1
|
Chandrasekara U, Mancuso M, Sumner J, Edwards D, Zdenek CN, Fry BG. Sugar-coated survival: N-glycosylation as a unique bearded dragon venom resistance trait within Australian agamid lizards. Comp Biochem Physiol C Toxicol Pharmacol 2024; 282:109929. [PMID: 38670246 DOI: 10.1016/j.cbpc.2024.109929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
In the ongoing evolutionary arms race between predators and prey, adaptive innovations often trigger a reciprocal response. For instance, the emergence of α-neurotoxins in snake venom has driven prey species targeted by these snakes to evolve sophisticated defense mechanisms. This study zeroes in on the particular motifs within the orthosteric sites of post-synaptic nicotinic acetylcholine receptors (nAChR) that confer resistance to α-neurotoxins, often through structural alterations of nAChR. This research examined Australian agamid lizards, a primary prey group for Australian elapid snakes, which are subject to predatory selection pressures. We previously showed that Pogona vitticeps (Central bearded dragon) was resistant to α-neurotoxic snake venoms through a steric hindrance form resistance evolving within the nAChR orthosteric, specifically through the 187-189NVT motif resulting in the presence of N-glycosylation, with the branching carbohydrate chains impeding the binding by the neurotoxins. This adaptive trait is thought to be a compensatory mechanism for the lizard's limited escape capabilities. Despite the significance of this novel adaptation, the prevalence and evolutionary roots of such venom resistance in Australian agamids have not been thoroughly investigated. To fill this knowledge gap, we undertook a comprehensive sequencing analysis of the nAChR ligand-binding domain across the full taxonomical diversity of Australian agamid species. Our findings reveal that the N-glycosylation resistance mechanism is a trait unique to the Pogona genus and absent in other Australian agamids. This aligns with Pogona's distinctive morphology, which likely increases vulnerability to neurotoxic elapid snakes, thereby increasing selective pressures for resistance. In contrast, biolayer interferometry experiments with death adder (Acanthophis species) venoms did not indicate any resistance-related binding patterns in other agamids, suggesting a lack of similar resistance adaptations, consistent with these lineages either being fast-moving, covered with large defensive spines, or being arboreal. This research not only uncovers a novel α-neurotoxin resistance mechanism in Australian agamids but also highlights the complex dynamics of the predator-prey chemical arms race. It provides a deeper understanding of how evolutionary pressures shape the interactions between venomous snakes and their prey.
Collapse
Affiliation(s)
- Uthpala Chandrasekara
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Marco Mancuso
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Joanna Sumner
- Museums Victoria Research Institute, GPO Box 666, Melbourne, VIC 3001, Australia.
| | - Dan Edwards
- Natural Sciences, Museum and Art Gallery Northern Territory, 19 Conacher St, The Gardens, Darwin, NT 0801, Australia.
| | - Christina N Zdenek
- School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Bryan G Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
2
|
Dashevsky D, Harris RJ, Zdenek CN, Benard-Valle M, Alagón A, Portes-Junior JA, Tanaka-Azevedo AM, Grego KF, Sant'Anna SS, Frank N, Fry BG. Red-on-Yellow Queen: Bio-Layer Interferometry Reveals Functional Diversity Within Micrurus Venoms and Toxin Resistance in Prey Species. J Mol Evol 2024; 92:317-328. [PMID: 38814340 PMCID: PMC11168994 DOI: 10.1007/s00239-024-10176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Snakes in the family Elapidae largely produce venoms rich in three-finger toxins (3FTx) that bind to the α 1 subunit of nicotinic acetylcholine receptors (nAChRs), impeding ion channel activity. These neurotoxins immobilize the prey by disrupting muscle contraction. Coral snakes of the genus Micrurus are specialist predators who produce many 3FTx, making them an interesting system for examining the coevolution of these toxins and their targets in prey animals. We used a bio-layer interferometry technique to measure the binding interaction between 15 Micrurus venoms and 12 taxon-specific mimotopes designed to resemble the orthosteric binding region of the muscular nAChR subunit. We found that Micrurus venoms vary greatly in their potency on this assay and that this variation follows phylogenetic patterns rather than previously reported patterns of venom composition. The long-tailed Micrurus tend to have greater binding to nAChR orthosteric sites than their short-tailed relatives and we conclude this is the likely ancestral state. The repeated loss of this activity may be due to the evolution of 3FTx that bind to other regions of the nAChR. We also observed variations in the potency of the venoms depending on the taxon of the target mimotope. Rather than a pattern of prey-specificity, we found that mimotopes modeled after snake nAChRs are less susceptible to Micrurus venoms and that this resistance is partly due to a characteristic tryptophan → serine mutation within the orthosteric site in all snake mimotopes. This resistance may be part of a Red Queen arms race between coral snakes and their prey.
Collapse
Affiliation(s)
- Daniel Dashevsky
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia.
| | - Richard J Harris
- Venom Evolution Lab, School of the Environment, The University of Queensland, Saint Lucia, QLD, 4072, Australia
- Australian Institute of Marine Science, Cape Cleveland, QLD, 4810, Australia
| | - Christina N Zdenek
- Celine Frere Group, School of the Environment, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Melisa Benard-Valle
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Region Hovedstaden, Denmark
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - José A Portes-Junior
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Anita M Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Kathleen F Grego
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Sávio S Sant'Anna
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Nathaniel Frank
- MToxins Venom Lab, 717 Oregon Street, Oshkosh, WI, 54902, USA
| | - Bryan G Fry
- Venom Evolution Lab, School of the Environment, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
3
|
Chandrasekara U, Broussard EM, Rokyta DR, Fry BG. High-Voltage Toxin'Roll: Electrostatic Charge Repulsion as a Dynamic Venom Resistance Trait in Pythonid Snakes. Toxins (Basel) 2024; 16:176. [PMID: 38668601 PMCID: PMC11053703 DOI: 10.3390/toxins16040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/29/2024] Open
Abstract
The evolutionary interplay between predator and prey has significantly shaped the development of snake venom, a critical adaptation for subduing prey. This arms race has spurred the diversification of the components of venom and the corresponding emergence of resistance mechanisms in the prey and predators of venomous snakes. Our study investigates the molecular basis of venom resistance in pythons, focusing on electrostatic charge repulsion as a defense against α-neurotoxins binding to the alpha-1 subunit of the postsynaptic nicotinic acetylcholine receptor. Through phylogenetic and bioactivity analyses of orthosteric site sequences from various python species, we explore the prevalence and evolution of amino acid substitutions that confer resistance by electrostatic repulsion, which initially evolved in response to predatory pressure by Naja (cobra) species (which occurs across Africa and Asia). The small African species Python regius retains the two resistance-conferring lysines (positions 189 and 191) of the ancestral Python genus, conferring resistance to sympatric Naja venoms. This differed from the giant African species Python sebae, which has secondarily lost one of these lysines, potentially due to its rapid growth out of the prey size range of sympatric Naja species. In contrast, the two Asian species Python brongersmai (small) and Python bivittatus (giant) share an identical orthosteric site, which exhibits the highest degree of resistance, attributed to three lysine residues in the orthosteric sites. One of these lysines (at orthosteric position 195) evolved in the last common ancestor of these two species, which may reflect an adaptive response to increased predation pressures from the sympatric α-neurotoxic snake-eating genus Ophiophagus (King Cobras) in Asia. All these terrestrial Python species, however, were less neurotoxin-susceptible than pythons in other genera which have evolved under different predatory pressure as: the Asian species Malayopython reticulatus which is arboreal as neonates and juveniles before rapidly reaching sizes as terrestrial adults too large for sympatric Ophiophagus species to consider as prey; and the terrestrial Australian species Aspidites melanocephalus which occupies a niche, devoid of selection pressure from α-neurotoxic predatory snakes. Our findings underline the importance of positive selection in the evolution of venom resistance and suggest a complex evolutionary history involving both conserved traits and secondary evolution. This study enhances our understanding of the molecular adaptations that enable pythons to survive in environments laden with venomous threats and offers insights into the ongoing co-evolution between venomous snakes and their prey.
