1
|
Süngü Akdoğan Ç, Akbay Çetin E, Onur MA, Önel S, Tuncel A. Copper(II) Oxide Spindle-like Nanomotors Decorated with Calcium Peroxide Nanoshell as a New Nanozyme with Photothermal and Chemodynamic Functions Providing ROS Self-Amplification, Glutathione Depletion, and Cu(I)/Cu(II) Recycling. ACS APPLIED MATERIALS & INTERFACES 2025; 17:632-649. [PMID: 39720911 PMCID: PMC11783533 DOI: 10.1021/acsami.4c17852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024]
Abstract
Uniform, mesoporous copper(II) oxide nanospindles (CuO NSs) were synthesized via a method based on templated hydrothermal oxidation of copper in the presence of monodisperse poly(glycerol dimethacrylate-co-methacrylic acid) nanoparticles (poly(GDMA-co-MAA) NPs). Subsequent decoration of CuO NSs with a CaO2 nanoshell (CuO@CaO2 NSs) yielded a nanozyme capable of Cu(I)/Cu(II) redox cycling. Activation of the Cu(I)/Cu(II) cycle by exogenously generated H2O2 from the CaO2 nanoshell significantly enhanced glutathione (GSH) depletion. CuO@CaO2 NSs exhibited a 2-fold higher GSH depletion rate compared to pristine CuO NSs. The generation of oxygen due to the catalase (CAT)-like decomposition of H2O2 by CuO@CaO2 NSs resulted in a self-propelled diffusion behavior, characteristic of a H2O2 fueled nanomotor. These nanostructures exhibited both peroxidase (POD)-like and CAT-like activities and were capable of self-production of H2O2 in aqueous media via a chemical reaction between the CaO2 nanoshell and water. Usage of the self-supplied H2O2 by the POD-like activity of CuO@CaO2 NSs amplified the generation of toxic hydroxyl (•OH) radicals, enhancing the chemodynamic effect within the tumor microenvironment (TME). The CAT-like activity provided a source of self-supplied O2 via decomposition of H2O2 to alleviate hypoxic conditions in the TME. Under near-infrared laser irradiation, CuO@CaO2 NSs exhibited photothermal conversion properties, with a temperature elevation of 25 °C. The combined GSH depletion and H2O2 generation led to a more effective production of •OH radicals in the cell culture medium. The chemodynamic function was further enhanced by an elevated temperature. To assess the therapeutic potential, CuO@CaO2 NSs loaded with the photosensitizer, chlorine e6 (Ce6), were evaluated against T98G glioblastoma cells. The synergistic combination of photodynamic, photohermal, and chemodynamic modalities using CuO@CaO2@Ce6 NSs resulted in cell death higher than 90% under in vitro conditions.
Collapse
Affiliation(s)
- Çağıl
Zeynep Süngü Akdoğan
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Graduate
School of Science & Engineering, Hacettepe
University, Ankara 06800, Turkey
| | - Esin Akbay Çetin
- Department
of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Mehmet Ali Onur
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Department
of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Selis Önel
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Chemical
Engineering Department, Hacettepe University, Ankara 06800, Turkey
| | - Ali Tuncel
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Chemical
Engineering Department, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
2
|
Süngü Akdogan Ç, Akbay Çetin E, Onur MA, Önel S, Tuncel A. In Vitro Synergistic Photodynamic, Photothermal, Chemodynamic, and Starvation Therapy Performance of Chlorin e6 Immobilized, Polydopamine-Coated Hollow, Porous Ceria-Based, Hypoxia-Tolerant Nanozymes Carrying a Cascade System. ACS APPLIED BIO MATERIALS 2024; 7:2781-2793. [PMID: 38380497 PMCID: PMC11110068 DOI: 10.1021/acsabm.3c01181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
A synergistic therapy agent (STA) with photothermal, photodynamic, chemodynamic, and starvation therapy (PTT, PDT, CDT, and ST) functions was developed. Hollow, mesoporous, and nearly uniform CeO2 nanoparticles (H-CeO2 NPs) were synthesized using a staged shape templating sol-gel protocol. Chlorin e6 (Ce6) was adsorbed onto H-CeO2 NPs, and a thin polydopamine (PDA) layer was formed on Ce6-adsorbed H-CeO2 NPs. Glucose oxidase (GOx) was bound onto PDA-coated Ce6-adsorbed H-CeO2 NPs to obtain the targeted STA (H-CeO2@Ce6@PDA@GOx NPs). A reversible photothermal conversion behavior with the temperature elevations up to 34 °C was observed by NIR laser irradiation at 808 nm. A cascade enzyme system based on immobilized GOx and intrinsic catalase-like activity of H-CeO2 NPs was rendered on STA for enhancing the effectiveness of PDT by elevation of ROS generation and alleviation of hypoxia in a tumor microenvironment. Glucose-mediated generation of highly toxic hydroxyl radicals (·OH) was evaluated for CDT. The effectiveness of PDT on glioblastoma T98G cells was markedly enhanced by O2 generation started by the decomposition of glucose. A similar increase in cell death was also observed when ST and CDT functions were enhanced by photothermal action. The viability of T98G cells decreased to 10.6% by in vitro synergistic action including ST, CDT, PDT, and PTT without using any antitumor agent.
