1
|
Saucier D, Bélanger M, Liu Z, Lavigne E, O'Connell C. Associations between water exposure and the development of amyotrophic lateral sclerosis: a matched case-control study. Amyotroph Lateral Scler Frontotemporal Degener 2025:1-9. [PMID: 39840922 DOI: 10.1080/21678421.2025.2453450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025]
Abstract
OBJECTIVE Previous studies have hinted at an association between water exposure and the development of ALS. However, proximity measures to these water sources have been limited to questionnaires or large buffers due to a lack of fine geospatial measures. They also do not distinguish the various classes of hydrographic features. Thus, we created a robust database to investigate the association between proximity to water bodies at place of residence and the development of ALS. METHODS A matched (sex and year of birth) case-control study was conducted in New Brunswick, Canada from January 2003 to February 2021. Study population included 304 ALS patients and 1207 controls with their historical postal codes linked to spatial proximity datasets and air pollution index indicators (proxy measures for contamination by run-off). RESULTS Odds of ALS were not significantly associated with proximity to water bodies, even within a 250 m buffer from place of residence (Oceans: 1.10, 0.60-2.00 [95% CI], Reservoirs/Ponds/Lakes: 1.24, 0.47-3.30 [95% CI]). As for interaction models investigating proximity to potentially contaminated water bodies, none of the final fitted models observed an association between proximity to water bodies with indicators of potential run-off sources and the development of ALS. CONCLUSIONS No significant association between proximity to water bodies at place of residence and the development of ALS were observed in the current study. Future studies should consider taking direct measurements of water quality or utilize geomaps of spraying activities and cyanobacteria blooms alongside proximity measures. Household water quality is another avenue to explore, particularly well water use.
Collapse
Affiliation(s)
- Daniel Saucier
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de formation médicale du Nouveau-Brunswick, Moncton, New Brunswick, Canada
| | - Mathieu Bélanger
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de formation médicale du Nouveau-Brunswick, Moncton, New Brunswick, Canada
| | - Zikuan Liu
- New Brunswick Institute for Research, Data and Training, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Eric Lavigne
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada, and
| | - Colleen O'Connell
- Stan Cassidy Centre for Rehabilitation, Fredericton, New Brunswick, Canada
| |
Collapse
|
2
|
Peters SJ, Mitrovic SM, Rodgers KJ, Bishop DP. Bioaccumulation of β-methylamino-L-alanine (BMAA) by mussels exposed to the cyanobacteria Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125081. [PMID: 39374762 DOI: 10.1016/j.envpol.2024.125081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Cyanobacterial blooms are increasingly common in aquatic environments, raising concerns about the health impacts associated with the toxins they produce. One of these toxins is β-methylamino-L-alanine (BMAA), a neurotoxin linked to neurodegenerative diseases. Monitoring BMAA levels in the environment is challenging due to trace concentrations and complex matrices, and new approaches are needed for assessing exposure risk. In this laboratory study, Australian freshwater mussels, Velesunio ambiguus, were exposed to a BMAA-producing cyanobacterium, Microcystis aeruginosa, to assess its accumulation of the toxin over time. A sample preparation and analysis method was developed to allow accurate quantification of BMAA in the mussels at concentrations as low as 0.4 ng/g. Mussels exposed to M. aeruginosa accumulated BMAA, with concentrations increasing over the exposure period. Rapid depuration occurred after exposure to the cyanobacterium ended, with concentrations of BMAA quickly returning to pre-exposure levels. These results demonstrate the potential for mussels to be used as bioindicators in the field for monitoring BMAA levels over time, where rapid depuration is unlikely.
Collapse
Affiliation(s)
- Siobhan J Peters
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Simon M Mitrovic
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kenneth J Rodgers
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
3
|
Pereira-Santos AR, Candeias E, Magalhães JD, Empadinhas N, Esteves AR, Cardoso SM. Neuronal control of microglia through the mitochondria. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167167. [PMID: 38626829 DOI: 10.1016/j.bbadis.2024.167167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
The microbial toxin β-N-methylamino-L-alanine (BMAA), which is derived from cyanobacteria, targets neuronal mitochondria, leading to the activation of neuronal innate immunity and, consequently, neurodegeneration. Although known to modulate brain inflammation, the precise role of aberrant microglial function in the neurodegenerative process remains elusive. To determine if neurons signal microglial cells, we treated primary cortical neurons with BMAA and then co-cultured them with the N9 microglial cell line. Our observations indicate that microglial cell activation requires initial neuronal priming. Contrary to what was observed in cortical neurons, BMAA was not able to activate inflammatory pathways in N9 cells. We observed that microglial activation is dependent on mitochondrial dysfunction signaled by BMAA-treated neurons. In this scenario, the NLRP3 pro-inflammatory pathway is activated due to mitochondrial impairment in N9 cells. These results demonstrate that microglia activation in the presence of BMAA is dependent on neuronal signaling. This study provides evidence that neurons may trigger microglia activation and subsequent neuroinflammation. In addition, we demonstrate that microglial activation may have a protective role in ameliorating neuronal innate immune activation, at least in the initial phase. This work challenges the current understanding of neuroinflammation by assigning the primary role to neurons.
