1
|
Kisand K, Sarapuu A, Douglin JC, Kikas A, Käärik M, Kozlova J, Aruväli J, Treshchalov A, Leis J, Kisand V, Kukli K, Dekel DR, Tammeveski K. Hierarchically Porous Fe-N-C Single-Atom Catalysts via Ionothermal Synthesis for Oxygen Reduction Reaction. CHEMSUSCHEM 2024:e202401332. [PMID: 39185822 DOI: 10.1002/cssc.202401332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Platinum group metal (PGM)-free electrocatalysts have emerged as promising alternatives to replace Pt for the oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFCs). However, traditional synthesis methods limit the single-atom site density due to metal agglomeration at higher temperatures. This work explores the preparation of hierarchically porous atomically dispersed electrocatalysts for the ORR. The materials were prepared via ionothermal synthesis, where magnesium nitrate was used to prepare hierarchically porous carbon materials. The in-situ formed Mg-Nx sites were trans-metalated to yield ORR-active Fe-Nx sites. The resulting carbon-based catalysts displayed excellent electrocatalytic activity, attributed to the atomically dispersed Fe-Nx active sites and high meso- and macroporosity that enhanced the mass transport and exposed more accessible active sites.
Collapse
Affiliation(s)
- Kaarel Kisand
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia
| | - Ave Sarapuu
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia
| | - John C Douglin
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia
| | - Arvo Kikas
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411, Estonia
| | - Maike Käärik
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia
| | - Jekaterina Kozlova
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411, Estonia
| | - Jaan Aruväli
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu, 51014, Estonia
| | - Alexey Treshchalov
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411, Estonia
| | - Jaan Leis
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia
| | - Vambola Kisand
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411, Estonia
| | - Kaupo Kukli
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411, Estonia
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Kaido Tammeveski
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia
| |
Collapse
|
2
|
Liu X, Xing Q, Song J, Xiao Z, Wang F, Yang T, Yu J, Chen W, Li X, Chen Y. A facile strategy to prepare FeN x decorated PtFe intermetallic with excellent acidic oxygen reduction reaction activity and stability. J Colloid Interface Sci 2023; 645:241-250. [PMID: 37149998 DOI: 10.1016/j.jcis.2023.04.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
The construction of low-Pt-content intermetallic on carbon supports has been verified as a promising method to promote the activity of the oxygen reduction reaction (ORR). In this study, we have developed a simple and effective strategy to obtain a well-designed CNT-PtFe-PPy precursor. This precursor contains modulated Pt- and Fe-based content dispersed in polypyrrole (PPy) chain segments, which are in-situ generated on the templates of carbon nanotubes (CNTs). Subsequent pyrolysis of the CNT-PtFe-PPy precursor produces a CNT-PtFe@FeNC catalyst, which contains both Fe-Nx and PtFe intermetallic active sites. Due to the highly efficient dispersion of active species, the CNT-PtFe@FeNC electrocatalyst displays a 9.5 times higher specific activity (SA) and 8.5 times higher mass activity (MA) than those of a commercial Pt/C catalyst in a 0.1 M HClO4 solution. Additionally, these results, combined with excellent durability (the SA and MA maintained 94 % and 91 % of initial activity after a 10-k cycle accelerated durability test), represent among the best performance achieved so far for Pt-based ORR electrocatalysts. Furthermore, density functional theory (DFT) calculations revealed that the presence of Fe-N4 species reduces the adsorption energy between the PtFe intermetallic compound and OH*, accelerating the ORR process.
Collapse
Affiliation(s)
- Xue Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qianli Xing
- Department of Materials Science and Engineering, Tufts University, Medford 02155, MA, USA
| | - Jie Song
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zuoxu Xiao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fuling Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Tianle Yang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jinshi Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenmiao Chen
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar.
