1
|
Sharma V, Ali SW. Functionalization of cellulosic and polyester textiles using reduced Schiff base (RSB) of eco-friendly vanillin. CELLULOSE (LONDON, ENGLAND) 2023; 30:3317-3338. [PMID: 36817563 PMCID: PMC9923662 DOI: 10.1007/s10570-023-05085-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED Vanillin is an active ingredient found in the crop 'vanilla' and is traditionally extracted from the 'vanilla pod'. Vanillin intrinsically is not a suitable candidate for imparting durable functional features into textile substate due to its smaller chemical structure which leads to leaching of the same during washing operation. To enlarge the structure, in the present study, vanillin has been converted into 4-(benzylamino) methyl))-2-methoxyphenol vanillin derivative (reduced Schiff base) with considerable amount of yield by using a simple one-step process and the synthesized product has been characterized by 1H, C13 NMR, FTIR, and Raman analysis. Thereafter, the reduced Schiff base of vanillin (RSB) has been integrated on cotton as well as polyethylene terephthalate (PET) fabric using high temperature high pressure (HT-HP) technique for imparting multiple functionalities. FESEM EDX analysis has confirmed the integration of RSB on both the fabrics by revealing uniform presence of the nitrogen (of the synthesized derivative) on the treated textile materials. Both types of functionalized textiles have demonstrated appealing color shades with an excellent antimicrobial activity of about 90% against Escherichia coli (E. coli) bacteria. The treated fabrics could cater pleasing fragrance and exhibit 90% antioxidant properties. Moreover, enlarged vanillin derivative in the form of RSB can retain its properties in the fabrics even after repeated machine launderings. RSB-treated cotton fabric has shown ultra-violet protection factor (UPF) of 38 which drops to 24 after washing whereas in case of PET treated fabric, the observed UPF values are 265 and 164 before and after washing, respectively. The RSB treatment has been found to be cytotoxically secure and biocompatible as tested on the PET fabric. Other required properties of the treated fabrics such as water absorbency, flexibility, etc. have also been found to be intact. Thus, the presented study reveals a new class of safe material that can be derived from eco-friendly vanillin and has the potential to replace hazardous chemicals that are currently used in textile chemical processing industries. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10570-023-05085-z.
Collapse
Affiliation(s)
- Veerender Sharma
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 India
| | - S. Wazed Ali
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 India
| |
Collapse
|
2
|
Li Y, Yin P, Zhang Y, Zhang R. Synthesis of honeycomb Ag@CuO nanoparticles and their application as a highly sensitive and electrocatalytically active hydrogen peroxide sensor material. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4842-4850. [PMID: 36398599 DOI: 10.1039/d2ay01211a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Copper acetate/silver nitrate/polyvinylpyrrolidone was first prepared into nano-hybrid silver-doped copper oxide by electrospinning, and then nano-honeycomb particles were produced through heat-treatment. For the first time, honeycomb Ag@CuO nanoparticles were prepared by electrospinning, and a H2O2 sensor was constructed by modifying the carbon paste electrode (CPE) with the honeycomb Ag@CuO nanoparticles. This work performed the structural, morphological, and phase analysis of the Ag@CuO nanoparticles by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated the synthesis of Ag@CuO hybrid nanoparticles with high purity, and cyclic voltammetry and amperometry show that the Ag@CuO modified electrode has high electrocatalytic performances with fast voltammetric responses and a notably decreased overpotential compared to that of even the CuO modified CPE. In addition, the Ag/CuO-CPE based H2O2 sensor has the highest sensitivity of 1982.14 μA (mmol L-1)-1 cm-2, the lowest detection limit of 0.01 μmol L-1 ((S/N) = 3), and the measured linear response for H2O2 oxidation ranged from 0.05 μmol L-1 to 100 μmol L-1 and 100 μmol L-1 to 1.5 mmol L-1. The proposed method was applied to the determination of H2O2 in coconut fruit samples from canned coconut, and the satisfactory results confirmed the applicability of this sensor in practical analysis.
Collapse
Affiliation(s)
- Yong Li
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, PR China.
| | - Pengchong Yin
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, PR China.
| | - Yuxin Zhang
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, PR China.