Collapse
Affiliation(s)
- A R Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - J D Magalhães
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - A Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
Bashir F, Bashir A, Bouaïcha N, Chen L, Codd GA, Neilan B, Xu WL, Ziko L, Rajput VD, Minkina T, Arruda RS, Ganai BA. Cyanotoxins, biosynthetic gene clusters, and factors modulating cyanotoxin biosynthesis. World J Microbiol Biotechnol 2023; 39:241. [PMID: 37394567 DOI: 10.1007/s11274-023-03652-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 07/04/2023]
Abstract
Cyanobacterial harmful algal blooms (CHABs) are a global environmental concern that encompasses public health issues, water availability, and water quality owing to the production of various secondary metabolites (SMs), including cyanotoxins in freshwater, brackish water, and marine ecosystems. The frequency, extent, magnitude, and duration of CHABs are increasing globally. Cyanobacterial species traits and changing environmental conditions, including anthropogenic pressure, eutrophication, and global climate change, together allow cyanobacteria to thrive. The cyanotoxins include a diverse range of low molecular weight compounds with varying biochemical properties and modes of action. With the application of modern molecular biology techniques, many important aspects of cyanobacteria are being elucidated, including aspects of their diversity, gene-environment interactions, and genes that express cyanotoxins. The toxicological, environmental, and economic impacts of CHABs strongly advocate the need for continuing, extensive efforts to monitor cyanobacterial growth and to understand the mechanisms regulating species composition and cyanotoxin biosynthesis. In this review, we critically examined the genomic organization of some cyanobacterial species that lead to the production of cyanotoxins and their characteristic properties discovered to date.
Collapse
Affiliation(s)
- Fahim Bashir
- Department of Environmental Science, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Arif Bashir
- Department of Clinical Biochemistry and Biotechnology, Government College for Women, Nawa-Kadal, Srinagar, Jammu & Kashmir, India
| | - Noureddine Bouaïcha
- Laboratory Ecology, Systematic, and Evolution, UMR 8079 Univ. Paris-Sud, CNRS, AgroParisTech, University Paris-Saclay, 91190, Gif-sur-Yvette, France.
| | - Liang Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science (SEES), Yunnan University (YNU), 650500, Kunming, China.
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China.
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Geoffrey A Codd
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Brett Neilan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Wen-Li Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China
| | - Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Renan Silva Arruda
- Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Bashir Ahmad Ganai
- Center of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
5
|
Oummadi A, Menuet A, Méresse S, Laugeray A, Guillemin G, Mortaud S. The herbicides glyphosate and glufosinate and the cyanotoxin β-N-methylamino-l-alanine induce long-term motor disorders following postnatal exposure: the importance of prior asymptomatic maternal inflammatory sensitization. Front Neurosci 2023; 17:1172693. [PMID: 37360165 PMCID: PMC10288190 DOI: 10.3389/fnins.2023.1172693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Background Prenatal maternal immune activation (MIA) and/or perinatal exposure to various xenobiotics have been identified as risk factors for neurological disorders, including neurodegenerative diseases. Epidemiological data suggest an association between early multi-exposures to various insults and neuropathologies. The "multiple-hit hypothesis" assumes that prenatal inflammation makes the brain more susceptible to subsequent exposure to several kinds of neurotoxins. To explore this hypothesis and its pathological consequences, a behavioral longitudinal procedure was performed after prenatal sensitization and postnatal exposure to low doses of pollutants. Methods Maternal exposure to an acute immune challenge (first hit) was induced by an asymptomatic lipopolysaccharide (LPS) dose (0.008 mg/kg) in mice. This sensitization was followed by exposing the offspring to environmental chemicals (second hit) postnatally, by the oral route. The chemicals used were low doses of the cyanotoxin β-N-methylamino-l-alanine (BMAA; 50 mg/kg), the herbicide glufosinate ammonium (GLA; 0.2 mg/kg) or the pesticide glyphosate (GLY; 5 mg/kg). After assessing maternal parameters, a longitudinal behavioral assessment was carried out on the offspring in order to evaluate motor and emotional abilities in adolescence and adulthood. Results We showed that the low LPS immune challenge was an asymptomatic MIA. Even though a significant increase in systemic pro-inflammatory cytokines was detected in the dams, no maternal behavioral defects were observed. In addition, as shown by rotarod assays and open field tests, this prenatal LPS administration alone did not show any behavioral disruption in offspring. Interestingly, our data showed that offspring subjected to both MIA and post-natal BMAA or GLA exposure displayed motor and anxiety behavioral impairments during adolescence and adulthood. However, this synergistic effect was not observed in the GLY-exposed offspring. Conclusion These data demonstrated that prenatal and asymptomatic immune sensitization represents a priming effect to subsequent exposure to low doses of pollutants. These double hits act in synergy to induce motor neuron disease-related phenotypes in offspring. Thus, our data strongly emphasize that multiple exposures for developmental neurotoxicity regulatory assessment must be considered. This work paves the way for future studies aiming at deciphering cellular pathways involved in these sensitization processes.