Collapse
Affiliation(s)
- Uthpala Chandrasekara
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia;
| | - Emilie M. Broussard
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA; (E.M.B.); (D.R.R.)
| | - Darin R. Rokyta
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA; (E.M.B.); (D.R.R.)
| | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia;
| |
Collapse
|
4
|
Hus KK, Buczkowicz J, Pietrowska M, Petrilla V, Petrillová M, Legáth J, Litschka-Koen T, Bocian A. Venom diversity in Naja mossambica: Insights from proteomic and immunochemical analyses reveal intraspecific differences. PLoS Negl Trop Dis 2024; 18:e0012057. [PMID: 38557658 PMCID: PMC11008852 DOI: 10.1371/journal.pntd.0012057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/11/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Intraspecific variations in snake venom composition have been extensively documented, contributing to the diverse clinical effects observed in envenomed patients. Understanding these variations is essential for developing effective snakebite management strategies and targeted antivenom therapies. We aimed to comprehensively investigate venoms from three distinct populations of N. mossambica from Eswatini, Limpopo, and KwaZulu-Natal regions in Africa in terms of their protein composition and reactivity with three commercial antivenoms (SAIMR polyvalent, EchiTAb+ICP, and Antivipmyn Africa). METHODOLOGY/PRINCIPAL FINDINGS Naja mossambica venoms from Eswatini region exhibited the highest content of neurotoxic proteins, constituting 20.70% of all venom proteins, compared to Limpopo (13.91%) and KwaZulu-Natal (12.80%), and was characterized by the highest diversity of neurotoxic proteins, including neurotoxic 3FTxs, Kunitz-type inhibitors, vespryns, and mamba intestinal toxin 1. KwaZulu-Natal population exhibited considerably lower cytotoxic 3FTx, higher PLA2 content, and significant diversity in low-abundant proteins. Conversely, Limpopo venoms demonstrated the least diversity as demonstrated by electrophoretic and mass spectrometry analyses. Immunochemical assessments unveiled differences in venom-antivenom reactivity, particularly concerning low-abundance proteins. EchiTAb+ICP antivenom demonstrated superior reactivity in serial dilution ELISA assays compared to SAIMR polyvalent. CONCLUSIONS/SIGNIFICANCE Our findings reveal a substantial presence of neurotoxic proteins in N. mossambica venoms, challenging previous understandings of their composition. Additionally, the detection of numerous peptides aligning to uncharacterized proteins or proteins with unknown functions underscores a critical issue with existing venom protein databases, emphasizing the substantial gaps in our knowledge of snake venom protein components. This underscores the need for enhanced research in this domain. Moreover, our in vitro immunological assays suggest EchiTAb+ICP's potential as an alternative to SAIMR antivenom, requiring confirmation through prospective in vivo neutralization studies.
Collapse
Affiliation(s)
- Konrad K. Hus
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Rzeszow, Poland
| | - Justyna Buczkowicz
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Rzeszow, Poland
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Vladimír Petrilla
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
- Zoological Department, Zoological Garden Košice, Košice-Kavečany, Slovakia
| | - Monika Petrillová
- Department of General Competencies, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Jaroslav Legáth
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Rzeszow, Poland
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | | | - Aleksandra Bocian
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Rzeszow, Poland
| |
Collapse
|
5
|
Chandrasekara U, Mancuso M, Seneci L, Bourke L, Trembath DF, Sumner J, Zdenek CN, Fry BG. A Russian Doll of Resistance: Nested Gains and Losses of Venom Immunity in Varanid Lizards. Int J Mol Sci 2024; 25:2628. [PMID: 38473875 DOI: 10.3390/ijms25052628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The interplay between predator and prey has catalyzed the evolution of venom systems, with predators honing their venoms in response to the evolving resistance of prey. A previous study showed that the African varanid species Varanus exanthematicus has heightened resistance to snake venoms compared to the Australian species V. giganteus, V. komodoensis, and V. mertensi, likely due to increased predation by sympatric venomous snakes on V. exanthematicus. To understand venom resistance among varanid lizards, we analyzed the receptor site targeted by venoms in 27 varanid lizards, including 25 Australian varanids. The results indicate an active evolutionary arms race between Australian varanid lizards and sympatric neurotoxic elapid snakes. Large species preying on venomous snakes exhibit inherited neurotoxin resistance, a trait potentially linked to their predatory habits. Consistent with the 'use it or lose it' aspect of venom resistance, this trait was secondarily reduced in two lineages that had convergently evolved gigantism (V. giganteus and the V. komodoensis/V. varius clade), suggestive of increased predatory success accompanying extreme size and also increased mechanical protection against envenomation due to larger scale osteoderms. Resistance was completely lost in the mangrove monitor V. indicus, consistent with venomous snakes not being common in their arboreal and aquatic niche. Conversely, dwarf varanids demonstrate a secondary loss at the base of the clade, with resistance subsequently re-evolving in the burrowing V. acanthurus/V. storri clade, suggesting an ongoing battle with neurotoxic predators. Intriguingly, within the V. acanthurus/V. storri clade, resistance was lost again in V. kingorum, which is morphologically and ecologically distinct from other members of this clade. Resistance was also re-evolved in V. glebopalma which is terrestrial in contrast to the arboreal/cliff dwelling niches occupied by the other members of its clade (V. glebopalma, V. mitchelli, V. scalaris, V. tristis). This 'Russian doll' pattern of venom resistance underscores the dynamic interaction between dwarf varanids and Australian neurotoxic elapid snakes. Our research, which included testing Acanthophis (death adder) venoms against varanid receptors as models for alpha-neurotoxic interactions, uncovered a fascinating instance of the Red Queen Hypothesis: some death adders have developed more potent toxins specifically targeting resistant varanids, a clear sign of the relentless predator-prey arms race. These results offer new insight into the complex dynamics of venom resistance and highlight the intricate ecological interactions that shape the natural world.