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
3
|
Kisand K, Sarapuu A, Douglin JC, Kikas A, Treshchalov A, Käärik M, Piirsoo HM, Paiste P, Aruväli J, Leis J, Kisand V, Tamm A, Dekel DR, Tammeveski K. Templated Nitrogen-, Iron-, and Cobalt-Doped Mesoporous Nanocarbon Derived from an Alkylresorcinol Mixture for Anion-Exchange Membrane Fuel Cell Application. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Kaarel Kisand
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411Tartu, Estonia
| | - Ave Sarapuu
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411Tartu, Estonia
| | - John C. Douglin
- The Wolfson Department of Chemical Engineering, Technion─Israel Institute of Technology, 3200003Haifa, Israel
| | - Arvo Kikas
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411Tartu, Estonia
| | - Alexey Treshchalov
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411Tartu, Estonia
| | - Maike Käärik
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411Tartu, Estonia
| | - Helle-Mai Piirsoo
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411Tartu, Estonia
| | - Päärn Paiste
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014Tartu, Estonia
| | - Jaan Aruväli
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014Tartu, Estonia
| | - Jaan Leis
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411Tartu, Estonia
| | - Vambola Kisand
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411Tartu, Estonia
| | - Aile Tamm
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411Tartu, Estonia
| | - Dario R. Dekel
- The Wolfson Department of Chemical Engineering, Technion─Israel Institute of Technology, 3200003Haifa, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion − Israel Institute of Technology, 3200003Haifa, Israel
| | - Kaido Tammeveski
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411Tartu, Estonia
| |
Collapse
|
4
|
Sokka A, Mooste M, Marandi M, Käärik M, Kozlova J, Kikas A, Kisand V, Treshchalov A, Tamm A, Leis J, Holdcroft S, Tammeveski K. Polypyrrole and Polythiophene Modified Carbon Nanotube‐Based Cathode Catalysts for Anion Exchange Membrane Fuel Cell. ChemElectroChem 2022. [DOI: 10.1002/celc.202200161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Andri Sokka
- University of Tartu: Tartu Ulikool Institute of Chemistry ESTONIA
| | - Marek Mooste
- University of Tartu: Tartu Ulikool Institute of Chemistry ESTONIA
| | - Margus Marandi
- Tartu Ülikool: Tartu Ulikool Institute of Chemistry ESTONIA
| | - Maike Käärik
- University of Tartu: Tartu Ulikool Institute of Chemistry ESTONIA
| | | | - Arvo Kikas
- University of Tartu: Tartu Ulikool Institute of Physics ESTONIA
| | - Vambola Kisand
- University of Tartu: Tartu Ulikool Institute of Physics ESTONIA
| | | | - Aile Tamm
- University of Tartu: Tartu Ulikool Institute of Physics ESTONIA
| | - Jaan Leis
- University of Tartu: Tartu Ulikool Institute of Chemistry ESTONIA
| | | | - Kaido Tammeveski
- University of Tartu Institute of Chemistry Ravila 14a 50411 Tartu ESTONIA
| |
Collapse
|
5
|
Zoller F, Häringer S, Böhm D, Luxa J, Sofer Z, Fattakhova-Rohlfing D. Carbonaceous Oxygen Evolution Reaction Catalysts: From Defect and Doping-Induced Activity over Hybrid Compounds to Ordered Framework Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007484. [PMID: 33942507 DOI: 10.1002/smll.202007484] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Oxygen evolution reaction (OER) is expected to be of great importance for the future energy conversion and storage in form of hydrogen by water electrolysis. Besides the traditional noble-metal or transition metal oxide-based catalysts, carbonaceous electrocatalysts are of great interest due to their huge structural and compositional variety and unrestricted abundance. This review provides a summary of recent advances in the field of carbon-based OER catalysts ranging from "pure" or unintentionally doped carbon allotropes over heteroatom-doped carbonaceous materials and carbon/transition metal compounds to metal oxide composites where the role of carbon is mainly assigned to be a conductive support. Furthermore, the review discusses the recent developments in the field of ordered carbon framework structures (metal organic framework and covalent organic framework structures) that potentially allow a rational design of heteroatom-doped 3D porous structures with defined composition and spatial arrangement of doping atoms to deepen the understanding on the OER mechanism on carbonaceous structures in the future. Besides introducing the structural and compositional origin of electrochemical activity, the review discusses the mechanism of the catalytic activity of carbonaceous materials, their stability under OER conditions, and potential synergistic effects in combination with metal (or metal oxide) co-catalysts.