Collapse
Affiliation(s)
- Asma Oummadi
- Experimental and Molecular Immunology and Neurogenetics, UMR7355 CNRS, Orléans, France
- Faculty of Medicine and Human Health Sciences, Center for MND Research, Macquarie University, Sydney, NSW, Australia
| | - Arnaud Menuet
- Experimental and Molecular Immunology and Neurogenetics, UMR7355 CNRS, Orléans, France
- UFR Sciences et Techniques, University of Orléans, Orléans, France
| | - Sarah Méresse
- Experimental and Molecular Immunology and Neurogenetics, UMR7355 CNRS, Orléans, France
- UFR Sciences et Techniques, University of Orléans, Orléans, France
| | - Anthony Laugeray
- Faculty of Biology and Medicine, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Gilles Guillemin
- Faculty of Medicine and Human Health Sciences, Center for MND Research, Macquarie University, Sydney, NSW, Australia
| | - Stéphane Mortaud
- Experimental and Molecular Immunology and Neurogenetics, UMR7355 CNRS, Orléans, France
- UFR Sciences et Techniques, University of Orléans, Orléans, France
| |
Collapse
|
6
|
Thies JL, Willicott K, Craig ML, Greene MR, DuGay CN, Caldwell GA, Caldwell KA. Xanthine Dehydrogenase Is a Modulator of Dopaminergic Neurodegeneration in Response to Bacterial Metabolite Exposure in C. elegans. Cells 2023; 12:1170. [PMID: 37190079 PMCID: PMC10136629 DOI: 10.3390/cells12081170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Oxidative stress is a contributing factor to Parkinson's disease (PD). Considering the prevalence of sporadic PD, environmental exposures are postulated to increase reactive oxygen species and either incite or exacerbate neurodegeneration. We previously determined that exposure to the common soil bacterium, Streptomyces venezuelae (S. ven), enhanced oxidative stress and mitochondrial dysfunction in Caenorhabditis elegans, leading to dopaminergic (DA) neurodegeneration. Here, S. ven metabolite exposure in C. elegans was followed by RNA-Seq analysis. Half of the differentially identified genes (DEGs) were associated with the transcription factor DAF-16 (FOXO), which is a key node in regulating stress response. Our DEGs were enriched for Phase I (CYP) and Phase II (UGT) detoxification genes and non-CYP Phase I enzymes associated with oxidative metabolism, including the downregulated xanthine dehydrogenase gene, xdh-1. The XDH-1 enzyme exhibits reversible interconversion to xanthine oxidase (XO) in response to calcium. S. ven metabolite exposure enhanced XO activity in C. elegans. The chelation of calcium diminishes the conversion of XDH-1 to XO and results in neuroprotection from S. ven exposure, whereas CaCl2 supplementation enhanced neurodegeneration. These results suggest a defense mechanism that delimits the pool of XDH-1 available for interconversion to XO, and associated ROS production, in response to metabolite exposure.
Collapse
Affiliation(s)
- Jennifer L. Thies
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Karolina Willicott
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Maici L. Craig
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Madeline R. Greene
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Cassandra N. DuGay
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Saucier D, Registe PPW, Bélanger M, O'Connell C. Urbanization, air pollution, and water pollution: Identification of potential environmental risk factors associated with amyotrophic lateral sclerosis using systematic reviews. Front Neurol 2023; 14:1108383. [PMID: 36970522 PMCID: PMC10030603 DOI: 10.3389/fneur.2023.1108383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Despite decades of research, causes of ALS remain unclear. To evaluate recent hypotheses of plausible environmental factors, the aim of this study was to synthesize and appraise literature on the potential associations between the surrounding environment, including urbanization, air pollution and water pollution, and ALS. Methods We conducted a series (n = 3) of systematic reviews in PubMed and Scopus to identify epidemiological studies assessing relationships between urbanization, air pollution and water pollution with the development of ALS. Results The combined search strategy led to the inclusion of 44 articles pertaining to at least one exposure of interest. Of the 25 included urbanization studies, four of nine studies on living in rural areas and three of seven studies on living in more highly urbanized/dense areas found positive associations to ALS. There were also three of five studies for exposure to electromagnetic fields and/or proximity to powerlines that found positive associations to ALS. Three case-control studies for each of diesel exhaust and nitrogen dioxide found positive associations with the development of ALS, with the latter showing a dose-response in one study. Three studies for each of high selenium content in drinking water and proximity to lakes prone to cyanobacterial blooms also found positive associations to ALS. Conclusion Whereas markers of air and water pollution appear as potential risk factors for ALS, results are mixed for the role of urbanization.
Collapse
Affiliation(s)
- Daniel Saucier
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Center de formation médicale du Nouveau-Brunswick, Moncton, NB, Canada
- *Correspondence: Daniel Saucier
| | - Pierre Philippe Wilson Registe
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Center de formation médicale du Nouveau-Brunswick, Moncton, NB, Canada
| | - Mathieu Bélanger
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Center de formation médicale du Nouveau-Brunswick, Moncton, NB, Canada
| | - Colleen O'Connell
- Stan Cassidy Center for Rehabilitation, Fredericton, NB, Canada
- Department of Medicine, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| |
Collapse
|
8
|
Méresse S, Larrigaldie V, Oummadi A, de Concini V, Morisset-Lopez S, Reverchon F, Menuet A, Montécot-Dubourg C, Mortaud S. β-N-Methyl-Amino-L-Alanine cyanotoxin promotes modification of undifferentiated cells population and disrupts the inflammatory status in primary cultures of neural stem cells. Toxicology 2022; 482:153358. [DOI: 10.1016/j.tox.2022.153358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
|
9
|
Wang ZQ, Zhang CC. A tRNA t 6A modification system contributes to the sensitivity towards the toxin β-N-methylamino-L-alanine (BMAA) in the cyanobacterium Anabaena sp. PCC 7120. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106121. [PMID: 35180454 DOI: 10.1016/j.aquatox.2022.106121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are oxygen-evolving photosynthetic autotrophs essential for nutrient cycling in the environment. They possess multiple control mechanisms for their cellular activities in order to adapt to the environment. While protein translation is essential for cell survival and adaptation, the regulation and the flexibility of this process are poorly understood in cyanobacteria. β-N-methylamino-L-alanine (BMAA), an amino acid analog proposed as an environmental neurotoxin, is highly toxic to the filamentous diazotrophic cyanobacterium Anabaena PCC 7120. In this study, through genetic analysis of BMAA-resistant mutants, we demonstrate that the system responsible for modification of ANN-decoding tRNAs with N(6)-threonylcarbamoyl adenosine (t6A) is involved in BMAA sensitivity through the control of translation. Both BMAA and inactivation of the t6A biosynthesis pathway affect translational fidelity and ribosome assembly. However, the two factors display either additive effects on translational elongation, or attenuate each other over translational fidelity or the resistance/sensitivity to antibiotics that inhibit different steps of the translational process. BMAA has a broad effect on translation and transcription, and once BMAA enters the cells, the presence of the t6A biosynthesis pathway increases the sensitivity of the cells towards this toxin. BMAA-resistant mutants screening is an effective method for getting insight into the toxic mechanisms of BMAA. In addition, BMAA is a useful tool for probing translational flexibility of cyanobacteria, and the characterization of the corresponding resistant mutants should help us to reveal translational mechanism allowing cyanobacteria to adapt to changing environments.