Collapse
Affiliation(s)
- Uthpala Chandrasekara
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Marco Mancuso
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lorenzo Seneci
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lachlan Bourke
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Dane F Trembath
- Herpetology Department, Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia
| | - Joanna Sumner
- Museums Victoria Research Institute, Melbourne, VIC 3001, Australia
| | - Christina N Zdenek
- School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Bryan G Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
6
|
Tan CH, Tan KY, Tan NH. De Novo Assembly of Venom Gland Transcriptome of Tropidolaemus wagleri (Temple Pit Viper, Malaysia) and Insights into the Origin of Its Major Toxin, Waglerin. Toxins (Basel) 2023; 15:585. [PMID: 37756011 PMCID: PMC10537322 DOI: 10.3390/toxins15090585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
The venom proteome of Temple Pit Viper (Tropidolaemus wagleri) is unique among pit vipers, characterized by a high abundance of a neurotoxic peptide, waglerin. To further explore the genetic diversity of its toxins, the present study de novo assembled the venom gland transcriptome of T. wagleri from west Malaysia. Among the 15 toxin gene families discovered, gene annotation and expression analysis reveal the dominating trend of bradykinin-potentiating peptide/angiotensin-converting enzyme inhibitor-C-type natriuretic peptide (BPP/ACEI-CNP, 76.19% of all-toxin transcription) in the transcriptome, followed by P-III snake venom metalloproteases (13.91%) and other toxins. The transcript TwBNP01 of BPP/ACEI-CNP represents a large precursor gene (209 amino acid residues) containing the coding region for waglerin (24 residues). TwBNP01 shows substantial sequence variations from the corresponding genes of its sister species, Tropidolaemus subannulatus of northern Philippines, and other viperid species which diversely code for proline-rich small peptides such as bradykinin-potentiating peptides (BPPs). The waglerin/waglerin-like peptides, BPPs and azemiopsin are proline-rich, evolving de novo from multiple highly diverged propeptide regions within the orthologous BPP/ACEI-CNP genes. Neofunctionalization of the peptides results in phylogenetic constraints consistent with a phenotypic dichotomy, where Tropidolaemus spp. and Azemiops feae convergently evolve a neurotoxic trait while vasoactive BPPs evolve only in other species.
Collapse
Affiliation(s)
- Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.T.); (N.H.T.)
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.T.); (N.H.T.)
| |
Collapse
|
7
|
Jones L, Waite C, Neri-Castro E, Fry BG. Comparative Analysis of Alpha-1 Orthosteric-Site Binding by a Clade of Central American Pit Vipers (Genera Atropoides, Cerrophidion, Metlapilcoatlus, and Porthidium). Toxins (Basel) 2023; 15:487. [PMID: 37624244 PMCID: PMC10467085 DOI: 10.3390/toxins15080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
The distribution and relative potency of post-synaptic neurotoxic activity within Crotalinae venoms has been the subject of less investigation in comparison with Elapidae snake venoms. No previous studies have investigated post-synaptic neurotoxic activity within the Atropoides, Metlapilcoatlus, Cerrophidion, and Porthidium clade. Given the specificity of neurotoxins to relevant prey types, we aimed to uncover any activity present within this clade of snakes that may have been overlooked due to lower potency upon humans and thus not appearing as a clinical feature. Using biolayer interferometry, we assessed the relative binding of crude venoms to amphibian, lizard, bird, rodent and human α-1 nAChR orthosteric sites. We report potent alpha-1 orthosteric site binding in venoms from Atropoides picadoi, Metlapilcoatlus occiduus, M. olmec, M. mexicanus, M. nummifer. Lower levels of binding, but still notable, were evident for Cerrophidion godmani, C. tzotzilorum and C. wilsoni venoms. No activity was observed for Porthidium venoms, which is consistent with significant alpha-1 orthosteric site neurotoxicity being a trait that was amplified in the last common ancestor of Atropoides/Cerrophidion/Metlapilcoatlus subsequent to the split by Porthidium. We also observed potent taxon-selective activity, with strong selection for non-mammalian targets (amphibian, lizard, and bird). As these are poorly studied snakes, much of what is known about them is from clinical reports. The lack of affinity towards mammalian targets may explain the knowledge gap in neurotoxic activity within these species, since symptoms would not appear in bite reports. This study reports novel venom activity, which was previously unreported, indicating toxins that bind to post-synaptic receptors may be more widespread in pit vipers than previously considered. While these effects appear to not be clinically significant due to lineage-specific effects, they are of significant evolutionary novelty and of biodiscovery interest. This work sets the stage for future research directions, such as the use of in vitro and in vivo models to determine whether the alpha-1 orthosteric site binding observed within this study confers neurotoxic venom activity.