Collapse
Affiliation(s)
- Çağıl
Zeynep Süngü Akdogan
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Graduate
School of Science and Engineering, Hacettepe
University, Ankara 06800, Turkey
| | - Esin Akbay Çetin
- Department
of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Mehmet Ali Onur
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Department
of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Selis Önel
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Chemical
Engineering Department, Hacettepe University, Ankara 06800, Turkey
| | - Ali Tuncel
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Chemical
Engineering Department, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
3
|
Seady M, Fróes FT, Gonçalves CA, Leite MC. Curcumin modulates astrocyte function under basal and inflammatory conditions. Brain Res 2023; 1818:148519. [PMID: 37562565 DOI: 10.1016/j.brainres.2023.148519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Curcumin is a pleiotropic molecule with well-known anti-inflammatory effects. This molecule has attracted attention due to its capacity to pass the blood-brain-barrier and modulate central nervous system (CNS) cells, such as astrocytes. Astrocytes are the most numerous CNS cells, and play a pivotal role in inflammatory damage, a common feature in neurodegenerative diseases such as Alzheimer's Disease. Although the actions of curcumin have been studied extensively in peripheral cells, few studies have investigated the effect of curcumin on astrocytes under basal and inflammatory conditions. The aim of this study was to characterize the effect of curcumin on astrocytic function (glutamatergic metabolism, GFAP and S100B), and investigate a possible synergic effect with another molecule, piperine. For this purpose, we used primary cultured astrocytes; our results showed that curcumin increases GSH and GFAP content, but decreases S100B secretion under basal conditions. Under inflammatory conditions, provoked by lipopolysaccharide (LPS), curcumin and piperine reversed the LPS-induced secretion of TNF-α, and piperine reverted the LPS-induced upregulation of GFAP content. Interestingly, curcumin decreases S100B secretion even more than LPS. These results highlight important context-dependent effects of curcumin and piperine on astrocytes. Although we did not observe synergic effects of co-treatment with curcumin and piperine, their effects were complementary, as piperine modulated GFAP content under inflammatory conditions, and curcumin modulated S100B secretion. Both curcumin and piperine had important anti-inflammatory actions in astrocytes. We herein provide new insights into the actions of curcumin in the CNS that may aid in the search for new molecular targets and possible treatments for neurological diseases.
Collapse
Affiliation(s)
- Marina Seady
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Telles Fróes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Marina Concli Leite
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Çetin EA, Babayiğit EH, Özdemir AY, Erfen Ş, Onur MA. Investigation of UV-treated mesenchymal stem cells in an in vitro wound model. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00772-4. [PMID: 37296290 DOI: 10.1007/s11626-023-00772-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023]
Abstract
This study examines the effects of ultraviolet-induced adipose tissue-derived mesenchymal stem cells and their supernatants on wound healing regarding cell viability, percentage of wound healing, released cytokine, and growth factors. It has been reported in previous studies that mesenchymal stem cells are resistant to ultraviolet light and have a protective effect on skin cells against ultraviolet-induced damage. At the same time, there are many studies in the literature about the positive effects of cytokines and growth factors secreted by mesenchymal stem cells. Based on this information, the effects of ultraviolet-induced adipose-derived stem cells and supernatants containing their secreted cytokines and growth factors on an in vitro two-dimensional wound model created with two different cell lines were investigated in this study. It was determined from the results that the highest cell viability and the least apoptotic staining were 100 mJ in mesenchymal stem cells (**p < 0.01). Furthermore, analysis of cytokines and growth factors collected from supernatants also supported 100 mJ as the optimal ultraviolet dose. It was observed that cells treated with ultraviolet and their supernatants significantly increased cell viability and wound-healing rate over time compared to other groups. In conclusion, with this study, it has been shown that adipose-derived stem cells exposed to ultraviolet light can have an important use in wound healing, both with their potential and with the more cytokines and growth factors they secrete. However, further analysis and animal experiments should be performed before clinical use.
Collapse
Affiliation(s)
- Esin Akbay Çetin
- Department of Biology, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey.
| | - Elif Hatice Babayiğit
- Department of Biology, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey
| | - Alp Yiğit Özdemir
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Şebnem Erfen
- Department of Biology, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey
| | - Mehmet Ali Onur
- Department of Biology, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey
| |
Collapse
|
5
|
Wdowiak K, Pietrzak R, Tykarska E, Cielecka-Piontek J. Hot-Melt Extrusion as an Effective Technique for Obtaining an Amorphous System of Curcumin and Piperine with Improved Properties Essential for Their Better Biological Activities. Molecules 2023; 28:molecules28093848. [PMID: 37175257 PMCID: PMC10180276 DOI: 10.3390/molecules28093848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Poor bioavailability hampers the use of curcumin and piperine as biologically active agents. It can be improved by enhancing the solubility as well as by using bioenhancers to inhibit metabolic transformation processes. Obtaining an amorphous system of curcumin and piperine can lead to the overcoming of these limitations. Hot-melt extrusion successfully produced their amorphous systems, as shown by XRPD and DSC analyses. Additionally, the presence of intermolecular interactions between the components of the systems was investigated using the FT-IR/ATR technique. The systems were able to produce a supersaturation state as well as improve the apparent solubilities of curcumin and piperine by 9496- and 161-fold, respectively. The permeabilities of curcumin in the GIT and BBB PAMPA models increased by 12578- and 3069-fold, respectively, whereas piperine's were raised by 343- and 164-fold, respectively. Improved solubility had a positive effect on both antioxidant and anti-butyrylcholinesterase activities. The best system suppressed 96.97 ± 1.32% of DPPH radicals, and butyrylcholinesterase activity was inhibited by 98.52 ± 0.87%. In conclusion, amorphization remarkably increased the dissolution rate, apparent solubility, permeability, and biological activities of curcumin and piperine.
Collapse
Affiliation(s)
- Kamil Wdowiak
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Robert Pietrzak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|