1
|
Zhang T, Chen L, Li S, Shen C. Upregulation of CDC25B by transcription factor TEAD4 drives invasion and inhibits cisplatin sensitivity through cell adhesion in stomach adenocarcinoma. Anticancer Drugs 2024; 35:922-931. [PMID: 39079173 DOI: 10.1097/cad.0000000000001645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2024]
Abstract
Cisplatin is crucial in management of advanced stomach adenocarcinoma, whereas development of chemotherapy resistance hinders overall efficacy of cisplatin. This work aims to explore role of CDC25B in cisplatin sensitivity in stomach adenocarcinoma and offer a possible mechanism for explaining its function. By using bioinformatics approaches, CDC25B and TEAD4 expression levels in stomach adenocarcinoma tissues and enriched pathways of CDC25B were analyzed. qRT-PCR of CDC25B and TEAD4 expression in stomach adenocarcinoma cells, CCK-8 detection of cell viability and IC 50 values, and colony formation assay on cell proliferation were performed. Cell adhesion experiment detected cell adhesion ability. Western blot detected expression of proteins related to cell adhesion, specifically Muc-1, ICAM-1, VCAM-1. Dual luciferase assay and ChIP experiment verified binding relationship between TEAD4 and CDC25B. CDC25B was upregulated in stomach adenocarcinoma tissues and cells, enriched in focal adhesion pathway. Treatment with cell adhesion inhibitors revealed that CDC25B overexpression inhibits the sensitivity of stomach adenocarcinoma to cisplatin through the cell adhesion pathway. CDC25B has an upstream transcription factor TEAD4, which targeted and bound to CDC25B and was highly expressed in stomach adenocarcinoma. Rescue experiment revealed that knocking down TEAD4 weakened suppressive impact of CDC25B overexpression on sensitivity of stomach adenocarcinoma cells to cisplatin. Transcription factor TEAD4 could activate the transcription of CDC25B through cell adhesion to drive cell invasion and reduce sensitivity of stomach adenocarcinoma to cisplatin. TEAD4 and CDC25B may become new targets for management of stomach adenocarcinoma.
Collapse
Affiliation(s)
- Tao Zhang
- Department of General Surgery, The Fourth Hospital of Changsha City
| | - Lijian Chen
- Department of General Surgery, Hunan Children's Hospital
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University
| | - Chao Shen
- Disinfection Supply Room, The Fourth Hospital of Changsha City, Changsha, China
| |
Collapse
|
2
|
Geijerman E, Terrana F, Peters GJ, Deng D, Diana P, Giovannetti E, Xu G. Targeting a key FAK-tor: the therapeutic potential of combining focal adhesion kinase (FAK) inhibitors and chemotherapy for chemoresistant non-small cell lung cancer. Expert Opin Investig Drugs 2024; 33:1103-1118. [PMID: 39435477 DOI: 10.1080/13543784.2024.2417762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION NSCLC is the leading cause of cancer-related deaths globally, with a low survival rate primarily due to NSCLC frequently becoming chemoresistant. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase involved in pathways regulating multiple processes in the cell, including survival, migration, and the TME, that contribute to both tumor progression and drug resistance. Recently, FAK inhibitors (FAKi) have shown promising potential for the treatment of NSCLC. AREAS COVERED This narrative review aims to summarize key signaling pathways involving FAK that contribute to tumor progression and drug resistance. It will further provide an overview of FAKi currently in pre- and early-phase clinical trials for solid tumors, as well as the therapeutic potential of combining FAKi with chemotherapy, as this has emerged as a promising strategy to overcome chemoresistance in NSCLC. EXPERT OPINION It is becoming increasingly clear that FAK is not an oncogenic driver but rather contributes to tumor progression and drug resistance. Hence, while FAKi have only demonstrated modest results in clinical trials when given by themselves, treatment regimens combining other therapies with FAKi have shown promising potential to overcome drug resistance. Lastly, of particular novelty are FAK-PROTACs (proteolysis-targeting chimaeras), which uniquely target both cytosolic and nuclear FAK.