Collapse
Affiliation(s)
- Lee Jones
- Venom Evolution Laboratory, School of the Environment, University of Queensland, St Lucia, Queensland 4072, Australia;
| | - Callum Waite
- Venom Evolution Laboratory, School of the Environment, University of Queensland, St Lucia, Queensland 4072, Australia;
| | - Edgar Neri-Castro
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, Gómez Palacio 35010, Dgo., Mexico;
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, Cuernavaca 62210, Mor., Mexico
| | - Bryan G. Fry
- Venom Evolution Laboratory, School of the Environment, University of Queensland, St Lucia, Queensland 4072, Australia;
| |
Collapse
|
8
|
Lüddecke T, Paas A, Harris RJ, Talmann L, Kirchhoff KN, Billion A, Hardes K, Steinbrink A, Gerlach D, Fry BG, Vilcinskas A. Venom biotechnology: casting light on nature's deadliest weapons using synthetic biology. Front Bioeng Biotechnol 2023; 11:1166601. [PMID: 37207126 PMCID: PMC10188951 DOI: 10.3389/fbioe.2023.1166601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Venoms are complex chemical arsenals that have evolved independently many times in the animal kingdom. Venoms have attracted the interest of researchers because they are an important innovation that has contributed greatly to the evolutionary success of many animals, and their medical relevance offers significant potential for drug discovery. During the last decade, venom research has been revolutionized by the application of systems biology, giving rise to a novel field known as venomics. More recently, biotechnology has also made an increasing impact in this field. Its methods provide the means to disentangle and study venom systems across all levels of biological organization and, given their tremendous impact on the life sciences, these pivotal tools greatly facilitate the coherent understanding of venom system organization, development, biochemistry, and therapeutic activity. Even so, we lack a comprehensive overview of major advances achieved by applying biotechnology to venom systems. This review therefore considers the methods, insights, and potential future developments of biotechnological applications in the field of venom research. We follow the levels of biological organization and structure, starting with the methods used to study the genomic blueprint and genetic machinery of venoms, followed gene products and their functional phenotypes. We argue that biotechnology can answer some of the most urgent questions in venom research, particularly when multiple approaches are combined together, and with other venomics technologies.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- *Correspondence: Tim Lüddecke,
| | - Anne Paas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Richard J. Harris
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Lea Talmann
- Syngenta Crop Protection, Stein, Switzerland
| | - Kim N. Kirchhoff
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - André Billion
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Giessen, Germany
| | - Antje Steinbrink
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| | - Doreen Gerlach
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
9
|
Chandrasekara U, Harris RJ, Fry BG. The Target Selects the Toxin: Specific Amino Acids in Snake-Prey Nicotinic Acetylcholine Receptors That Are Selectively Bound by King Cobra Venoms. Toxins (Basel) 2022; 14:toxins14080528. [PMID: 36006190 PMCID: PMC9416539 DOI: 10.3390/toxins14080528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Snake venom is an adaptive ecological trait that has evolved primarily as a form of prey subjugation. Thus, the selection pressure for toxin diversification is exerted by the prey’s physiological targets, with this pressure being particularly acute for specialist feeders, such as the King Cobra species, all of which are snake-prey specialists. However, while extensive research has been undertaken to elucidate key amino acids that guide toxin structure–activity relationships, reciprocal investigations into the specific sites guiding prey-lineage selective effects have been lacking. This has largely been due to the lack of assay systems amenable to systematic amino acid replacements of targeted proteins in the prey’s physiological pathways. To fill this knowledge gap, we used a recently described approach based upon mimotope peptides corresponding to the orthosteric site of nicotinic acetylcholine receptor alpha-1 subunits, a major binding site for snake venom neurotoxins that cause flaccid paralysis. We investigated the venoms of four different types of King Cobra (Cambodian, Javan, Malaysian, and Thai). This approach allowed for the determination of the key amino acid positions in King Cobra snake prey that are selectively bound by the toxins, whereby replacing these amino acids in the snake-prey orthosteric site with those from lizards or rats resulted in a significantly lower level of binding by the venoms, while conversely replacing the lizard or rat amino acids with those from the snake at that position increased the binding. By doing such, we identified three negatively charged amino acids in the snake orthosteric site that are strongly bound by the positively charged neurotoxic three-finger toxins found in King Cobra venom. This study, thus, sheds light on the selection pressures exerted by a specialist prey item for the evolution of lineage-selective toxins.
Collapse
|
10
|
Youngman NJ, Peng YH, Harris RJ, Jones L, Llinas J, Haworth M, Gillett A, Fry BG. Differential coagulotoxic and neurotoxic venom activity from species of the arboreal viperid snake genus Bothriechis (palm-pitvipers). Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109326. [PMID: 35248757 DOI: 10.1016/j.cbpc.2022.109326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022]
Abstract
The viperid snake genus Bothriechis consists of eleven species distributed among Central and South America, living across low and high-altitude habitats. Despite Bothriechis envenomations being prominent across the Central and South American region, the functional effects of Bothriechis venoms are poorly understood. Thus, the aim of this study was to investigate the coagulotoxic and neurotoxic activities of Bothriechis venoms to fill this knowledge gap. Coagulotoxic investigations revealed Bothriechis nigroviridis and B. schlegelii to have pseudo-procoagulant venom activity, forming weak clots that rapidly break down, thereby depleting fibrinogen levels and thus contributing to a net anticoagulant state. While one sample of B. lateralis also showed weaker pseudo-procoagulant activity, directly clotting fibrinogen, two samples of B. lateralis venom were anticoagulant through the inhibition of thrombin and factor Xa activity. Differential efficacy of PoliVal-ICP antivenom was also observed, with the pseudo-procoagulant effect of B. nigroviridis venom poorly neutralised, despite this same activity in the venom of B. schlegelii being effectively neutralised. Significant specificity of these fibrinogen cleaving toxins was also observed, with no activity upon model amphibian, avian, lizard or rodent plasma observed. However, upon avian plasma the venom of B. nigroviridis exerted a complete anticoagulant effect, in contrast to the pseudo-procoagulant effect seen on human plasma. Neurotoxic investigations revealed B. schlegelii to be unique among the genus in having potent binding to the orthosteric site of the alpha-1 postsynaptic nicotinic acetylcholine receptor (with B. lateralis having a weaker but still discernible effect). This represents the first identification of postsynaptic nAChR neurotoxic activity for Bothriechis. In conclusion this study identifies notable differential activity within the coagulotoxic and postsynaptic neurotoxic activity of Bothriechis venoms, supporting previous research, and highlights the need for further studies with respect to antivenom efficacy as well as coagulotoxin specificity for Bothriechis venoms.