| | - Ruizhu Zhang
- Henan Engineering Technology Research Center, North China University of Water Resources and Electric Power, Zhengzhou 450045, PR China
| |
Collapse
|
3
|
Ren Z, Dong R, Liu Y. Free-standing hybrid material of Cu/Cu 2O/CuO modified by graphene with commercial Cu foil using for non-enzymatic glucose detection. NANOTECHNOLOGY 2022; 33:505702. [PMID: 36084452 DOI: 10.1088/1361-6528/ac90cd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Free-standing Cu/Cu2O/CuO modified by graphene was formed through two steps: Firstly, the commercial Cu foil was thermal annealed to form Cu/Cu2O/CuO; Secondly, the Cu/Cu2O/CuO was modified by graphene through electrochemical exfoliated method. The SEM, XRD, TEM and XPS have been used to characterize the morphology, the crystalline phase, and the surface composition of the hybrid electrode as-prepared. The effects of Cu and its oxides on graphene has been uncovered by the Raman results. The sensitivity of the glucose sensor in 0.1 M NaOH by using the as-prepared hybrid material reaches 3102μA·mM-1cm-2within a linear range of 0.002-2.88 mM, which is better than that of the Cu/graphene and the Cu/Cu2O/CuO prepared at the same conditions. The sensor also shows excellent anti-interference ability, good cycling stability and time stability. The advantage of the sensor is caused by the strengthened synergistic effects between the graphene and the Cu/Cu2O/CuO due to the alleviated detrimental effects of the metal on the property of the graphene through using oxides middle layer as well as the large active area that obtained. This work provides a new way to study the effects of graphene in improving the property of the metal oxide especially in using for glucose sensor.
Collapse
Affiliation(s)
- Zhaodi Ren
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Rui Dong
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Yuanan Liu
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| |
Collapse
|
4
|
Folic Acid Determination in Food Samples Using Green Synthesized Copper Oxide Nanoparticles and Electro-Poly (Methyl Orange) Sensor. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractCopper (II) oxide nanoparticles (CuONPs) were green synthesized using Ocimum basilicum leaves aqueous extract in which polyphenols act as reducing and stabilizing agents. The synthesized CuONPs were characterized using X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, selected area electron diffraction, and Brunauer–Emmett–Teller (BET) surface area analysis. The analyses indicated the formation of crystalline rod-like monoclinic pure CuONPs with a mean grain size of 15 nm, a surface area of 396 m2 g−1, and a total pore volume of 0.71 cm3 g−1. A glassy carbon electrode (GCE) was modified using the synthesized CuONPs and electropolymerized poly(methyl orange) (PMO). The modified PMO/CuONPs/GCE electrode was electrochemically characterized and applied for the estimation of folic acid (FA) by cyclic voltammetry, chronoamperometry, linear sweep voltammetry, and differential pulse voltammetry techniques. The influence of pH (7), scan rate (50 mV/s), supporting electrolyte (0.1 M KCl) and FA concentration has been optimized. FA is precisely determined in the range from 0.01 to 1.5 µΜ with a low detection limit (0.002 µΜ), a low quantitation limit (0.068 µΜ), high reproducibility (RSD 0.37, 10 measurements), and high stability (98% activity after 50 days). FA in food samples was determined by the new sensor with high recoveries from 93 to 108.8%.
Graphical Abstract
Collapse
|
5
|
Aun TT, Salleh NM, Ali UFM, Manan NSA. Non-Enzymatic Glucose Sensors Involving Copper: An Electrochemical Perspective. Crit Rev Anal Chem 2021; 53:537-593. [PMID: 34477020 DOI: 10.1080/10408347.2021.1967720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Non-enzymatic glucose sensors based on the use of copper and its oxides have emerged as promising candidates to replace enzymatic glucose sensors owing to their stability, ease of fabrication, and superior sensitivity. This review explains the theories of the mechanism of glucose oxidation on copper transition metal electrodes. It also presents an overview on the development of among the best non-enzymatic copper-based glucose sensors in the past 10 years. A brief description of methods, interesting findings, and important performance parameters are provided to inspire the reader and researcher to create new improvements in sensor design. Finally, several important considerations that pertain to the nano-structuring of the electrode surface is provided.
Collapse
Affiliation(s)
- Tan Tiek Aun
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Noordini Mohamad Salleh
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,Faculty of Science, Department of Chemistry, Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Umi Fazara Md Ali
- Chemical Engineering Programme, Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia.,Centre of Excellence for Biomass Utilization (COEBU), Universiti Malaysia Perlis, Arau, Malaysia
| | - Ninie Suhana Abdul Manan
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Cheng D, Qin J, Feng Y, Wei J. Synthesis of Mesoporous CuO Hollow Sphere Nanozyme for Paper-Based Hydrogen Peroxide Sensor. BIOSENSORS 2021; 11:258. [PMID: 34436060 PMCID: PMC8392683 DOI: 10.3390/bios11080258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 05/03/2023]
Abstract
Point-of-care monitoring of hydrogen peroxide is important due to its wide usage in biomedicine, the household and industry. Herein, a paper sensor is developed for sensitive, visual and selective detection of H2O2 using a mesoporous metal oxide hollow sphere as a nanozyme. The mesoporous CuO hollow sphere is synthesized by direct decomposition of copper-polyphenol colloidal spheres. The obtained mesoporous CuO hollow sphere shows a large specific surface area (58.77 m2/g), pore volume (0.56 cm3/g), accessible mesopores (5.8 nm), a hollow structure and a uniform diameter (~100 nm). Furthermore, they are proven to show excellent peroxidase-like activities with Km and Vmax values of 120 mM and 1.396 × 10-5 M·s-1, respectively. Such mesoporous CuO hollow spheres are then loaded on the low-cost and disposable filter paper test strip. The obtained paper sensor can be effectively used for detection of H2O2 in the range of 2.4-150 μM. This work provides a new kind of paper sensor fabricated from a mesoporous metal oxide hollow sphere nanozyme. These sensors could be potentially used in bioanalysis, food security and environmental protection.