Collapse
Affiliation(s)
- Emma Geijerman
- Amsterdam University College, Amsterdam, The Netherlands
| | - Francesca Terrana
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, Pisa, Italy
| | - Geng Xu
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Kaur J, Jung SY, Austdal M, Arun AK, Helland T, Mellgren G, Lende TH, Janssen EAM, Søiland H, Aneja R. Quantitative proteomics reveals serum proteome alterations during metastatic disease progression in breast cancer patients. Clin Proteomics 2024; 21:52. [PMID: 39075362 PMCID: PMC11285292 DOI: 10.1186/s12014-024-09496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/05/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Tumor recurrence and metastatic progression remains the leading cause for breast cancer related mortalities. However, the proteomes of patient- matched primary breast cancer (BC) and metastatic lesions have not yet been identified, due to the lack of clinically annotated longitudinal samples. In this study, we evaluated the global-proteomic landscape of BC patients with and without distant metastasis as well as compared the proteome of distant metastatic disease with its corresponding primary BC, within the same patient. METHODS We performed mass spectrometry-based proteome profiling of 73 serum samples from 51 BC patients. Among the 51 patients with BC, 29 remained metastasis-free (henceforth called non-progressors), and 22 developed metastases (henceforth called progressors). For the 22 progressors, we obtained two samples: one collected within a year of diagnosis, and the other collected within a year before the diagnosis of metastatic disease. MS data were analyzed using intensity-based absolute quantification and normalized before differential expression analysis. Significantly differentially expressed proteins (DEPs; absolute fold-change ≥ 1.5, P-value < 0.05 and 30% abundance per clinical group) were subjected to pathway analyses. RESULTS We identified 967 proteins among 73 serum samples from patients with BC. Among these, 39 proteins were altered in serum samples at diagnosis, between progressors and non-progressors. Among these, 4 proteins were further altered when the progressors developed distant metastasis. In addition, within progressors, 20 proteins were altered in serum collected at diagnosis versus at the onset of metastasis. Pathway analysis showed that these proteins encoded pathways that describe metastasis, including epithelial-mesenchymal transition and focal adhesion that are hallmarks of metastatic cascade. CONCLUSIONS Our results highlight the importance of examining matched samples from distant metastasis with primary BC samples collected at diagnosis to unravel subset of proteins that could be involved in BC progression in serum. This study sets the foundation for additional future investigations that could position these proteins as non-invasive markers for clinically monitoring breast cancer progression in patients.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Marie Austdal
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Aaditya Krishna Arun
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Thomas Helland
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Tone Hoel Lende
- Department of Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Biosciences and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Håvard Søiland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Research, Stavanger University Hospital, Stavanger, Norway
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
4
|
Yang M, Xiang H, Luo G. Targeting focal adhesion kinase (FAK) for cancer therapy: FAK inhibitors, FAK-based dual-target inhibitors and PROTAC degraders. Biochem Pharmacol 2024; 224:116246. [PMID: 38685282 DOI: 10.1016/j.bcp.2024.116246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, plays an essential role in regulating cell proliferation, migration and invasion through both kinase-dependent enzymatic function and kinase-independent scaffolding function. The overexpression and activation of FAK is commonly observed in various cancers and some drug-resistant settings. Therefore, targeted disruption of FAK has been identified as an attractive strategy for cancer treatment. To date, numerous structurally diverse inhibitors targeting distinct domains of FAK have been developed, encompassing kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors, with several FAK inhibitors advanced to clinical trials. Moreover, given the critical role of FAK scaffolding function in signal transduction, FAK-targeted PROTACs have also been developed. Although no current FAK-targeted therapeutics have been approved for the market, the combination of FAK inhibitors with other anticancer drugs has shown considerable promise in the clinic. This review provides an overview of current drug discovery strategies targeting FAK, including the development of FAK inhibitors, FAK-based dual-target inhibitors and proteolysis-targeting chimeras (PROTACs) in both literature and patent applications. Accordingly, their design and optimization process, mechanisms of action and biological activities are discussed to offer insights into future directions of FAK-targeting drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
5
|
Kou J, Gao L, Ni L, Shao T, Ding J. Mechanism of Hirudin-Mediated Inhibition of Proliferation in Ovarian Cancer Cells. Mol Biotechnol 2024; 66:1062-1070. [PMID: 38184808 DOI: 10.1007/s12033-023-01003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 01/08/2024]
Abstract
To investigate the inhibitory effect of hirudin on the cell proliferation of human ovarian cancer A2780 cells by preventing thrombin and its underlying molecular mechanism. Cell Counting Kit-8 (CCK-8) method was used to detect the effect of different concentrations of hirudin and thrombin on the cell proliferation of A2780 cells. PAR-1 wild-type overexpression plasmid was constructed utilizing enzyme digestion identification, and it was transferred to A2780 cells. Sequencing and Western blot were used to detect the changes in PAR-1 protein expression. Western blot detection of PKCα protein phosphorylation in A2780 cells was performed. We also implemented quantitative PCR to detect the mRNA expression levels of epithelial-mesenchymal transition (EMT)-related genes, CDH2, Snail, and Vimentin, in A2780 cells. 1 μg/ml hirudin treatment maximally inhibited the promotion of A2780 cell proliferation by thrombin. Hirudin inhibited the binding of thrombin to the N-terminus of PAR-1, hindered PKCα protein phosphorylation in A2780 cells, and downregulated the mRNA expression levels of CDH2, Snail, and Vimentin. In conclusion, hirudin inhibits the cell proliferation of ovarian cancer A2780 cells, and the underlying mechanism may be through downregulating the transcription level of EMT genes, CDH2, Snail, and Vimentin. This study indicates that hirudin may have a therapeutic potential as an anti-cancer agent for ovarian cancer.
