1
|
Qin Y, Lin W, Ren Y. Ferroptosis involvement in the neurotoxicity of flunitrazepam in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107128. [PMID: 39467492 DOI: 10.1016/j.aquatox.2024.107128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
In recent years, psychoactive drugs such as benzodiazepines (BZDs) have been frequently detected in water environments, however, there is still limited understanding regarding their potential impact on neurological health and underlying mechanisms. This study evaluated the neurotoxicity of the typical BZD drug flunitrazepam (FLZ, 0.2 and 5 μg/L) in zebrafish embryos and adults, and investigated the relationship between ferroptosis and FLZ-induced neurotoxicity. The results indicated that acute exposure to FLZ significantly inhibited zebrafish embryo hatching and promotes death, induced larval deformities, and led to abnormal neurobehavioral responses in larvae, likely due to ferroptosis induction. Results from a 30-day subacute exposure to FLZ showed that it decreased motor function and induced cognitive impairment in adult zebrafish. Immunofluorescence of brain tissues revealed a reduction in neurons in the telencephalon and an increase in microglia in the mesencephalon of the zebrafish exposed to FLZ. The ultrastructure of brain mitochondria showed serious damage. Besides, FLZ exposure increased iron levels, reduced GSH/GSSG and increased LPO in brain tissue, which is related to the abnormal expression of genes associated with ferroptosis. In the rescue experiments with co-exposure to deferoxamine (DFO), the motor-related parameters and biochemical indexes related to ferroptosis were restored, suggesting that FLZ can induce ferroptosis. The molecular docking results indicated that FLZ had a higher affinity with transferrin. This study elucidates the close relationship between ferroptosis and FLZ-induced neurotoxicity, which is significant for understanding the physiological damage caused by psychoactive substances and assessing environmental risks.
Collapse
Affiliation(s)
- Yingjun Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Ding S, Liu Y, Tao H, Zhao Y, Zeng H, Han Y, Wang S, Chen Z, Tang Y, Guo W. Chronic intranasal oxytocin alleviates cognitive impairment and reverses oxytocin signaling upregulation in MK801-induced mice. Psychoneuroendocrinology 2024; 168:107138. [PMID: 39068687 DOI: 10.1016/j.psyneuen.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Cognitive impairment, especially impaired social cognition, is largely responsible for the deterioration of the social life of patients with schizophrenia (SZ). Oxytocin (OT) is a neuropeptide that offers promising therapy for SZ. This study aimed to explore whether OT could affect dizocilpine (MK801)-induced cognitive impairment and to investigate the effect of exogenous OT on the endogenous OT system in the hippocampus. METHODS The SZ mouse model was established by repeated administration of dizocilpine [MK801, 0.6 mg/kg, intraperitoneal (i.p.)], and then OT (6-60 μg/kg, intranasal) or risperidone (0.3 mg/kg, i.p.) was administered to explore the effect of OT on cognitive impairment. RESULTS OT at a dose of 6 μg/kg alleviated MK801-induced hyperactivity, sociability impairment, and spatial memory impairment. OT at a dose of 20 or 60 μg/kg attenuated the hyperactivity and social novelty impairment. In MK801-injected mice, the compensatory upregulation of OT mRNA in the hippocampus was reversed by three OT doses, whereas 60 μg/kg OT reversed the compensatory upregulation of CD38 protein expression. CONCLUSION OT alleviated cognitive impairment in the SZ mouse model to varying degrees, reversing the compensatory upregulation of OT signaling in the hippocampus.