Collapse
Affiliation(s)
- Florian Zoller
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-1): Materials Synthesis and Processing, Wilhelm-Johnen-Straße, Jülich, 52425, Germany
- Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Lotharstraße 1, Duisburg, 47057, Germany
| | - Sebastian Häringer
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München (LMU Munich), Butenandtstrasse 5-13 (E), Munich, 81377, Germany
| | - Daniel Böhm
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-1): Materials Synthesis and Processing, Wilhelm-Johnen-Straße, Jülich, 52425, Germany
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Dina Fattakhova-Rohlfing
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-1): Materials Synthesis and Processing, Wilhelm-Johnen-Straße, Jülich, 52425, Germany
- Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Lotharstraße 1, Duisburg, 47057, Germany
| |
Collapse
|
6
|
Palm I, Kibena-Põldsepp E, Mäeorg U, Kozlova J, Käärik M, Kikas A, Leis J, Kisand V, Tamm A, Tammeveski K. Silicon carbide-derived carbon electrocatalysts dual doped with nitrogen and phosphorus for the oxygen reduction reaction in an alkaline medium. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
7
|
Lilloja J, Kibena-Põldsepp E, Sarapuu A, Douglin JC, Käärik M, Kozlova J, Paiste P, Kikas A, Aruväli J, Leis J, Sammelselg V, Dekel DR, Tammeveski K. Transition-Metal- and Nitrogen-Doped Carbide-Derived Carbon/Carbon Nanotube Composites as Cathode Catalysts for Anion-Exchange Membrane Fuel Cells. ACS Catal 2021; 11:1920-1931. [PMID: 35028188 PMCID: PMC8744415 DOI: 10.1021/acscatal.0c03511] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Transition-metal- and nitrogen-codoped carbide-derived carbon/carbon nanotube composites (M-N-CDC/CNT) have been prepared, characterized, and used as cathode catalysts in anion-exchange membrane fuel cells (AEMFCs). As transition metals, cobalt, iron, and a combination of both have been investigated. Metal and nitrogen are doped through a simple high-temperature pyrolysis technique with 1,10-phenanthroline as the N precursor. The physicochemical characterization shows the success of metal and nitrogen doping as well as very similar morphologies and textural properties of all three composite materials. The initial assessment of the oxygen reduction reaction (ORR) activity, employing the rotating ring-disk electrode method, indicates that the M-N-CDC/CNT catalysts exhibit a very good electrocatalytic performance in alkaline media. We find that the formation of HO2 - species in the ORR catalysts depends on the specific metal composition (Co, Fe, or CoFe). All three materials show excellent stability with a negligible decline in their performance after 10000 consecutive potential cycles. The very good performance of the M-N-CDC/CNT catalyst materials is attributed to the presence of M-N x and pyridinic-N moieties as well as both micro- and mesoporous structures. Finally, the catalysts exhibit excellent performance in in situ tests in H2/O2 AEMFCs, with the CoFe-N-CDC/CNT reaching a current density close to 500 mA cm-2 at 0.75 V and a peak power density (P max) exceeding 1 W cm-2. Additional tests show that P max reaches 0.8 W cm-2 in an H2/CO2-free air system and that the CoFe-N-CDC/CNT material exhibits good stability under both AEMFC operating conditions.
Collapse
Affiliation(s)
- Jaana Lilloja
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Elo Kibena-Põldsepp
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Ave Sarapuu
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - John C. Douglin
- The
Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Maike Käärik
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Jekaterina Kozlova
- Institute
of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Päärn Paiste
- School
of Engineering, Department of Energy Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
- Institute
of Ecology and Earth Sciences, University
of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Arvo Kikas
- Institute
of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Jaan Aruväli
- Institute
of Ecology and Earth Sciences, University
of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Jaan Leis
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Väino Sammelselg
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
- Institute
of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Dario R. Dekel
- The
Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
- The Nancy
& Stephen Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Kaido Tammeveski
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| |
Collapse
|
8
|
Rabl H, Wielend D, Tekoglu S, Seelajaroen H, Neugebauer H, Heitzmann N, Apaydin DH, Scharber MC, Sariciftci NS. Are Polyaniline and Polypyrrole Electrocatalysts for Oxygen (O 2) Reduction to Hydrogen Peroxide (H 2O 2)? ACS APPLIED ENERGY MATERIALS 2020; 3:10611-10618. [PMID: 33251486 PMCID: PMC7687026 DOI: 10.1021/acsaem.0c01663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/29/2020] [Indexed: 05/17/2023]
Abstract
In this report, we present results on the electrocatalytic activity of conducting polymers [polyaniline (PANI) and polypyrrole (PPy)] toward the electrochemical oxygen reduction reaction (ORR) to hydrogen peroxide (H2O2). The electropolymerization of the polymers and electrolysis conditions were optimized for H2O2 production. On flat glassy carbon (GC) electrodes, the faradaic efficiency (FE) for H2O2 production was significantly improved by the polymers. Rotating disc electrode (RDE) studies revealed that this is mainly a result of blocking further H2O2 to the water reduction pathway by the polymers. PPy on carbon paper (CP) significantly increased the molar production of H2O2 by over 250% at an average FE of above 95% compared to bare CP with a FE of 25%. Thus, the polymers are acting as catalysts on the electrode for the ORR, although their catalytic mechanisms differ from other electrocatalysts.