Collapse
Affiliation(s)
- Junyan Kou
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Hangzhou Cancer Hospital, No. 34 Yanguan Lane, Ziyang Street, Shangcheng District, Hangzhou, 310000, Zhejiang Province, China
| | - Liujie Gao
- Department of Oncology & Hematology, Hangzhou Red Cross Hospital, Hangzhou, 310003, Zhejiang Province, China
| | - Liwei Ni
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Hangzhou Cancer Hospital, No. 34 Yanguan Lane, Ziyang Street, Shangcheng District, Hangzhou, 310000, Zhejiang Province, China
| | - Tingting Shao
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Hangzhou Cancer Hospital, No. 34 Yanguan Lane, Ziyang Street, Shangcheng District, Hangzhou, 310000, Zhejiang Province, China
| | - Jiyuan Ding
- Department of Oncology & Hematology, Hangzhou Red Cross Hospital, Hangzhou, 310003, Zhejiang Province, China.
| |
Collapse
|
6
|
Huang L, Liu F, Liu X, Niu L, Sun L, Fang F, Ma K, Hu P. Parthenolide inhibits the proliferation and migration of cervical cancer cells via FAK/GSK3β pathway. Cancer Chemother Pharmacol 2024; 93:203-213. [PMID: 38141074 DOI: 10.1007/s00280-023-04621-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023]
Abstract
PURPOSE Cervical cancer (CC) ranks as the fourth most prevalent malignancy among women worldwide, necessitating effective therapeutic interventions to mitigate its detrimental impact on both physical and mental health. Parthenolide (PTL), a natural product of the sesquiterpene lactone derived from Feverfew leaves, has exhibited promising anti-tumor properties in previous studies; however, its precise effects and underlying molecular mechanisms in CC remain elusive. METHODS In this work, we investigated the effect of PTL on the proliferation and migration of CC cells. Western blot analysis and Reverse transcription‑quantitative PCR were used for mechanistic elucidation. RESULTS Our findings indicated that PTL substantially inhibited the proliferation of HeLa and SiHa CC cell lines in a dose- and time-dependent manner. Moreover, PTL significantly suppressed the migration of CC cells by down-regulating the expression of vascular endothelial growth factor (VEGF), metastasis-associated protein 1 (MTA1), and transforming growth factor-β1 (TGF-β1). Mechanistically, PTL blocked the phosphorylation of focal adhesion kinase (FAK) and glycogen synthase kinase-3β (GSK3β) induced by epidermal growth factor (EGF). Further investigations revealed that PTL suppressed the proliferation of CC cells by inhibiting the EGF-mediated phosphorylation of the FAK/GSK3β signaling pathway. CONCLUSION Taken together, the present in vitro results suggest that PTL may inhibit the proliferation and migration of CC cells through down-regulating the FAK/GSK3β signaling pathway, providing new insights for the application of PTL in the treatment of CC.
