Urmia, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Montaseri
- Department of Infectious Diseases, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Saha Satvati
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
14
|
Sanei-Dehkordi A, Agholi M, Shafiei M, Osanloo M. Promising Larvicidal Efficacy of Solid Lipid Nanoparticles Containing Mentha longifolia L., Mentha pulegium L., and Zataria multiflora Boiss. Essential Oils Against the Main Malaria Vector, Anopheles stephensi Liston. Acta Parasitol 2022; 67:1265-1272. [PMID: 35704149 DOI: 10.1007/s11686-022-00580-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE An attempt was made in the current study to develop a natural mosquito larvicide using nanotechnology. METHODS Solid lipid nanoparticles (SLNs) containing three essential oils were first prepared using the high-pressure homogenizer. Larvicidal effects of essential oils and the SLNs against Anopheles stephensi were then compared. RESULTS The size of SLN containing Mentha longifolia, Mentha pulegium, Zataria multiflora essential oil was obtained as 105 ± 7, 210 ± 4, and 137 ± 8 nm. Their zeta potentials were - 7.8, - 4.7, and - 9.7 mV. Besides, their efficacy with LC50 values of 24.79, 5.11, and 9.19 µg/mL was significantly more potent than that of their un-formulated essential oils with LC50 values of 36.2, 27.55, and 33.33 µg/mL. CONCLUSION SLNs containing M. pulegium with the best efficacy (P < 0.05) could be considered as potent larvicides against other important species of mosquitoes and field trials.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Department of Medical Entomology and Vector Control, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Agholi
- Department of Medical Parasitology and Mycology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahsa Shafiei
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
15
|
Kumari S, Goyal A, Sönmez Gürer E, Algın Yapar E, Garg M, Sood M, Sindhu RK. Bioactive Loaded Novel Nano-Formulations for Targeted Drug Delivery and Their Therapeutic Potential. Pharmaceutics 2022; 14:pharmaceutics14051091. [PMID: 35631677 PMCID: PMC9146286 DOI: 10.3390/pharmaceutics14051091] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Plant-based medicines have received a lot of attention in recent years. Such medicines have been employed to treat medical conditions since ancient times, and in those times only the observed symptoms were used to determine dose accuracy, dose efficacy, and therapy. Rather than novel formulations, the current research work on plant-based medicines has mostly concentrated on medicinal active phytoconstituents. In the past recent decades, however, researchers have made significant progress in developing "new drug delivery systems" (NDDS) to enhance therapeutic efficacy and reduce unwanted effects of bioactive compounds. Nanocapsules, polymer micelles, liposomes, nanogels, phytosomes, nano-emulsions, transferosomes, microspheres, ethosomes, injectable hydrogels, polymeric nanoparticles, dendrimers, and other innovative therapeutic formulations have all been created using bioactive compounds and plant extracts. The novel formulations can improve solubility, therapeutic efficacy, bioavailability, stability, tissue distribution, protection from physical and chemical damage, and prolonged and targeted administration, to name a few. The current study summarizes existing research and the development of new formulations, with a focus on herbal bioactive components.
Collapse
Affiliation(s)
- Sapna Kumari
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.K.); (A.G.); (M.G.)
| | - Anju Goyal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.K.); (A.G.); (M.G.)
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey; (E.S.G.); (E.A.Y.)
| | - Evren Algın Yapar
- Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey; (E.S.G.); (E.A.Y.)
| | - Madhukar Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.K.); (A.G.); (M.G.)
| | - Meenakshi Sood
- Chitkara School of Health Sciences, Chitkara University, Rajpura 140401, Punjab, India;
| | - Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.K.); (A.G.); (M.G.)