Collapse
|
9
|
Kisand K, Sarapuu A, Danilian D, Kikas A, Kisand V, Rähn M, Treshchalov A, Käärik M, Merisalu M, Paiste P, Aruväli J, Leis J, Sammelselg V, Holdcroft S, Tammeveski K. Transition metal-containing nitrogen-doped nanocarbon catalysts derived from 5-methylresorcinol for anion exchange membrane fuel cell application. J Colloid Interface Sci 2020; 584:263-274. [PMID: 33069025 DOI: 10.1016/j.jcis.2020.09.114] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/20/2022]
Abstract
Highly active electrocatalysts for electrochemical oxygen reduction reaction (ORR) were prepared by high-temperature pyrolysis from 5-methylresorcinol, Co and/or Fe salts and dicyandiamide, which acts simultaneously as a precursor for reactive carbonitride template and a nitrogen source. The electrocatalytic activity of the catalysts for ORR in alkaline solution was studied using the rotating disc electrode (RDE) method. The bimetallic catalyst containing iron and cobalt (FeCoNC-at) showed excellent stability and remarkable ORR performance, comparable to that of commercial Pt/C (20 wt%). The superior activity was attributed to high surface metal and nitrogen contents. The FeCoNC-at catalyst was further tested in anion exchange membrane fuel cell (AEMFC) with poly-(hexamethyl-p-terphenylbenzimidazolium) (HMT-PMBI) membrane, where a high value of peak power density (Pmax = 415 mW cm-2) was achieved.
Collapse
Affiliation(s)
- Kaarel Kisand
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Ave Sarapuu
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Dmytro Danilian
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Arvo Kikas
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Vambola Kisand
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Mihkel Rähn
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Alexey Treshchalov
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Maike Käärik
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Maido Merisalu
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Päärn Paiste
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia; School of Engineering, Department of Energy Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Jaan Aruväli
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Jaan Leis
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Väino Sammelselg
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia; Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Steven Holdcroft
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Kaido Tammeveski
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia.
| |
Collapse
|
10
|
A novel cobalt and nitrogen co-doped mesoporous hollow carbon hemisphere as high-efficient electrocatalysts for oxygen reduction reaction. J Colloid Interface Sci 2020; 579:12-20. [PMID: 32570026 DOI: 10.1016/j.jcis.2020.06.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023]
Abstract
Exploring a cheap catalyst with effective activity for oxygen reduction reaction (ORR) to replace precious metal electrocatalysts has gained tremendous attention for several decades. In this study, we designed and synthesized cobalt and nitrogen supported on mesoporous hollow carbon hemisphere (Co/N/HCHs) nanocomposites by a facile and economical approach. Semisphere-shaped mesoporous hollow carbon is self-generated using silica particles as template, followed by a pyrolysis-etching process; and exhibits high electrical conductivity and high specific surface. The unique porous structure of carbon provides significant number of the abundant defective sites and shortens the mass transfer pathway, leading to a greatly enhanced electrocatalytic activity with mainly 4e- reduction. Moreover, the synergistic effects of large electrochemically active areas and good electrical conductivity, resulting from the introduction of Co and N heteroatom, are the main reason for displaying outstanding ORR activity with a high half-wave potential of 0.8 V and the electron transfer numbers of 3.89. Furthermore, an excellent long-term stability (the current density retention of 87.0%) and superb methanol tolerance in alkaline medium are achieved. Undoubtedly, this demonstrates a potential way to strategically design the non-precious metal doped carbon catalysts for wider practical applications.
Collapse
|
11
|
Treeweranuwat P, Boonyoung P, Chareonpanich M, Nueangnoraj K. Role of Nitrogen on the Porosity, Surface, and Electrochemical Characteristics of Activated Carbon. ACS OMEGA 2020; 5:1911-1918. [PMID: 32039327 PMCID: PMC7003201 DOI: 10.1021/acsomega.9b03586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/13/2020] [Indexed: 05/18/2023]
Abstract
Surface functionalities of activated carbon can be affected by the presence of heteroatoms such as oxygen, sulfur, and nitrogen. In this work, nitrogen-doped activated carbons (NACs) were prepared from shrimp shells, and the effects of the mixing ratio (raw material to an activating agent) on the porous texture and surface functionalities were investigated. It was found that, with increasing the mixing ratio (resulting in increasing N/C), the development of mesoporosity was significantly observed. This led to decreasing microporosity and specific surface areas (SSAs). The obtained NACs exhibited nitrogen functionalities in the forms of pyridinic and pyrrolic groups. It was found that although the pyridinic-N has a detrimental effect on the SSA, it does favor the pseudocapacitance, leading to an enhancement in the ion storage capability regardless of the low SSA.