Collapse
Affiliation(s)
- Liru Huang
- Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang, Jiangxi, 330001, People's Republic of China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Fuhong Liu
- Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang, Jiangxi, 330001, People's Republic of China
| | - Xukai Liu
- School of Future Technology, Nanchang University, 1299 Xuefu Avenue, Nanchang, Jiangxi, 330001, People's Republic of China
| | - Liyan Niu
- Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang, Jiangxi, 330001, People's Republic of China
| | - Longhua Sun
- Department of Respiratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, People's Republic of China
| | - Fang Fang
- Department of Traditional Chinese Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Kun Ma
- Queen Mary College of Nanchang University, 1299 Xuefu Avenue, Nanchang, Jiangxi, 330001, People's Republic of China
| | - Ping Hu
- Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang, Jiangxi, 330001, People's Republic of China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
7
|
Hu HH, Wang SQ, Shang HL, Lv HF, Chen BB, Gao SG, Chen XB. Roles and inhibitors of FAK in cancer: current advances and future directions. Front Pharmacol 2024; 15:1274209. [PMID: 38410129 PMCID: PMC10895298 DOI: 10.3389/fphar.2024.1274209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that exhibits high expression in various tumors and is associated with a poor prognosis. FAK activation promotes tumor growth, invasion, metastasis, and angiogenesis via both kinase-dependent and kinase-independent pathways. Moreover, FAK is crucial for sustaining the tumor microenvironment. The inhibition of FAK impedes tumorigenesis, metastasis, and drug resistance in cancer. Therefore, developing targeted inhibitors against FAK presents a promising therapeutic strategy. To date, numerous FAK inhibitors, including IN10018, defactinib, GSK2256098, conteltinib, and APG-2449, have been developed, which have demonstrated positive anti-tumor effects in preclinical studies and are undergoing clinical trials for several types of tumors. Moreover, many novel FAK inhibitors are currently in preclinical studies to advance targeted therapy for tumors with aberrantly activated FAK. The benefits of FAK degraders, especially in terms of their scaffold function, are increasingly evident, holding promising potential for future clinical exploration and breakthroughs. This review aims to clarify FAK's role in cancer, offering a comprehensive overview of the current status and future prospects of FAK-targeted therapy and combination approaches. The goal is to provide valuable insights for advancing anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Hui-Hui Hu
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Hai-Li Shang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
| | - Hui-Fang Lv
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
| | - Bei-Bei Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - She-Gan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Yan Y, Wang S, Zhang Z, Tang M, Zhao AZ, Li Z, Wu X, Li F. FKBP38 suppresses endometrial cancer cell proliferation and metastasis by inhibiting the mTOR pathway. Arch Biochem Biophys 2024; 752:109891. [PMID: 38218360 DOI: 10.1016/j.abb.2024.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/26/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Endometrial cancer (EC) is a common gynecological malignancy, and advanced-stage or recurrent EC is associated with a high mortality rate owing to the ineffectiveness of currently available treatments. FK506-binding protein 38 (FKBP38) is a member of the immunophilin family and inhibits melanoma and breast cancer cell metastasis. However, the functions of FKBP38 and its potential mechanism in EC remain unclear. Herein, we analyzed the expression levels of FKBP38 in EC cells and found that the FKBP38 expression was high in Ishikawa cells, and low in AN3CA cells, traditionally considered a low grade and a high grade cell line, respectively, in pathology classification. Moreover, FKBP38 inhibited cell proliferation, migration and invasion in EC cells, FKBP38 knockdown significantly promoted tumor growth of Ishikawa cells in a subcutaneous xenograft model and increased the number of lung metastases of Hec-1-A cells in a metastatic mouse model. Furthermore, FKBP38 suppressed several target proteins of epithelial-to-mesenchymal transition (EMT) and reduced the phosphorylation of ribosomal S6 protein (S6), eukaryotic initiation factor 4E-binding protein 1 (4EBP-1), indicating the potent inhibition of the mammalian target of rapamycin (mTOR) pathway. Meanwhile, the inhibition of mTOR neutralized the elevation of EC cell proliferation, migration and invasion after FKBP38 knockdown. In summary, FKBP38 would exert a tumor-suppressing role by modulating the mTOR pathway. Our results indicate that FKBP38 may be considered as a factor of EC metastasis and a new target for EC therapeutic intervention.
Collapse
Affiliation(s)
- Yunjing Yan
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, PR China
| | - Shuai Wang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, PR China
| | - Zongmeng Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, PR China
| | - Minyi Tang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, PR China
| | - Allan Z Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, PR China
| | - Zhuang Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, PR China
| | - Xiaoli Wu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, PR China.