Collapse
Affiliation(s)
- Zi-Qian Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, People's Republic of China; Institute WUT-AMU, Aix-Marseille University and Wuhan University of Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
10
|
Dias FRP, de Souza Almeida RR, Sovrani V, Thomaz NK, Gonçalves CA, Quincozes-Santos A, Bobermin LD. Glioprotective Effects of Resveratrol Against BMAA-Induced Astroglial Dysfunctions. Neurotox Res 2022; 40:530-541. [PMID: 35320508 DOI: 10.1007/s12640-022-00492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022]
Abstract
Astroglial cells play important roles in maintaining central nervous system (CNS) homeostasis. The neurotoxin β-N-methylamino-L-alanine (BMAA) has usually been associated with neurodegeneration due to its toxic effects on neurons. However, little is known about the effects of BMAA on astroglial cells. Resveratrol, a natural polyphenol, represents a potential protective strategy against brain injuries. In the present study, we sought to investigate BMAA-induced astroglial dysfunctions and the glioprotective roles of resveratrol. BMAA did not impair astroglial cellular viability, but increased glutamate uptake, glutamate metabolism into glutamine, and reactive oxygen species production, while decreased glutathione (GSH) and superoxide dismutase (SOD)-based antioxidant defenses and triggers an inflammatory response. In contrast, resveratrol was able to prevent most of these BMAA-induced functional changes in astroglial cells. Moreover, both BMAA and resveratrol modulated the gene expression of molecular pathways associated with glutamate metabolism, redox homeostasis, and inflammatory response, which characterize their roles on astroglial functions. In this regard, BMAA downregulated adenosine receptors, peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), phosphoinositide-3-kinase (PI3K), and Akt, while resveratrol prevented these effects and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Our study, for the first time, demonstrates that BMAA directly impacts key astroglial functions, contributing to elucidating the cellular and molecular mechanisms of this toxin in the CNS. In addition, we reinforce the glioprotective effects of resveratrol against BMAA-induced astroglial dysfunctions.
Collapse
Affiliation(s)
- Filipe Renato Pereira Dias
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rua Ramiro Barcelos, 2600 - Anexo, 90035-003, RS, Brazil
| | - Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rua Ramiro Barcelos, 2600 - Anexo, 90035-003, RS, Brazil
| | - Vanessa Sovrani
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rua Ramiro Barcelos, 2600 - Anexo, 90035-003, RS, Brazil
| | - Natalie K Thomaz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rua Ramiro Barcelos, 2600 - Anexo, 90035-003, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rua Ramiro Barcelos, 2600 - Anexo, 90035-003, RS, Brazil
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rua Ramiro Barcelos, 2600 - Anexo, 90035-003, RS, Brazil
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rua Ramiro Barcelos, 2600 - Anexo, 90035-003, RS, Brazil.
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Khatri DK, Kadbhane A, Patel M, Nene S, Atmakuri S, Srivastava S, Singh SB. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100022. [PMID: 34909657 PMCID: PMC8663985 DOI: 10.1016/j.crphar.2021.100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (ND) are of vast origin which are characterized by gradual progressive loss of neurons in the brain region. ND can be classified according to the clinical symptoms present (e.g. Cognitive decline, hyperkinetic, and hypokinetic movements disorder) or by the pathological protein deposited (e.g., Amyloid, tau, Alpha-synuclein, TDP-43). Alzheimer's disease preceded by Parkinson's is the most prevalent form of ND world-wide. Multiple factors like aging, genetic mutations, environmental factors, gut microbiota, blood-brain barrier microvascular complication, etc. may increase the predisposition towards ND. Genetic mutation is a major contributor in increasing the susceptibility towards ND, the concept of one disease-one gene is obsolete and now multiple genes are considered to be involved in causing one particular disease. Also, the involvement of multiple pathological mechanisms like oxidative stress, neuroinflammation, mitochondrial dysfunction, etc. contributes to the complexity and makes them difficult to be treated by traditional mono-targeted ligands. In this aspect, the Poly-pharmacological drug approach which targets multiple pathological pathways at the same time provides the best way to treat such complex networked CNS diseases. In this review, we have provided an overview of ND and their pathological origin, along with a brief description of various genes associated with multiple diseases like Alzheimer's, Parkinson's, Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Huntington's and a comprehensive detail about the Poly-pharmacology approach (MTDLs and Fixed-dose combinations) along with their merits over the traditional single-targeted drug is provided. This review also provides insights into current repurposing strategies along with its regulatory considerations.