Collapse
Affiliation(s)
- Nicholas J Youngman
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Yin-Hsuan Peng
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Richard J Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lee Jones
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Mark Haworth
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Amber Gillett
- FaunaVet Wildlife Consultancy, Glass House Mountains, QLD 4518, Australia
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
11
|
Chowdhury A, Zdenek CN, Fry BG. Diverse and Dynamic Alpha-Neurotoxicity Within Venoms from the Palearctic Viperid Snake Clade of Daboia, Macrovipera, Montivipera, and Vipera. Neurotox Res 2022; 40:1793-1801. [PMID: 36194379 PMCID: PMC9797455 DOI: 10.1007/s12640-022-00572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/25/2022] [Indexed: 01/01/2023]
Abstract
The targeting of specific prey by snake venom toxins is a fascinating aspect of molecular and ecological evolution. Neurotoxic targeting by elapid snakes dominates the literature in this regard; however, recent studies have revealed viper toxins also induce neurotoxic effect. While this effect is thought to primarily be driven by prey selectivity, no study has quantified the taxonomically specific neurotoxicity of the viper clade consisting of Daboia, Macrovipera, Montivipera, and Vipera genera. Here, we tested venom toxin binding from 28 species of vipers from the four genera on the alpha 1 neuronal nicotinic acetylcholine receptors (nAChRs) orthosteric sites of amphibian, avian, lizard, rodent, and human mimotopes (synthetic peptides) using the Octet HTX biolayer interferometry platform. Daboia siamensis and D. russelii had broad binding affinity towards all mimotopes, while D. palestinae had selectivity toward lizard. Macrovipera species, on the other hand, were observed to have a higher affinity for amphibian mimotopes except for M. schweizeri, which inclined more toward lizard mimotopes. All Montivipera and most Vipera species also had higher affinity toward lizard mimotopes. Vipera a. montandoni, V. latastei, V. nikolski, and V. transcaucasina had the least binding to any of the mimotopes of the study. While a wide range of affinity binding towards various mimotopes were observed within the clade, the lowest affinity occurred towards the human target. Daboia siamensis and Macrovipera lebetina exhibited the greatest affinity toward the human mimotope, albeit still the least targeted of the mimotopes within those species. Overlaying this toxin-targeting trait over phylogeny of this clade revealed multiple cases of amplification of this trait and several cases of secondary loss. Overall, our results reveal dynamic variation, amplification, and some secondary loss of the prey targeting trait by alpha-neurotoxins within the venoms of this clade, indicating evolutionary selection pressure shaping the basic biochemistry of these venoms. Our work illustrates the successful use of this biophysical assay to further research snake venom neurotoxins and emphasizes the risk of generalizing venom effects observed on laboratory animals to have similar effects on humans.
Collapse
Affiliation(s)
- Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia QLD, 4072, Australia.
- Department of Biochemistry & Microbiology, North South University, Dhaka, 1229, Bangladesh.
| | - Christina N Zdenek
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia QLD, 4072, Australia
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia QLD, 4072, Australia.
| |
Collapse
|
12
|
Harris RJ, Nekaris KAI, Fry BG. Monkeying around with venom: an increased resistance to α-neurotoxins supports an evolutionary arms race between Afro-Asian primates and sympatric cobras. BMC Biol 2021; 19:253. [PMID: 34823526 PMCID: PMC8613972 DOI: 10.1186/s12915-021-01195-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
Background Snakes and primates have a multi-layered coevolutionary history as predators, prey, and competitors with each other. Previous work has explored the Snake Detection Theory (SDT), which focuses on the role of snakes as predators of primates and argues that snakes have exerted a selection pressure for the origin of primates’ visual systems, a trait that sets primates apart from other mammals. However, primates also attack and kill snakes and so snakes must simultaneously avoid primates. This factor has been recently highlighted in regard to the movement of hominins into new geographic ranges potentially exerting a selection pressure leading to the evolution of spitting in cobras on three independent occasions. Results Here, we provide further evidence of coevolution between primates and snakes, whereby through frequent encounters and reciprocal antagonism with large, diurnally active neurotoxic elapid snakes, Afro-Asian primates have evolved an increased resistance to α-neurotoxins, which are toxins that target the nicotinic acetylcholine receptors. In contrast, such resistance is not found in Lemuriformes in Madagascar, where venomous snakes are absent, or in Platyrrhini in the Americas, where encounters with neurotoxic elapids are unlikely since they are relatively small, fossorial, and nocturnal. Within the Afro-Asian primates, the increased resistance toward the neurotoxins was significantly amplified in the last common ancestor of chimpanzees, gorillas, and humans (clade Homininae). Comparative testing of venoms from Afro-Asian and American elapid snakes revealed an increase in α-neurotoxin resistance across Afro-Asian primates, which was likely selected against cobra venoms. Through structure-activity studies using native and mutant mimotopes of the α-1 nAChR receptor orthosteric site (loop C), we identified the specific amino acids responsible for conferring this increased level of resistance in hominine primates to the α-neurotoxins in cobra venom. Conclusion We have discovered a pattern of primate susceptibility toward α-neurotoxins that supports the theory of a reciprocal coevolutionary arms-race between venomous snakes and primates. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01195-x.
Collapse
Affiliation(s)
- Richard J Harris
- Venom Evolution Lab, University of Queensland, Biological Sciences, St. Lucia, Brisbane, 4072, Australia
| | - K Anne-Isola Nekaris
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Bryan G Fry
- Venom Evolution Lab, University of Queensland, Biological Sciences, St. Lucia, Brisbane, 4072, Australia.
| |
Collapse
|
13
|
Dobson JS, Harris RJ, Zdenek CN, Huynh T, Hodgson WC, Bosmans F, Fourmy R, Violette A, Fry BG. The Dragon's Paralysing Spell: Evidence of Sodium and Calcium Ion Channel Binding Neurotoxins in Helodermatid and Varanid Lizard Venoms. Toxins (Basel) 2021; 13:toxins13080549. [PMID: 34437420 PMCID: PMC8402328 DOI: 10.3390/toxins13080549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
Bites from helodermatid lizards can cause pain, paresthesia, paralysis, and tachycardia, as well as other symptoms consistent with neurotoxicity. Furthermore, in vitro studies have shown that Heloderma horridum venom inhibits ion flux and blocks the electrical stimulation of skeletal muscles. Helodermatids have long been considered the only venomous lizards, but a large body of robust evidence has demonstrated venom to be a basal trait of Anguimorpha. This clade includes varanid lizards, whose bites have been reported to cause anticoagulation, pain, and occasionally paralysis and tachycardia. Despite the evolutionary novelty of these lizard venoms, their neuromuscular targets have yet to be identified, even for the iconic helodermatid lizards. Therefore, to fill this knowledge gap, the venoms of three Heloderma species (H. exasperatum, H. horridum and H. suspectum) and two Varanus species (V. salvadorii and V. varius) were investigated using Gallus gallus chick biventer cervicis nerve–muscle preparations and biolayer interferometry assays for binding to mammalian ion channels. Incubation with Heloderma venoms caused the reduction in nerve-mediated muscle twitches post initial response of avian skeletal muscle tissue preparation assays suggesting voltage-gated sodium (NaV) channel binding. Congruent with the flaccid paralysis inducing blockage of electrical stimulation in the skeletal muscle preparations, the biolayer interferometry tests with Heloderma suspectum venom revealed binding to the S3–S4 loop within voltage-sensing domain IV of the skeletal muscle channel subtype, NaV1.4. Consistent with tachycardia reported in clinical cases, the venom also bound to voltage-sensing domain IV of the cardiac smooth muscle calcium channel, CaV1.2. While Varanus varius venom did not have discernable effects in the avian tissue preparation assay at the concentration tested, in the biointerferometry assay both V. varius and V. salvadorii bound to voltage-sensing domain IV of both NaV1.4 and CaV1.2, similar to H. suspectum venom. The ability of varanid venoms to bind to mammalian ion channels but not to the avian tissue preparation suggests prey-selective actions, as did the differential potency within the Heloderma venoms for avian versus mammalian pathophysiological targets. This study thus presents the detailed characterization of Heloderma venom ion channel neurotoxicity and offers the first evidence of varanid lizard venom neurotoxicity. In addition, the data not only provide information useful to understanding the clinical effects produced by envenomations, but also reveal their utility as physiological probes, and underscore the potential utility of neglected venomous lineages in the drug design and development pipeline.