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
9
|
Suttithumsatid W, Sukketsiri W, Panichayupakaranant P. Cannabinoids and standardized cannabis extracts inhibit migration, invasion, and induce apoptosis in MCF-7 cells through FAK/MAPK/Akt/NF-κB signaling. Toxicol In Vitro 2023; 93:105667. [PMID: 37625625 DOI: 10.1016/j.tiv.2023.105667] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Breast cancer is the highest incidence of all types of cancer in women, and the cancer metastasis process accounts for a majority of cancer deaths. Two major cannabinoids, Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), from Cannabis sativa are expected to have anti-cancer activity. This study aimed to investigate the effects of THC, CBD, and standardized cannabis extracts (F1, F2, and F3) on migration, invasion, and apoptosis of human breast cancer (MCF-7) cells. METHODS Cell viability, survival, and apoptosis were determined using the MTT, clonogenic, and nuclear staining assays, respectively, while cancer cell migration and invasion were evaluated by the wound healing, trans-well, and filopodia assays. Western blot analysis was used to find out the mechanisms of the cannabinoids against MCF-7 cells. RESULTS CBD, THC, and F1 inhibited filopodia formation, migration, and invasion of MCF-7 cells through suppressing the expression of the FAK, Akt, ERK1/2, p38MAPKs, and NF-κB upstream pathways, as well as inhibiting the Rac1/Cdc42 downstream pathways. In addition, CBD significantly inhibited the mTOR pathway. Furthermore, CBD and F1 induced apoptosis in MCF-7 cells via the Bcl-2/caspase-3 pathways. CONCLUSION These results indicate that THC, CBD, and F1 have great abilities for preventing breast cancer cell metastasis in in vitro experiments.
Collapse
Affiliation(s)
- Wiwit Suttithumsatid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Wanida Sukketsiri
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Hat-Yai 90112, Thailand
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand; Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand.
| |
Collapse
|
10
|
Janev A, Ramuta TŽ, Jerman UD, Obradović H, Kamenšek U, Čemažar M, Kreft ME. Human amniotic membrane inhibits migration and invasion of muscle-invasive bladder cancer urothelial cells by downregulating the FAK/PI3K/Akt/mTOR signalling pathway. Sci Rep 2023; 13:19227. [PMID: 37932474 PMCID: PMC10628262 DOI: 10.1038/s41598-023-46091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Bladder cancer is the 10th most commonly diagnosed cancer with the highest lifetime treatment costs. The human amniotic membrane (hAM) is the innermost foetal membrane that possesses a wide range of biological properties, including anti-inflammatory, antimicrobial and anticancer properties. Despite the growing number of studies, the mechanisms associated with the anticancer effects of human amniotic membrane (hAM) are poorly understood. Here, we reported that hAM preparations (homogenate and extract) inhibited the expression of the epithelial-mesenchymal transition markers N-cadherin and MMP-2 in bladder cancer urothelial cells in a dose-dependent manner, while increasing the secretion of TIMP-2. Moreover, hAM homogenate exerted its antimigratory effect by downregulating the expression of FAK and proteins involved in actin cytoskeleton reorganisation, such as cortactin and small RhoGTPases. In muscle-invasive cancer urothelial cells, hAM homogenate downregulated the PI3K/Akt/mTOR signalling pathway, the key cascade involved in promoting bladder cancer. By using normal, non-invasive papilloma and muscle-invasive cancer urothelial models, new perspectives on the anticancer effects of hAM have emerged. The results identify new sites for therapeutic intervention and are prompt encouragement for ongoing anticancer drug development studies.
Collapse
Affiliation(s)
- Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Hristina Obradović
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Tan X, Yan Y, Song B, Zhu S, Mei Q, Wu K. Focal adhesion kinase: from biological functions to therapeutic strategies. Exp Hematol Oncol 2023; 12:83. [PMID: 37749625 PMCID: PMC10519103 DOI: 10.1186/s40164-023-00446-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Focal adhesion kinase (FAK), a nonreceptor cytoplasmic tyrosine kinase, is a vital participant in primary cellular functions, such as proliferation, survival, migration, and invasion. In addition, FAK regulates cancer stem cell activities and contributes to the formation of the tumor microenvironment (TME). Importantly, increased FAK expression and activity are strongly associated with unfavorable clinical outcomes and metastatic characteristics in numerous tumors. In vitro and in vivo studies have demonstrated that modulating FAK activity by application of FAK inhibitors alone or in combination treatment regimens could be effective for cancer therapy. Based on these findings, several agents targeting FAK have been exploited in diverse preclinical tumor models. This article briefly describes the structure and function of FAK, as well as research progress on FAK inhibitors in combination therapies. We also discuss the challenges and future directions regarding anti-FAK combination therapies.