Collapse
Affiliation(s)
- Dharmendra Kumar Khatri
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | | | | | | | | | | | - Shashi Bala Singh
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
12
|
Gonçalves AM, Pereira-Santos AR, Esteves AR, Cardoso SM, Empadinhas N. The Mitochondrial Ribosome: A World of Opportunities for Mitochondrial Dysfunction Toward Parkinson's Disease. Antioxid Redox Signal 2021; 34:694-711. [PMID: 32098485 DOI: 10.1089/ars.2019.7997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Mitochondrial ribosomes (mitoribosomes) are organelles that translate mitochondrial messenger RNA in the matrix and, in mammals, have evolved to translate 13 polypeptides of the pathway that performs oxidative phosphorylation (OXPHOS). Although a number of devastating diseases result from defects in this mitochondrial translation apparatus, most are associated with genetic mutations and little is known about allelopathic defects caused by antibiotics, toxins, or nonproteinogenic amino acids. Recent Advances: The levels of mitochondrial ribosomal subunits 12S and 16S ribosomal RNA (rRNA) in cells/tissues from patients carrying mutations in these genes have been associated with alterations in mitochondrial translation efficiency and with impaired OXPHOS activities, as well as with the severity of clinical phenotypes. In recent decades, important studies revealed a prominent role of mitochondrial dysfunction in Parkinson's disease (PD); however, the involvement of mitoribosomes remains largely unknown. Critical Issues: Considering that mitoribosomal structure and function can determine the efficiency of OXPHOS and that an impaired mitochondrial respiratory chain is a common finding in PD, we argue that the mitoribosome may be key to disease onset and progression. With this review, we comprehensively integrate the available knowledge on the composition, assembly, and role of the mitoribosome in mitochondrial efficiency, reflecting on its possible involvement in the etiopathogenesis of this epidemic disease as an appealing research avenue. Future Directions: If a direct correlation between mitoribosome failure and PD pathology is demonstrated, these mitochondrial organelles will provide valuable early clinical markers and potentially attractive targets for the development of innovative PD-directed therapeutic agents.
Collapse
Affiliation(s)
- Ana Mafalda Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Ra D, Sa B, Sl B, Js M, Sj M, DA D, Ew S, O K, Eb B, Ad C, Vx T, Gg G, Pa C, Dc M, Wg B. Is Exposure to BMAA a Risk Factor for Neurodegenerative Diseases? A Response to a Critical Review of the BMAA Hypothesis. Neurotox Res 2021; 39:81-106. [PMID: 33547590 PMCID: PMC7904546 DOI: 10.1007/s12640-020-00302-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
In a literature survey, Chernoff et al. (2017) dismissed the hypothesis that chronic exposure to β-N-methylamino-L-alanine (BMAA) may be a risk factor for progressive neurodegenerative disease. They question the growing scientific literature that suggests the following: (1) BMAA exposure causes ALS/PDC among the indigenous Chamorro people of Guam; (2) Guamanian ALS/PDC shares clinical and neuropathological features with Alzheimer's disease, Parkinson's disease, and ALS; (3) one possible mechanism for protein misfolds is misincorporation of BMAA into proteins as a substitute for L-serine; and (4) chronic exposure to BMAA through diet or environmental exposures to cyanobacterial blooms can cause neurodegenerative disease. We here identify multiple errors in their critique including the following: (1) their review selectively cites the published literature; (2) the authors reported favorably on HILIC methods of BMAA detection while the literature shows significant matrix effects and peak coelution in HILIC that may prevent detection and quantification of BMAA in cyanobacteria; (3) the authors build alternative arguments to the BMAA hypothesis, rather than explain the published literature which, to date, has been unable to refute the BMAA hypothesis; and (4) the authors erroneously attribute methods to incorrect studies, indicative of a failure to carefully consider all relevant publications. The lack of attention to BMAA research begins with the review's title which incorrectly refers to BMAA as a "non-essential" amino acid. Research regarding chronic exposure to BMAA as a cause of human neurodegenerative diseases is emerging and requires additional resources, validation, and research. Here, we propose strategies for improvement in the execution and reporting of analytical methods and the need for additional and well-executed inter-lab comparisons for BMAA quantitation. We emphasize the need for optimization and validation of analytical methods to ensure that they are fit-for-purpose. Although there remain gaps in the literature, an increasingly large body of data from multiple independent labs using orthogonal methods provides increasing evidence that chronic exposure to BMAA may be a risk factor for neurological illness.
Collapse
Affiliation(s)
- Dunlop Ra
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA.
| | - Banack Sa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Bishop Sl
- Lewis Research Group, Faculty of Science, University of Calgary, Alberta, Canada
| | - Metcalf Js
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Murch Sj
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | - Davis DA
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Stommel Ew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Karlsson O
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Brittebo Eb
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Tan Vx
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Guillemin Gg
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Cox Pa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Mash Dc
- Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Bradley Wg
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
14
|
Behavior and gene expression in the brain of adult self-fertilizing mangrove rivulus fish (Kryptolebias marmoratus) after early life exposure to the neurotoxin β-N-methylamino-l-alanine (BMAA). Neurotoxicology 2020; 79:110-121. [DOI: 10.1016/j.neuro.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
|
15
|
Fiore M, Parisio R, Filippini T, Mantione V, Platania A, Odone A, Signorelli C, Pietrini V, Mandrioli J, Teggi S, Costanzini S, Antonio C, Zuccarello P, Oliveri Conti G, Nicoletti A, Zappia M, Vinceti M, Ferrante M. Living near waterbodies as a proxy of cyanobacteria exposure and risk of amyotrophic lateral sclerosis: a population based case-control study. ENVIRONMENTAL RESEARCH 2020; 186:109530. [PMID: 32335431 DOI: 10.1016/j.envres.2020.109530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Epidemiological studies highlighted the possibility that exposure to cyanotoxins leads to the development of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). METHODS We devised a population-based case-control study in two Italian populations. We used residential proximity of the residence to water bodies as a measure of possible exposure to cyanotoxins. RESULTS Based on 703 newly-diagnosed ALS cases and 2737 controls, we calculated an ALS odds ratio (OR) of 1.41 (95% CI: 0.72-2.74) for current residence in the vicinity of water bodies, and a slightly lower estimate for historical residence (OR: 1.31; 95% CI: 0.57-2.99). Subjects <65 years and people living in the Northern Italy province of Modena had higher ORs, especially when historical residence was considered. CONCLUSIONS Overall, despite some risk of bias due to exposure misclassification and unmeasured confounding, our results appear to support the hypothesis that cyanotoxin exposure may increase ALS risk.