Collapse
Affiliation(s)
- James S. Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.S.D.); (R.J.H.); (C.N.Z.)
| | - Richard J. Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.S.D.); (R.J.H.); (C.N.Z.)
| | - Christina N. Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.S.D.); (R.J.H.); (C.N.Z.)
| | - Tam Huynh
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (T.H.); (W.C.H.)
| | - Wayne C. Hodgson
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (T.H.); (W.C.H.)
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Rudy Fourmy
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (R.F.); (A.V.)
| | - Aude Violette
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (R.F.); (A.V.)
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.S.D.); (R.J.H.); (C.N.Z.)
- Correspondence: ; Tel.: +61-7-336-58515
| |
Collapse
|
14
|
Harris RJ, Youngman NJ, Chan W, Bosmans F, Cheney KL, Fry BG. Getting stoned: Characterisation of the coagulotoxic and neurotoxic effects of reef stonefish (Synanceia verrucosa) venom. Toxicol Lett 2021; 346:16-22. [PMID: 33878385 DOI: 10.1016/j.toxlet.2021.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/11/2023]
Abstract
The reef stonefish (Synanceia verrucosa) is a venomous fish which causes excruciatingly painful envenomations. While some research on the pathophysiology and functions of the venom have been conducted, there are still some gaps in the understanding of the venom effects due to the extreme lability of fish venom toxins and the lack of available testing platforms. Here we set out to assess new functions of the venom whilst also attempting to address some unclear pathophysiological effects from previous literature. Utilising a biolayer interferometry assay, our results highlight that the venom binds to the orthosteric site of the α-1 nicotinic acetylcholine receptor as well as the domain IV of voltage-gated Ca2+ (CaV1.2) channel mimotopes. Both these results add some clarity to the previously ambiguous literature. We further assessed the coagulotoxic effects of the venom using thromboelastography and Stago STA-R Max coagulation analyser assays. We reveal that the venom produced anticoagulant activity and significantly delayed time until clot formation of recalcified human plasma which is likely through the degradation of phospholipids. There was a difference between fresh and lyophilised venom activity toward the nicotinic acetylcholine receptor mimotopes and coagulation assays, whilst no difference was observed in the activity toward the domain IV of CaV1.2 mimotopes. This research adds further insights into the neglected area of fish venom whilst also highlighting the extreme labile nature of fish venom toxins.
Collapse
Affiliation(s)
- Richard J Harris
- Venom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Nicholas J Youngman
- Venom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Weili Chan
- Visual Ecology Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Karen L Cheney
- Visual Ecology Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Bryan G Fry
- Venom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
15
|
Not Goanna Get Me: Mutations in the Savannah Monitor Lizard (Varanus exanthematicus) Nicotinic Acetylcholine Receptor Confer Reduced Susceptibility to Sympatric Cobra Venoms. Neurotox Res 2021; 39:1116-1122. [PMID: 33743133 DOI: 10.1007/s12640-021-00351-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Antagonistic coevolutionary relationships provide intense selection pressure which drive changes in the genotype. Predator-prey interactions have caused some venomous snakes and their predators/prey to evolve α-neurotoxin resistance through changes at the orthosteric site of nicotinic acetylcholine receptors. The presence of negatively charged amino acids at orthosteric site positions 191 and 195 is the ancestral state. These negatively charged amino acids have exerted a selection pressure for snake venom α-neurotoxins to evolve with strong positive charges on their molecular surface, with the opposite-charge attraction facilitating the binding by the neurotoxins. We aimed to test the effects of a series of mutations whereby one or both negatively charged amino acids are replaced by uncharged residues to ascertain if this was a novel form of reduced venom susceptibility in the varanid species. Using a biolayer interferometry assay, we tested the relative binding of α-neurotoxin-rich snake venoms against the orthosteric sites of V. giganteus (Perentie) and V. komodoensis (Komodo dragon), which both possess the negatively charged aspartic acid at position 191; V. mertensi (Merten's water monitor), which also has aspartic acid at position 195; and Varanus exanthematicus (savannah monitor), which lacks negatively charged amino acids at both positions 191 and 195. The orthosteric sites of these species are otherwise identical. In order to complete the structure-function relationship examination, we also tested a mutant version with the negatively charged aspartic acid at both positions 191 and 195. It was demonstrated that the presence of a negatively charged amino acid at either position 191 or 195 is crucial for the successful binding of snake venom α-neurotoxins, with V. giganteus, V. komodoensis and V. mertensi all strongly bound. The mutant version containing a negatively charged amino acid at both positions was bound equipotently to the native forms of V. giganteus, V. komodoensis and V. mertensi. Thus, the presence of a negatively charged amino acid at both positions does not increase binding affinity. In contrast, Varanus exanthematicus, lacking a negatively charged amino acid at either position, displayed dramatically less sensitivity to neurotoxins compared with the other species. V. exanthematicus is distinguished from the other species examined in this study by being a small, terrestrial, slow-moving species living sympatrically with a high density of large cobra species that have neurotoxin-rich venoms. Thus, this vulnerable prey item seems to have evolved a novel form of reduced susceptibility to snake venom neurotoxins under a strong selection pressures from these neurotoxic predators. These results therefore contribute to the body of knowledge of predator/prey chemical arm races while providing novel insights into the structure-activity relationships of the orthosteric site of the nicotinic acetylcholine receptor alpha-subunit.