Collapse
Affiliation(s)
- Ximin Tan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Yu HJ, Shin JA, Cho SD. Inhibition of focal adhesion kinase/paxillin axis by caffeic acid phenethyl ester restrains aggressive behaviors of head and neck squamous cell carcinoma in vitro. Arch Oral Biol 2023; 146:105611. [PMID: 36577313 DOI: 10.1016/j.archoralbio.2022.105611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Caffeic acid phenethyl ester (CAPE), one of the components of propolis that is produced by honeybees, reportedly suppresses multiple diseases, including bacterial infection, inflammation, and cancer. We aimed to investigate the inhibitory effects of CAPE on epithelial-mesenchymal transition (EMT) status and aggressive behaviors of human head and neck squamous cell carcinoma (HNSCC) in vitro and the underlying signaling pathway. DESIGN To examine the cell growth and in vitro tumorigenic potential of HNSCC cells, cell viability and soft agar colony formation assays, respectively, were performed. Transwell migration and invasion assays were conducted to monitor HNSCC cells' aggressive behaviors. Western blotting and immunocytochemistry analyses were done to investigate the signaling pathway responsible for relieving EMT progression and HNSCC cell aggressiveness. RESULTS CAPE inhibited the in vitro tumorigenic potential of SNU-1041 cells stimulated by epidermal growth factor and suppressed the migratory and invasive capacities of SNU-1041 cells, irrespective of their cell proliferation state. CAPE was, at least partially, capable of inhibiting EMT progression by upregulating E-cadherin expression, which was accompanied by the reduction of phosphorylated focal adhesion kinase (FAK) and Paxillin. The inhibition of the FAK/Paxillin axis by PF-562271 was sufficient to alleviate the EMT progression through the induction of E-cadherin and aggressive behaviors of SNU-1041 cells. CONCLUSIONS CAPE has a therapeutic potential as an anti-metastatic drug candidate for HNSCC therapy targeting the FAK/Paxillin axis.
Collapse
Affiliation(s)
- Hyun-Ju Yu
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea.
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
13
|
Li M, Tan T, Geng Y, Tao Y, Pan J, Zhang J, Xu Q, Shen H, Zuo L, Chen Y. HOXB13 facilitates hepatocellular carcinoma progression by activating AKT/mTOR signaling pathway. Ann Hepatol 2023; 28:100759. [PMID: 36179794 DOI: 10.1016/j.aohep.2022.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Hepatocellular carcinoma (HCC) is one of the sixth most common malignancies worldwide and is accompanied by high mortality. Homeobox B13 (HOXB13) has been shown to be involved in the development of various cancers. This study aimed to investigate the role of HOXB13 in HCC progression. MATERIALS AND METHODS The expression of HOXB13 in HCC tumor tissues was analyzed using qRT-PCR and immunohistochemical staining . After overexpression or downregulation of HOXB13 in HCC cell lines, cell proliferation was detected by CCK8 assay and Ki67 staining and cell invasion ability were tested by transwell assay. Western blot assay was applied to analyze the effect of HOXB13 on related signaling pathways. In addition, the role of HOXB13 on HCC in vivo was explored using a HCC mouse model. IF and WB were performed to detect cell proliferation, apoptosis and related protein expression in mice tumor tissues. RESULTS The results showed that the expression of HOXB13 was significantly increased in HCC tissues compared with adjacent tissues and positively correlated with the tumor stage and survival of HCC patients. Overexpression of HOXB13 promoted the proliferation and invasion of HCC cells and up-regulated the protein expression of AKT, mTOR and MMP2. In contrast, the downregulation of HOXB13 resulted in the opposite results. In vivo experiments, HOXB13 significantly promoted tumor growth in mice bearing HCC by promoting cell proliferation and inhibiting cell apoptosis. CONCLUSIONS This study suggested that HOXB13 can facilitate HCC progression by activation of the AKT/mTOR signaling pathway. HOXB13 may be a novel target for HCC therapy.
Collapse
Affiliation(s)
- Miao Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Tingting Tan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Yu Geng
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, Jiangsu, China
| | - Yue Tao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Jie Pan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Jun Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Qin Xu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Lingyun Zuo
- Department of Gastroenterology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China.