- Correspondence:
| |
Collapse
|
16
|
Pena GA, da Costa Lopes AS, de Morais SHS, do Nascimento LD, dos Santos FRR, da Costa KS, Alves CN, Lameira J. Host-Guest Inclusion Complexes of Natural Products and Nanosystems: Applications in the Development of Repellents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082519. [PMID: 35458718 PMCID: PMC9028570 DOI: 10.3390/molecules27082519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023]
Abstract
Repellents are compounds that prevent direct contact between the hosts and the arthropods that are vectors of diseases. Several studies have described the repellent activities of natural compounds obtained from essential oils. In addition, these chemical constituents have been pointed out as alternatives to conventional synthetic repellents due to their interesting residual protection and low toxicity to the environment. However, these compounds have been reported with short shelf life, in part, due to their volatile nature. Nanoencapsulation provides protection, stability, conservation, and controlled release for several compounds. Here, we review the most commonly used polymeric/lipid nanosystems applied in the encapsulation of small organic molecules obtained from essential oils that possess repellent activity, and we also explore the theoretical aspects related to the intermolecular interactions, thermal stability, and controlled release of the nanoencapsulated bioactive compounds.
Collapse
Affiliation(s)
- Gueive Astur Pena
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Federal University of Pará, Augusto Correa Street, w/n, Guamá, Belém 66075-110, Brazil; (G.A.P.); (C.N.A.)
| | - Anna Sylmara da Costa Lopes
- Laboratório de Catalálise e Oleoquímica, Federal University of Pará, Augusto Correa Street, w/n, Guamá, Belém 66075-110, Brazil;
| | - Sylvano Heleno Salgado de Morais
- Laboratório de Química Analítica e Ambiental, Federal University of Pará, Augusto Correa Street, w/n, Guamá, Belém 66075-110, Brazil;
| | - Lidiane Diniz do Nascimento
- Museu Paraense Emilio Goeldi, Laboratório Adolpho Ducke, Perimetral Avenue, Nuber 1901, Belém 66077-830, Brazil;
| | | | - Kauê Santana da Costa
- Laboratório de Simulação Computacional, Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, Brazil
- Correspondence: (K.S.d.C.); (J.L.)
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Federal University of Pará, Augusto Correa Street, w/n, Guamá, Belém 66075-110, Brazil; (G.A.P.); (C.N.A.)
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Federal University of Pará, Augusto Correa Street, w/n, Guamá, Belém 66075-110, Brazil; (G.A.P.); (C.N.A.)
- Correspondence: (K.S.d.C.); (J.L.)
| |
Collapse
|
17
|
Nanoliposomes Containing Carvacrol and Carvacrol-Rich Essential Oils as Effective Mosquitoes Larvicides. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00971-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
A natural nanogel with higher efficacy than a standard repellent against the primary malaria mosquito vector, Anopheles stephensi Liston. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02006-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of natural products as promising systems for their bioactivity enhancement: The case of essential oils and flavonoids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127529] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Valizadeh A, Khaleghi AA, Roozitalab G, Osanloo M. High anticancer efficacy of solid lipid nanoparticles containing Zataria multiflora essential oil against breast cancer and melanoma cell lines. BMC Pharmacol Toxicol 2021; 22:52. [PMID: 34587996 PMCID: PMC8482686 DOI: 10.1186/s40360-021-00523-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background The cancer burden is rising rapidly worldwide, and it annually causes about 8.8 million deaths worldwide. Due to chemical drugs’ side effects and the emergence of resistance, the development of new green drugs has received much attention. We aimed to investigate whether solid-lipid nanoparticles containing essential oil of Zataria multiflora (ZMSLN) enhanced the anticancer efficacy of the essential oil against breast cancer (MDA-MB-468) and melanoma (A-375) cells. Results ZMSLN was prepared by the high-pressure homogenizer method; particle size 176 ± 8 nm, polydispersity index 0.22 ± 0.1, entrapment efficiency 67 ± 5%. The essential oil showed a dose-dependent antiproliferative effect on MDA-MB-468 and A-375 cells at all examined concentrations (75, 150, 300, 600, and 1200 μg/mL). Interestingly, after treating both cells with 75 μg/mL of ZMSLN, their viabilities were reduced to under 13%. Conclusion The finding showed that ZMSLN had a distinct antiproliferative efficacy; it could thus be considered a green anticancer candidate for further in vivo and in vivo studies.
Collapse
Affiliation(s)
- Alireza Valizadeh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Khaleghi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
21
|
High Antibacterial Effect of Impregnated Nanofiber Mats with a Green Nanogel Against Major Human Pathogens. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00860-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|