Collapse
|
16
|
Harris RJ, Fry BG. Electrostatic resistance to alpha-neurotoxins conferred by charge reversal mutations in nicotinic acetylcholine receptors. Proc Biol Sci 2021; 288:20202703. [PMID: 33434458 DOI: 10.1098/rspb.2020.2703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The evolution of venom resistance through coevolutionary chemical arms races has arisen multiple times throughout animalia. Prior documentation of resistance to snake venom α-neurotoxins consists of the N-glycosylation motif or the hypothesized introduction of arginine at positions 187 at the α-1 nicotinic acetylcholine receptor orthosteric site. However, no further studies have investigated the possibility of other potential forms of resistance. Using a biolayer interferometry assay, we first confirm that the previously hypothesized resistance conferred by arginine at position 187 in the honey badger does reduce binding to α-neurotoxins, which has never been functionally tested. We further discovered a novel form of α-neurotoxin resistance conferred by charge reversal mutations, whereby a negatively charged amino acid is replaced by the positively charged amino acid lysine. As venom α-neurotoxins have evolved strong positive charges on their surface to facilitate binding to the negatively charged α-1 orthosteric site, these mutations result in a positive charge/positive charge interaction electrostatically repelling the α-neurotoxins. Such a novel mechanism for resistance has gone completely undiscovered, yet this form of resistance has convergently evolved at least 10 times within snakes. These coevolutionary innovations seem to have arisen through convergent phenotypes to ultimately evolve a similar biophysical mechanism of resistance across snakes.
Collapse
Affiliation(s)
- Richard J Harris
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Bryan G Fry
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
17
|
Widespread and Differential Neurotoxicity in Venoms from the Bitis Genus of Viperid Snakes. Neurotox Res 2021; 39:697-704. [PMID: 33428181 DOI: 10.1007/s12640-021-00330-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Research into the neurotoxic activity of venoms from species within the snake family Viperidae is relatively neglected compared with snakes in the Elapidae family. Previous studies into venoms from the Bitis genus of vipers have identified the presence of presynaptic phospholipase A2 neurotoxins in B. atropos and B. caudalis, as well as a postsynaptic phospholipase A2 in B. arietans. Yet, no studies have investigated how widespread neurotoxicity is across the Bitis genus or if they exhibit prey selectivity of their neurotoxins. Utilising a biolayer interferometry assay, we were able to assess the binding of crude venom from 14 species of Bitis to the neuromuscular α-1 nAChR orthosteric site across a wide range of vertebrate taxa mimotopes. Postsynaptic binding was seen for venoms from B. arietans, B. armata, B. atropos, B. caudalis, B. cornuta, B. peringueyi and B. rubida. To further explore the types of neurotoxins present, venoms from the representatives B. armata, B. caudalis, B. cornuta and B. rubida were additionally tested in the chick biventer cervicis nerve muscle preparation, which showed presynaptic and postsynaptic activity for B. caudalis and only presynaptic neurotoxicity for B. cornuta and B. rubida, with myotoxicity also evident for some species. These results, combined with the biolayer interferometry results, indicate complex neurotoxicity exerted by Bitis species, which varies dramatically by lineage tested upon. Our data also further support the importance of sampling across geographical localities, as significant intraspecific variation of postsynaptic neurotoxicity was reported across the different localities.
Collapse
|
18
|
Assessing the Binding of Venoms from Aquatic Elapids to the Nicotinic Acetylcholine Receptor Orthosteric Site of Different Prey Models. Int J Mol Sci 2020; 21:ijms21197377. [PMID: 33036249 PMCID: PMC7583753 DOI: 10.3390/ijms21197377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 01/19/2023] Open
Abstract
The evolution of an aquatic lifestyle from land dwelling venomous elapids is a radical ecological modification, bringing about many evolutionary changes from morphology to diet. Diet is an important ecological facet which can play a key role in regulating functional traits such as venom composition and prey-specific targeting of venom. In addition to predating upon novel prey (e.g., fish, fish eggs and invertebrates), the venoms of aquatic elapids also face the challenge of increased prey-escape potential in the aquatic environment. Thus, despite the independent radiation into an aquatic niche on four separate occasions, the venoms of aquatic elapids are evolving under convergent selection pressures. Utilising a biolayer interferometry binding assay, this study set out to elucidate whether crude venoms from representative aquatic elapids were target-specific to the orthosteric site of postsynaptic nicotinic acetylcholine receptor mimotopes of fish compared to other terrestrial prey types. Representatives of the four aquatic lineages were: aquatic coral snakes representative was Micrurus surinamensis;, sea kraits representative was Laticauda colubrina; sea snakes representatives were two Aipysurus spp. and eight Hydrophis spp; and water cobras representative was Naja annulata. No prey-specific differences in crude venom binding were observed from any species tested, except for Aipysurus laevis, which showed slight evidence of prey-potency differences. For Hydrophis caerulescens, H. peronii, H. schistosus and M. surinamensis, there was a lack of binding to the orthosteric site of any target lineage. Subsequent testing on the in vitro chick-biventer cervicis muscle preparation suggested that, while the venoms of these species bound postsynaptically, they bound to allosteric sites rather than orthosteric. Allosteric binding is potentially a weaker but faster-acting form of neurotoxicity and we hypothesise that the switch to allosteric binding is likely due to selection pressures related to prey-escape potential. This research has potentially opened up the possibility of a new functional class of toxins which have never been assessed previously while shedding light on the selection pressures shaping venom evolution.