Collapse
Affiliation(s)
- Maria Fiore
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123; Environmental and Food Hygiene Laboratory (LIAA). Department "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123.
| | - Roberto Parisio
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valerio Mantione
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| | - Armando Platania
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| | - Anna Odone
- Department of Biomedical, Biotechnological, and Translational Sciences, University of Parma, 14 Via Gramsci, 43126, Parma, Italy
| | - Carlo Signorelli
- Department of Biomedical, Biotechnological, and Translational Sciences, University of Parma, 14 Via Gramsci, 43126, Parma, Italy; School of Medicine, University Vita-Salute San Raffaele, 58 Via Olgettina Milano, 20132, Milan, Italy
| | - Vladimiro Pietrini
- Department of Neuroscience, Neurology Unit, University of Parma, 14 Via Gramsci, 43126, Parma, Italy
| | - Jessica Mandrioli
- Department of Neuroscience, S. Agostino-Estense Hospital, and University of Modena and Reggio Emilia, 1355 Via Pietro Giardini, 41126, Modena, Italy
| | - Sergio Teggi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, 10 Via Vivarelli, 41125, Modena, Italy
| | - Sofia Costanzini
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, 10 Via Vivarelli, 41125, Modena, Italy
| | - Cristaldi Antonio
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123; Environmental and Food Hygiene Laboratory (LIAA). Department "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| | - Pietro Zuccarello
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123; Environmental and Food Hygiene Laboratory (LIAA). Department "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123; Environmental and Food Hygiene Laboratory (LIAA). Department "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123.
| | - Alessandra Nicoletti
- Section of Neurosciences, Department "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Mario Zappia
- Section of Neurosciences, Department "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123; Environmental and Food Hygiene Laboratory (LIAA). Department "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| |
Collapse
|
16
|
Schneider T, Simpson C, Desai P, Tucker M, Lobner D. Neurotoxicity of isomers of the environmental toxin L-BMAA. Toxicon 2020; 184:175-179. [PMID: 32585217 DOI: 10.1016/j.toxicon.2020.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/03/2020] [Accepted: 06/17/2020] [Indexed: 02/01/2023]
Abstract
There is evidence that the environmental toxin β-N-methylamino-L-alanine (L-BMAA) may be involved in neurodegenerative diseases. However, a number of controversies exist regarding L-BMAA, one of which is the possibility that when assaying for L-BMAA, its isomers are being detected instead. There are at least four isomers of BMAA that are known to occur: L-BMAA, β-N-methylamino-D-alanine (D-BMAA), 2,4-diaminobutyric acid (DAB), and N-(2-aminoethyl)glycine (AEG). The fact that isomers of BMAA exist in nature also leads to the possibility that they are involved in toxicity. We set out to determine both the potency and the mechanism of toxicity of L-BMAA, D-BMAA, DAB, asnd AEG using primary cortical cultures. The results were surprising with the following order of potency of toxicity: AEG > DAB > D-BMAA > L-BMAA. These results suggest that AEG may be an overlooked neurotoxin. We found that AEG induced toxicity through mGluR5 receptors and induction of oxidative stress. While the potential role of L-BMAA in neurodegenerative diseases has been emphasized, other isomers of L-BMAA, particularly AEG, are actually more potent toxins, and could therefore potentially contribute to neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas Schneider
- Dept. of Biomedical Sciences, Marquette University, 561 N. 15th Street, Rm 426,Milwaukee, WI, 53233, USA
| | - Catherine Simpson
- Dept. of Biomedical Sciences, Marquette University, 561 N. 15th Street, Rm 426,Milwaukee, WI, 53233, USA
| | - Prachi Desai
- Dept. of Biomedical Sciences, Marquette University, 561 N. 15th Street, Rm 426,Milwaukee, WI, 53233, USA
| | - Madeleine Tucker
- Dept. of Biomedical Sciences, Marquette University, 561 N. 15th Street, Rm 426,Milwaukee, WI, 53233, USA
| | - Doug Lobner
- Dept. of Biomedical Sciences, Marquette University, 561 N. 15th Street, Rm 426,Milwaukee, WI, 53233, USA.