Collapse
Affiliation(s)
- Shan Ding
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, China
| | - Yuxu Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hongtao Zeng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shichen Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiheng Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yamei Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
3
|
Vieira MPS, Silva OBS, Souza GF, Cavalcante GTS, Souza FMA, Gitaí DLG, Castro OW, Nicácio DCSP, Cofré AHR, Amorós MA, Silva AV, Neto GJDS, Silva AHQ, Correia WBZGB, Junkes JA, Duarte FS, Guedes JS, Nogueira FCS, Meneghetti MR, Duzzioni M. First evaluation of the anxiolytic-like effects of a bromazepam‑palladium complex in mice. J Inorg Biochem 2022; 237:112012. [PMID: 36162209 DOI: 10.1016/j.jinorgbio.2022.112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
A significant fraction of patients are affected by persistent fear and anxiety. Currently, there are several anxiolytic drug options, however their clinical outcomes do not fully manage the symptoms. Here, we evaluated the effects of a bromazepam‑palladium derivative [2-{(7-bromo-2-oxo-1,3-dihydro-2H-1,4-benzodiazepin-5-il)pyridinyl-κ2-N,N}chloropalladium(II)], [(BMZ)PdCl2], on fear/anxiety and memory-related behavior in mice. For this, female Swiss mice were treated intraperitoneally (i.p.) with saline (NaCl 0.9%) or [(BMZ)PdCl2] (0.5, 5.0, or 50 μg/kg). After 30 min, different tests were performed to evaluate anxiety, locomotion, and memory. We also evaluated the acute toxicity of [(BMZ)PdCl2] using a cell viability assay (neutral red uptake assay), and whether the drugs mechanism of action involves the γ-aminobutyric acid type A (GABAA) receptor complex by pre-treating animals with flumazenil (1.0 mg/kg, i.p., a competitive antagonist of GABAA-binding site). Our results demonstrate that [(BMZ)PdCl2] induces an anxiolytic-like phenotype in the elevated plus-maze test and that this effect can be blocked by flumazenil. Furthermore, there were no behavioral alterations induced by [(BMZ)PdCl2], as evaluated in the light-dark box, open field, and step-down passive avoidance tests. In the acute toxicity assay, [(BMZ)PdCl2] presented IC50 and LD50 values of 218 ± 60 μg/mL and 780 ± 80 mg/kg, respectively, and GSH category 4. Taken together, our results show that the anxiolytic-like effect of acute treatment with [(BMZ)PdCl2] occurs through the modulation of the benzodiazepine site in the GABAA receptor complex. Moreover, we show indications that [(BMZ)PdCl2] does not promote sedation and amnesia and presents the same toxicity as the bromazepam prototype.
Collapse
Affiliation(s)
- Mirella P S Vieira
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Ozileudiane B S Silva
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Gabriela F Souza
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Gabriela T S Cavalcante
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Fernanda M A Souza
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Daniel L G Gitaí
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Olagide W Castro
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Dannyele C S P Nicácio
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Axel H R Cofré
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Mariana A Amorós
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Artur V Silva
- Grupo de Catálise e Reatividade Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Geraldo José da Silva Neto
- Grupo de Catálise e Reatividade Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Allysson H Q Silva
- Grupo de Catálise e Reatividade Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Walleska B Z G B Correia
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil; Grupo de Catálise e Reatividade Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Janaína A Junkes
- Instituto de Tecnologia e Pesquisa, Centro Universitário Tiradentes, Avenida Comendador Gustavo Paiva, 5017, Cruz das Almas, Maceió, Alagoas 57038-000, Brazil
| | - Filipe S Duarte
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, S/N, Cidade Universitária, Recife, Pernambuco 50670-420, Brazil
| | - Jéssica S Guedes
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 149, Cidade Universitária, Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Fábio C S Nogueira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 149, Cidade Universitária, Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Mario R Meneghetti
- Grupo de Catálise e Reatividade Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil.
| | - Marcelo Duzzioni
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil.
| |
Collapse
|
4
|
Koszła O, Sołek P, Woźniak S, Kędzierska E, Wróbel TM, Kondej M, Archała A, Stępnicki P, Biała G, Matosiuk D, Kaczor AA. The Antipsychotic D2AAK1 as a Memory Enhancer for Treatment of Mental and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E8849. [PMID: 33238370 PMCID: PMC7700684 DOI: 10.3390/ijms21228849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022] Open
Abstract
The treatment of memory impairments associated with the central nervous system diseases remains an unmet medical need with social and economic implications. Here we show, that a multi-target ligand of aminergic G protein-coupled receptors with antipsychotic activity in vivo (D2AAK1) stimulates neuron growth and survival and promotes neuron integrity. We focused on the multilevel evaluation of the D2AAK1-related effects on neurons in terms of behavioral, cellular, molecular, and biochemical features in vivo and in vitro, such as memory-related responses, locomotor activity, tissue sections analysis, metabolic activity, proliferation level, neurons morphology, and proteins level involved in intracellular signaling pathways. In silico studies indicate that activation of calcium/calmodulin-dependent protein kinase I (CaMKI) may underline some of the observed activities of the compound. Furthermore, the compound increases hippocampal neuron proliferation via the activation of neurotrophic factors and cooperating signals responsible for cell growth and proliferation. D2AAK1 improves memory and learning processes in mice after both acute and chronic administration. D2AAK1 also causes an increase in the number of hippocampal pyramidal neurons after chronic administration. Because of its neuroprotective properties and pro-cognitive activity in behavioral studies D2AAK1 has the potential for the treatment of memory disturbances in neurodegenerative and mental diseases.
Collapse
Affiliation(s)
- Oliwia Koszła
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
| | - Przemysław Sołek
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 1 Pigonia St., 35-310 Rzeszow, Poland;
| | - Sylwia Woźniak
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
| | - Ewa Kędzierska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (E.K.); (G.B.)
| | - Tomasz M. Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Magda Kondej
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
| | - Aneta Archała
- Department of Biopharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland;
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
| | - Grażyna Biała
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (E.K.); (G.B.)
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|