Collapse
|
19
|
Widespread Evolution of Molecular Resistance to Snake Venom α-Neurotoxins in Vertebrates. Toxins (Basel) 2020; 12:toxins12100638. [PMID: 33023159 PMCID: PMC7601176 DOI: 10.3390/toxins12100638] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Venomous snakes are important subjects of study in evolution, ecology, and biomedicine. Many venomous snakes have alpha-neurotoxins (α-neurotoxins) in their venom. These toxins bind the alpha-1 nicotinic acetylcholine receptor (nAChR) at the neuromuscular junction, causing paralysis and asphyxia. Several venomous snakes and their predators have evolved resistance to α-neurotoxins. The resistance is conferred by steric hindrance from N-glycosylated asparagines at amino acids 187 or 189, by an arginine at position 187 that has been hypothesized to either electrostatically repulse positively charged neurotoxins or sterically interfere with α-neurotoxin binding, or proline replacements at positions 194 or 197 of the nAChR ligand-binding domain to inhibit α-neurotoxin binding through structural changes in the receptor. Here, we analyzed this domain in 148 vertebrate species, and assessed its amino acid sequences for resistance-associated mutations. Of these sequences, 89 were sequenced de novo. We find widespread convergent evolution of the N-glycosylation form of resistance in several taxa including venomous snakes and their lizard prey, but not in the snake-eating birds studied. We also document new lineages with the arginine form of inhibition. Using an in vivo assay in four species, we provide further evidence that N-glycosylation mutations reduce the toxicity of cobra venom. The nAChR is of crucial importance for normal neuromuscular function and is highly conserved throughout the vertebrates as a result. Our research shows that the evolution of α-neurotoxins in snakes may well have prompted arms races and mutations to this ancient receptor across a wide range of sympatric vertebrates. These findings underscore the inter-connectedness of the biosphere and the ripple effects that one adaption can have across global ecosystems.
Collapse
|
20
|
Babenko VV, Ziganshin RH, Weise C, Dyachenko I, Shaykhutdinova E, Murashev AN, Zhmak M, Starkov V, Hoang AN, Tsetlin V, Utkin Y. Novel Bradykinin-Potentiating Peptides and Three-Finger Toxins from Viper Venom: Combined NGS Venom Gland Transcriptomics and Quantitative Venom Proteomics of the Azemiops feae Viper. Biomedicines 2020; 8:biomedicines8080249. [PMID: 32731454 PMCID: PMC7460416 DOI: 10.3390/biomedicines8080249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 01/22/2023] Open
Abstract
Feae's viper Azemipos feae belongs to the Azemiopinae subfamily of the Viperidae family. The effects of Viperidae venoms are mostly coagulopathic with limited neurotoxicity manifested by phospholipases A2. From A. feae venom, we have earlier isolated azemiopsin, a novel neurotoxin inhibiting the nicotinic acetylcholine receptor. To characterize other A. feae toxins, we applied label-free quantitative proteomics, which revealed 120 unique proteins, the most abundant being serine proteinases and phospholipases A2. In total, toxins representing 14 families were identified, among which bradykinin-potentiating peptides with unique amino acid sequences possessed biological activity in vivo. The proteomic analysis revealed also basal (commonly known as non-conventional) three-finger toxins belonging to the group of those possessing neurotoxic activity. This is the first indication of the presence of three-finger neurotoxins in viper venom. In parallel, the transcriptomic analysis of venom gland performed by Illumina next-generation sequencing further revealed 206 putative venom transcripts. Together, the study unveiled the venom proteome and venom gland transciptome of A. feae, which in general resemble those of other snakes from the Viperidae family. However, new toxins not found earlier in viper venom and including three-finger toxins and unusual bradykinin-potentiating peptides were discovered.
Collapse
Affiliation(s)
- Vladislav V. Babenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia;
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (R.H.Z.); (M.Z.); (V.S.); (V.T.)
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Igor Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia; (I.D.); (E.S.); (A.N.M.)
| | - Elvira Shaykhutdinova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia; (I.D.); (E.S.); (A.N.M.)
| | - Arkady N. Murashev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia; (I.D.); (E.S.); (A.N.M.)
| | - Maxim Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (R.H.Z.); (M.Z.); (V.S.); (V.T.)
| | - Vladislav Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (R.H.Z.); (M.Z.); (V.S.); (V.T.)
| | - Anh Ngoc Hoang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam;
| | - Victor Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (R.H.Z.); (M.Z.); (V.S.); (V.T.)
| | - Yuri Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (R.H.Z.); (M.Z.); (V.S.); (V.T.)
- Correspondence: or ; Tel.: +7-495-336-6522
| |
Collapse
|
21
|
Harris RJ, Zdenek CN, Nouwens A, Sweeney C, Dunstan N, Fry BG. A symmetry or asymmetry: Functional and compositional comparison of venom from the left and right glands of the Indochinese spitting cobra ( Naja siamensis). Toxicon X 2020; 7:100050. [PMID: 32642644 PMCID: PMC7334600 DOI: 10.1016/j.toxcx.2020.100050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 11/12/2022] Open
Abstract
Contralaterally positioned maxillary (upper jaw) venom glands in snakes are mechanically independent, being able to discharge venom from either gland separately. This has led some studies to test venom function and composition of each contralaterally positioned venom gland to investigate any differences. However, the data on the subject to-date derives from limited sample sizes, appearing somewhat contradictory, and thus still remains inconclusive. Here, we tested samples obtained from the left and right venom glands of four N. siamensis specimens for their relative binding to the orthosteric site of amphibian, lizard, snake, bird, and rodent alpha-1 nicotinic acetylcholine receptors. We also show the relative proteomic patterns displayed by reversed phase liquid chromatography – mass spectrometry. Our results indicate that three of the venom gland sets showed no difference in both functional binding and composition, whilst one venom gland set showed a slight difference in functional binding (but not in specificity patterns between prey types) or venom composition. We hypothesise that these differences in functional binding may be due to one gland having previously ejected venom at some time prior to venom extraction, whilst its contralateral counterpart did not. This might cause the differential rate of toxin replenishment to be unequal between glands, thus instigating the difference in potency, likely due to uneven toxin proportions between glands at the time of venom extraction. These results demonstrate that the separate venom producing glands in snakes remain under the same genetic control elements and produce identical venom components. No differences in venom profile by contralateral venom glands of Naja siamensis. No differences in alpha-1 binding potency by contralateral N. siamensis venom glands. A single outlier in the data showed a small difference in relative potency. Potency is likely affected by differential replenishment rates.
Collapse
Affiliation(s)
- Richard J Harris
- Venom Evolution Lab, University of Queensland, Biological Sciences, St. Lucia, Brisbane, 4072, Australia
| | - Christina N Zdenek
- Venom Evolution Lab, University of Queensland, Biological Sciences, St. Lucia, Brisbane, 4072, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Charlotte Sweeney
- Translational Research Institute, University of Queensland, QLD, 4072, Australia
| | - Nathan Dunstan
- Venom Supplies Pty Ltd, Tanunda, South Australia, Australia
| | - Bryan G Fry
- Venom Evolution Lab, University of Queensland, Biological Sciences, St. Lucia, Brisbane, 4072, Australia
| |
Collapse
|