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Pan L, Liu W, Zhao H, Chen B, Yue X. MiR-191-5p inhibits KLF6 to promote epithelial-mesenchymal transition in breast cancer. Technol Health Care 2023; 31:2251-2265. [PMID: 37545272 DOI: 10.3233/thc-230217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) exert certain functions in the development of several cancers and can be a potential hallmark for cancer diagnosis and prognosis. MiR-191-5p has been proven to have high expression in breast cancer (BC), while its biological role and potential regulatory mechanisms in BC remain an open issue. OBJECTIVE Bioinformatics was utilized to assay miR-191-5p level in BC tissues and predict its downstream target gene as well as the enriched signaling pathways of the target gene. METHODS qRT-PCR was carried out to assay miR-191-5p and KLF6 levels in BC cells as well as miR-191-5p level in blood-derived exosomes from BC patients. Western blot was to examine the expression of proteins linked with cell adhesion, epithelial-mesenchymal transition (EMT), and exosome markers. A dual luciferase reporter assay was utilized to verify the interaction between miR-191-5p and KLF6. Abilities of cell phenotypes of BC cells were detected by CCK8, Transwell, and cell adhesion assay, separately. RESULTS Upregulated miR-191-5p expression and downregulated KLF6 expression were observed in BC cells. There was a targeting relationship between miR-191-5p and KLF6. MiR-191-5p negatively regulated KLF6 to promote EMT and malignant progression of BC cells. Additionally, we described a dramatically high level of miR-191-5p in the blood exosomes of BC patients. CONCLUSION MiR-191-5p advances the EMT of BC by targeting KLF6, indicating that miR-191-5p and KLF6 may be new biomarkers for BC.
Collapse
|
15
|
Qin H, Sheng W, Zhang G, Yang Q, Yao S, Yue Y, Zhang P, Zhu Y, Wang Q, Chen Y, Zeng H, Weng J, Yu F, Yang J. Comprehensive analysis of cuproptosis-related prognostic gene signature and tumor immune microenvironment in HCC. Front Genet 2023; 14:1094793. [PMID: 36891150 PMCID: PMC9986498 DOI: 10.3389/fgene.2023.1094793] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Background: Copper is an indispensable mineral element involved in many physiological metabolic processes. Cuproptosis is associated with a variety of cancer such as hepatocellular carcinoma (HCC). The objective of this study was to examine the relationships between the expression of cuproptosis-related genes (CRGs) and tumor characteristics, including prognosis and microenvironment of HCC. Methods: The differentially expressed genes (DEGs) between high and low CRGs expression groups in HCC samples were identified, and further were analyzed for functional enrichment analysis. Then, CRGs signature of HCC was constructed and analyzed utilizing LASSO and univariate and multivariate Cox regression analysis. Prognostic values of CRGs signature were evaluated by Kaplan-Meier analysis, independent prognostic analysis and nomograph. The expression of prognostic CRGs was verified by Real-time quantitative PCR (RT-qPCR) in HCC cell lines. In addition, the relationships between prognostic CRGs expression and the immune infiltration, tumor microenvironment, antitumor drugs response and m6A modifications were further explored using a series of algorithms in HCC. Finally, ceRNA regulatory network based on prognostic CRGs was constructed. Results: The DEGs between high and low CRG expression groups in HCC were mainly enriched in focal adhesion and extracellular matrix organization. Besides, we constructed a prognostic model that consists of CDKN2A, DLAT, DLST, GLS, and PDHA1 CRGs for predicting the survival likelihood of HCC patients. And the elevated expression of these five prognostic CRGs was substantially in HCC cell lines and associated with poor prognosis. Moreover, immune score and m6A gene expression were higher in the high CRG expression group of HCC patients. Furthermore, prognostic CRGs have higher mutation rates in HCC, and are significantly correlated with immune cell infiltration, tumor mutational burden, microsatellite instability, and anti-tumor drug sensitivity. Then, eight lncRNA-miRNA-mRNA regulatory axes that affected the progression of HCC were predicted. Conclusion: This study demonstrated that the CRGs signature could effectively evaluate prognosis, tumor immune microenvironment, immunotherapy response and predict lncRNA-miRNA-mRNA regulatory axes in HCC. These findings extend our knowledge of cuproptosis in HCC and may inform novel therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Haotian Qin
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Weibei Sheng
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | | | - Qi Yang
- Department of Medical Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| | - Sen Yao
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yaohang Yue
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Peng Zhang
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuanchao Zhu
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qichang Wang
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yixiao Chen
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hui Zeng
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Weng
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Yu