Collapse
Affiliation(s)
| | | | | | - Jing Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Analytical Chemistry and Instrument for Life Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.C.); (J.Q.); (Y.F.)
| |
Collapse
|
7
|
Zhang J, Zou Y, Eickelmann S, Njel C, Heil T, Ronneberger S, Strauss V, Seeberger PH, Savateev A, Loeffler FF. Laser-driven growth of structurally defined transition metal oxide nanocrystals on carbon nitride photoelectrodes in milliseconds. Nat Commun 2021; 12:3224. [PMID: 34050154 PMCID: PMC8163840 DOI: 10.1038/s41467-021-23367-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/20/2021] [Indexed: 11/09/2022] Open
Abstract
Fabrication of hybrid photoelectrodes on a subsecond timescale with low energy consumption and possessing high photocurrent densities remains a centerpiece for successful implementation of photoelectrocatalytic synthesis of fuels and value-added chemicals. Here, we introduce a laser-driven technology to print sensitizers with desired morphologies and layer thickness onto different substrates, such as glass, carbon, or carbon nitride (CN). The specially designed process uses a thin polymer reactor impregnated with transition metal salts, confining the growth of transition metal oxide (TMO) nanostructures on the interface in milliseconds, while their morphology can be tuned by the laser. Multiple nano-p-n junctions at the interface increase the electron/hole lifetime by efficient charge trapping. A hybrid copper oxide/CN photoanode with optimal architecture reaches 10 times higher photocurrents than the pristine CN photoanode. This technology provides a modular approach to build a library of TMO-based composite films, enabling the creation of materials for diverse applications.
Collapse
Affiliation(s)
- Junfang Zhang
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Yajun Zou
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | - Christian Njel
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Tobias Heil
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | - Volker Strauss
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Peter H Seeberger
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
8
|
Chung WA, Wu CJ, Hung PS, Chou SC, Guo WQ, Wu PW. Templated fabrication of three-dimensional ordered macroporous Cu2O/Ni structure for glucose sensing. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Engineering nanostructures of CuO-based photocatalysts for water treatment: Current progress and future challenges. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.06.031] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
10
|
Verma N, Kumar N. Synthesis and Biomedical Applications of Copper Oxide Nanoparticles: An Expanding Horizon. ACS Biomater Sci Eng 2019; 5:1170-1188. [DOI: 10.1021/acsbiomaterials.8b01092] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nishant Verma
- National Centre for Flexible Electronics, Indian Institute of Technology, Kanpur, Kalyanpur, Kanpur, Uttar Pradesh−208016, India
| | - Nikhil Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, G.E. Road, Opposite Science College, Raipur, Chhattisgarh−492010, India
| |
Collapse
|
11
|
Ni Y, Sun Z, Zeng Z, Liu F, Qin J. Hydrothermal fabrication of hierarchical CuO nanoflowers for dual-function amperometric sensing of hydrogen peroxide and glucose. NEW J CHEM 2019. [DOI: 10.1039/c9nj04236a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CuO nanoflowers were prepared by a hydrothermal method and used as an electrocatalyst for the simultaneous detection of hydrogen peroxide and glucose.
Collapse
Affiliation(s)
- Yue Ni
- Environmental Engineering Laboratory
- College of Resource and Environment
- Shanxi Agricultural University
- Taigu 030801
- P. R. China
| | - Zepeng Sun
- Environmental Engineering Laboratory
- College of Resource and Environment
- Shanxi Agricultural University
- Taigu 030801
- P. R. China
| | - Zhixing Zeng
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- P. R. China
| | - Fenwu Liu
- Environmental Engineering Laboratory
- College of Resource and Environment
- Shanxi Agricultural University
- Taigu 030801
- P. R. China
| | - Junmei Qin
- Environmental Engineering Laboratory
- College of Resource and Environment
- Shanxi Agricultural University
- Taigu 030801
- P. R. China
| |
Collapse
|
12
|
Zhiani M, Abedini A, Majidi S. Comparison of Electro-Catalytic Activity of Fe-Ni-Co/C and Pd/C Nanoparticles for Glucose Electro-Oxidation in Alkaline Half-Cell and Direct Glucose Fuel Cell. Electrocatalysis (N Y) 2018. [DOI: 10.1007/s12678-018-0483-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Electrocatalytic Oxidation of Glucose at Nickel Phosphate Nano/Micro Particles Modified Electrode. Electrocatalysis (N Y) 2017. [DOI: 10.1007/s12678-017-0376-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|