| |
Collapse
|
17
|
The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) targets the olfactory bulb region. Arch Toxicol 2020; 94:2799-2808. [PMID: 32435914 PMCID: PMC7395073 DOI: 10.1007/s00204-020-02775-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Olfactory dysfunction is implicated in neurodegenerative disorders and typically manifests years before other symptoms. The cyanobacterial neurotoxin β-N-methylamino-l-alanine (BMAA) is suggested as a risk factor for neurodegenerative disease. Detection of BMAA in air filters has increased the concern that aerosolization may lead to human BMAA exposure through the air. The aim of this study was to determine if BMAA targets the olfactory system. Autoradiographic imaging showed a distinct localization of radioactivity in the right olfactory mucosa and bulb following a unilateral intranasal instillation of 3H-BMAA (0.018 µg) in mice, demonstrating a direct transfer of BMAA via the olfactory pathways to the brain circumventing the blood–brain barrier, which was confirmed by liquid scintillation. Treatment of mouse primary olfactory bulb cells with 100 µM BMAA for 24 h caused a disruption of the neurite network, formation of dendritic varicosities and reduced cell viability. The NMDA receptor antagonist MK-801 and the metabotropic glutamate receptor antagonist MCPG protected against the BMAA-induced alterations, demonstrating the importance of glutamatergic mechanisms. The ionotropic non-NMDA receptor antagonist CNQX prevented the BMAA-induced decrease of cell viability in mixed cultures containing both neuronal and glial cells, but not in cultures with neurons only, suggesting a role of neuron–glial interactions and glial AMPA receptors in the BMAA-induced toxicity. The results show that the olfactory region may be a target for BMAA following inhalation exposure. Further studies on the relations between environmental olfactory toxicants and neurodegenerative disorders are warranted.
Collapse
|
18
|
Energy Balance as a Moderator of Neurologic Disease Risk and Progression. Neurotox Res 2020; 38:242-248. [PMID: 32215816 DOI: 10.1007/s12640-020-00190-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 10/24/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disease that like multiple other neurologic diseases has no curative treatment currently available. Environmental exposures to known neurotoxic compounds (e.g., pesticides, heavy metals, cyanobacterial toxins, etc.) are identified as risk factors associated with ALS. Assuming these environmental factors have causative roles in disease risk and given the ubiquity of these types of exposures for the modern human, why are not more people afflicted with ALS? Herein is proposed an energy balance moderation framework (EBMF)-a framework that postulates energy balance as a key moderator of neurologic disease risk. The EBMF proposes that the ability of the body to handle toxic compound exposures through excretion, metabolism, and/or storage impacts the acute and chronic tissue-specific toxicity which is moderated by energy balance. In this model, positive energy balance (weight gain or excess body weight/mass) would be protective against acute neurotoxic exposure permitting the assimilation and sequestration of toxic compounds within body stores separate from the nervous system. However, this protective buffering could be lost during sustained negative energy balance (weight loss) with the release of sequestered compounds redistributing to the nervous system. The EBMF may have relevance beyond ALS for other neurologic diseases with demonstrated environmental risks (such as Alzheimer's and Parkinson's disease) and offers new insights into potential strategies to reduce disease risk and develop novel treatments.
Collapse
|
19
|
Manolidi K, Triantis TM, Kaloudis T, Hiskia A. Neurotoxin BMAA and its isomeric amino acids in cyanobacteria and cyanobacteria-based food supplements. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:346-365. [PMID: 30448548 DOI: 10.1016/j.jhazmat.2018.10.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacteria are photosynthetic microorganisms distributed globally in aquatic and terrestrial environments. They are also industrially cultivated to be used as dietary supplements, as they have a high nutritional value; however, they are also known to produce a wide range of toxic secondary metabolites, called cyanotoxins. BMAA (β-methylamino-l-alanine) and its most common structural isomers, DAB (2,4-diaminobutyric acid) and AEG (N-2-aminoethylglycine) produced by cyanobacteria, are non-proteinogenic amino acids that have been associated with neurodegenerative diseases. A possible route of exposure to those amino acids is through consumption of food supplements based on cyanobacteria. The review critically discusses existing reports regarding the occurrence of BMAA, DAB and AEG in cyanobacteria and cyanobacteria-based food supplements. It is shown that inconsistencies in reported results could be attributed to performance of different methods of extraction and analysis applied and in ambiguities regarding determination of soluble and bound fractions of the compounds. The critical aspect of this review aims to grow awareness of human intake of neurotoxic amino acids, while results presented in literature concerning dietary supplements aim to promote further research, quality control as well as development of guidelines for cyanotoxins in food products.
Collapse
Affiliation(s)
- Korina Manolidi
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; National and Kapodistrian University of Athens, Faculty of Chemistry, 15784, Panepistimiopolis, Athens, Greece.
| | - Theodoros M Triantis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| | - Triantafyllos Kaloudis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; Water Quality Control Department, Athens Water Supply and Sewerage Company - EYDAP SA, Athens, Greece.