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
16
|
Tinline-Goodfellow CT, Lees MJ, Hodson N. The skeletal muscle fiber periphery: A nexus of mTOR-related anabolism. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 5:10-19. [PMID: 36994172 PMCID: PMC10040390 DOI: 10.1016/j.smhs.2022.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Skeletal muscle anabolism is driven by numerous stimuli such as growth factors, nutrients (i.e., amino acids, glucose), and mechanical stress. These stimuli are integrated by the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signal transduction cascade. In recent years, work from our laboratory and elsewhere has sought to unravel the molecular mechanisms underpinning the mTOR-related activation of muscle protein synthesis (MPS), as well as the spatial regulation of these mechanisms within the skeletal muscle cell. These studies have suggested that the skeletal muscle fiber periphery is a region of central importance in anabolism (i.e., growth/MPS). Indeed, the fiber periphery is replete with the substrates, molecular machinery, and translational apparatus necessary to facilitate MPS. This review provides a summary of the mechanisms underpinning the mTOR-associated activation of MPS from cell, rodent, and human studies. It also presents an overview of the spatial regulation of mTORC1 in response to anabolic stimuli and outlines the factors that distinguish the periphery of the cell as a highly notable region of skeletal muscle for the induction of MPS. Future research should seek to further explore the nutrient-induced activation of mTORC1 at the periphery of skeletal muscle fibers.
Collapse
Affiliation(s)
| | - Matthew J. Lees
- Faculty of Kinesiology and Physical Education, University of Toronto, Canada
| | - Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Canada
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- Corresponding author. Faculty of Kinesiology and Physical Education, University of Toronto, Canada.
| |
Collapse
|
17
|
Hashemi M, Arani HZ, Orouei S, Fallah S, Ghorbani A, Khaledabadi M, Kakavand A, Tavakolpournegari A, Saebfar H, Heidari H, Salimimoghadam S, Entezari M, Taheriazam A, Hushmandi K. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions. Biomed Pharmacother 2022; 155:113774. [DOI: 10.1016/j.biopha.2022.113774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
|
18
|
Shi M, Chen T, Wei S, Zhao C, Zhang X, Li X, Tang X, Liu Y, Yang Z, Chen L. Molecular Docking, Molecular Dynamics Simulations, and Free Energy Calculation Insights into the Binding Mechanism between VS-4718 and Focal Adhesion Kinase. ACS OMEGA 2022; 7:32442-32456. [PMID: 36119979 PMCID: PMC9476166 DOI: 10.1021/acsomega.2c03951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 05/17/2023]
Abstract
Focal adhesion kinase (FAK) is a 125 kDa nonreceptor tyrosine kinase that plays an important role in many carcinomas. Thus, the targeting of FAK by small molecules is considered to be promising for cancer therapy. Some FAK inhibitors have been reported as potential anticancer drugs and have entered into clinical development; for example, VS-4718 is currently undergoing clinical trials. However, the lack of crystal structural data for the binding of VS-4718 with FAK has hindered the optimization of this anticancer agent. In this work, the VS-4718/FAK interaction model was obtained by molecular docking and molecular dynamics simulations. The binding free energies of VS-4718/FAK were also calculated using the molecular mechanics generalized Born surface area method. It was found that the aminopyrimidine group formed hydrogen bonds with the C502 residue of the hinge loop, while the D564 residue of the T-loop interacted with the amide group. In addition, I428, A452, V484, M499, G505, and L553 residues formed hydrophobic interactions with VS-4718. The obtained results therefore provide an improved understanding of the interaction between human FAK and VS-4718. Based on the obtained binding mechanism, 47 novel compounds were designed to target the adenosine 5'-triphosphate-binding pocket of human FAK, and ensemble docking was performed to assess the effects of these modifications on the inhibitor binding affinity. This work is also expected to provide additional insights into potential future target design strategies based on VS-4718.
Collapse
Affiliation(s)
- Mingsong Shi
- State
Key Laboratory of Biotherapy, West China
Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Tao Chen
- State
Key Laboratory of Biotherapy, West China
Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Siping Wei
- Key
Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
- Department
of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Chenyu Zhao
- West
China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xinyu Zhang
- West
China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xinghui Li
- West
China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xinyi Tang
- West
China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yan Liu
- State
Key Laboratory of Biotherapy, West China
Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhuang Yang
- State
Key Laboratory of Biotherapy, West China
Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Lijuan Chen
- State
Key Laboratory of Biotherapy, West China
Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|