| | - Anastasia Hiskia
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| |
Collapse
|
20
|
Facciponte DN, Bough MW, Seidler D, Carroll JL, Ashare A, Andrew AS, Tsongalis GJ, Vaickus LJ, Henegan PL, Butt TH, Stommel EW. Identifying aerosolized cyanobacteria in the human respiratory tract: A proposed mechanism for cyanotoxin-associated diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1003-1013. [PMID: 30248825 PMCID: PMC6159226 DOI: 10.1016/j.scitotenv.2018.07.226] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 05/10/2023]
Abstract
Cyanobacteria produce harmful toxins that have been associated with several acute conditions and chronic human diseases, like gastroenteritis, non-alcoholic liver disease, and amyotrophic lateral sclerosis. Aerosol from waterbodies appears to be a likely mechanism for exposure. We conducted a study of human biospecimens focused on the cyanobacterial aerosilization process by evaluating the extent to which cyanobacteria can invade the human respiratory tract. Our study suggests that humans routinely inhale aerosolized cyanobacteria, which can be harbored in the nostrils and the lungs. Using PCR, cyanobacteria were found at high frequencies in the upper respiratory tract (92.20%) and central airway (79.31%) of our study subjects. Nasal swabs were not predictive of bronchoalveolar lavage (BAL) when detecting inhaled cyanobacteria. Interestingly, we found no evidence that time of year was a significant factor for cyanobacteria positivity (BAL cytology p = 1.0 and PCR p = 1.0); (nasal swab cytology p = 0.051 and PCR p = 0.65). Additionally, we found that proximity to a waterbody was not a significant factor for cyanobacteria positivity in BAL and nasal swabs collected during cyanobacteria bloom season [May-October] (p = 0.46 and p = 0.38). These data suggest that cyanobacteria exposure may be a prevalent and chronic phenomenon not necessarily restricted to waterbodies alone. Sources of indoor exposure warrant future investigation. Given the widespread prevalence of cyanobacterial exposure in the airway, investigation of the aerosol spread of cyanotoxins, more specifically, is warranted. Our findings are consistent with the hypothesis that aerosol is a significant route for cyanobacteria exposure, and thus a likely route of transmission for cyanotoxin-associated human diseases.
Collapse
Affiliation(s)
- Dominic N Facciponte
- Dartmouth-Hitchcock Medical Center, Department of Neurology, One Medical Center Dr., Lebanon, NH 03756, USA.
| | - Matthew W Bough
- Dartmouth-Hitchcock Medical Center, Department of Neurology, One Medical Center Dr., Lebanon, NH 03756, USA; Dartmouth College, Hanover, NH 03755, USA
| | - Darius Seidler
- Dartmouth-Hitchcock Medical Center, Department of Pulmonary and Critical Care Medicine, One Medical Center Dr., Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, One Rope Ferry Rd., Hanover, NH 03755, USA
| | - James L Carroll
- Dartmouth-Hitchcock Medical Center, Department of Pulmonary and Critical Care Medicine, One Medical Center Dr., Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, One Rope Ferry Rd., Hanover, NH 03755, USA
| | - Alix Ashare
- Dartmouth-Hitchcock Medical Center, Department of Pulmonary and Critical Care Medicine, One Medical Center Dr., Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, One Rope Ferry Rd., Hanover, NH 03755, USA
| | - Angeline S Andrew
- Dartmouth-Hitchcock Medical Center, Department of Neurology, One Medical Center Dr., Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, One Rope Ferry Rd., Hanover, NH 03755, USA
| | - Gregory J Tsongalis
- Dartmouth-Hitchcock Medical Center, Department of Pathology and Laboratory Medicine, One Medical Center Dr., Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, One Rope Ferry Rd., Hanover, NH 03755, USA
| | - Louis J Vaickus
- Dartmouth-Hitchcock Medical Center, Department of Pathology and Laboratory Medicine, One Medical Center Dr., Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, One Rope Ferry Rd., Hanover, NH 03755, USA
| | - Patricia L Henegan
- Dartmouth-Hitchcock Medical Center, Department of Neurology, One Medical Center Dr., Lebanon, NH 03756, USA
| | - Tanya H Butt
- Dartmouth-Hitchcock Medical Center, Department of Neurology, One Medical Center Dr., Lebanon, NH 03756, USA
| | - Elijah W Stommel
- Dartmouth-Hitchcock Medical Center, Department of Neurology, One Medical Center Dr., Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, One Rope Ferry Rd., Hanover, NH 03755, USA.
| |
Collapse
|
21
|
Cyanobacterial Neurotoxin Beta-Methyl-Amino-l-Alanine Affects Dopaminergic Neurons in Optic Ganglia and Brain of Daphnia magna. Toxins (Basel) 2018; 10:toxins10120527. [PMID: 30544796 PMCID: PMC6315693 DOI: 10.3390/toxins10120527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/02/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022] Open
Abstract
The non-proteinogenic amino acid beta-methyl-amino-l-alanine (BMAA) is a neurotoxin produced by cyanobacteria. BMAA accumulation in the brain of animals via biomagnification along the food web can contribute to the development of neurodegenerative diseases such as Amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC), the latter being associated with a loss of dopaminergic neurons. Daphnia magna is an important microcrustacean zooplankton species that plays a key role in aquatic food webs, and BMAA-producing cyanobacteria often form part of their diet. Here, we tested the effects of BMAA on putative neurodegeneration of newly identified specific dopaminergic neurons in the optic ganglia/brain complex of D. magna using quantitative tyrosine-hydroxylase immunohistochemistry and fluorescence cytometry. The dopaminergic system was analysed in fed and starved isogenic D. magna adults incubated under different BMAA concentrations over 4 days. Increased BMAA concentration showed significant decrease in the stainability of dopaminergic neurons of D. magna, with fed animals showing a more extreme loss. Furthermore, higher BMAA concentrations tended to increase offspring mortality during incubation. These results are indicative of ingested BMAA causing neurodegeneration of dopaminergic neurons in D. magna and adversely affecting reproduction. This may imply similar effects of BMAA on known human neurodegenerative diseases involving dopaminergic neurons.
Collapse
|
22
|
Pacific Ciguatoxin Induces Excitotoxicity and Neurodegeneration in the Motor Cortex Via Caspase 3 Activation: Implication for Irreversible Motor Deficit. Mol Neurobiol 2018; 55:6769-6787. [DOI: 10.1007/s12035-018-0875-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/07/2018] [Indexed: 12/14/2022]
|