Collapse
Affiliation(s)
- Panudetch Treeweranuwat
- School
of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University
− Rangsit Campus, P.O. Box 22, Pathum Thani 12121, Thailand
| | - Pawan Boonyoung
- School
of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University
− Rangsit Campus, P.O. Box 22, Pathum Thani 12121, Thailand
| | - Metta Chareonpanich
- Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Khanin Nueangnoraj
- Research
Network of NANOTEC on NanoCatalysts and NanoMaterials for Sustainable
Energy and Environment, School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology,
Thammasat University − Rangsit Campus, P.O. Box 22, Pathum Thani 12121, Thailand
- E-mail:
| |
Collapse
|
12
|
Wang J, Fu D, Ren B, Yu P, Zhang X, Zhang W, Kan K. Design and fabrication of polypyrrole/expanded graphite 3D interlayer nanohybrids towards high capacitive performance. RSC Adv 2019; 9:23109-23118. [PMID: 35514504 PMCID: PMC9067312 DOI: 10.1039/c9ra04205a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/16/2019] [Indexed: 01/20/2023] Open
Abstract
Polypyrrole/expanded graphite (PPy/EG) nanohybrids, with a hierarchical structure of a three dimensional EG framework with a thick PPy coating layer, have been synthesized via a vacuum-assisted intercalation in situ oxidation polymerization method. In the synthesis, pyrrole monomers were intercalated into the irregular pores of EG with the assistance of a vacuum pump. Subsequently, the intercalated pyrrole monomers assembled on both sides of the EG nanosheets and formed PPy by an in situ polymerization method. As electrode materials, the typical PPy/EG10 sample with an EG content of 10% had a high specific capacitance of 454.3 F g−1 and 442.7 F g−1 (1.0 A g−1), and specific capacitance retention rate of 75.9% and 73.3% (15.0 A g−1) in 1 M H2SO4 and 1 M KCl electrolytes, respectively. The two-electrode symmetric supercapacitor showed a high energy density of 47.5 W h kg−1 at a power density of 1 kW kg−1, and could retain superb stability after 2000 cycles. The unique self-supporting structure feature and homogeneous PPy nanosphere coating combined the contributions of electrochemical double layer capacitance and pseudo-capacitance, which made the nanohybrids an excellent electrode material for high performance energy storage devices. Polypyrrole/expanded graphite nanohybrids with a hierarchical structure were synthesized as electrode materials, and showed outstanding energy storage performance.![]()
Collapse
Affiliation(s)
- Jue Wang
- Heilongjiang Academy of Sciences
- Institute of Advanced Technology
- Harbin 150020
- China
- Key Laboratory of Functional Inorganic Material Chemistry
| | - Dong Fu
- Heilongjiang Academy of Sciences
- Institute of Advanced Technology
- Harbin 150020
- China
| | - Binqiao Ren
- Heilongjiang Academy of Sciences
- Institute of Advanced Technology
- Harbin 150020
- China
| | - Ping Yu
- Heilongjiang Academy of Sciences
- Institute of Advanced Technology
- Harbin 150020
- China
| | - Xiaochen Zhang
- Heilongjiang Academy of Sciences
- Institute of Advanced Technology
- Harbin 150020
- China
| | - Weijun Zhang
- Heilongjiang Academy of Sciences
- Institute of Advanced Technology
- Harbin 150020
- China
| | - Kan Kan
- Heilongjiang Academy of Sciences
- Institute of Advanced Technology
- Harbin 150020
- China
- Key Laboratory of Functional Inorganic Material Chemistry
| |
Collapse
|
13
|
Liu S, Liu L, Chen X, Yang Z, Li M, Wang Y, Lv W, Zhu P, Zhao X, Wang G. On an Easy Way to Prepare Fe, S, N Tri-Doped Mesoporous Carbon Materials as Efficient Electrocatalysts for Oxygen Reduction Reaction. Electrocatalysis (N Y) 2018. [DOI: 10.1007/s12678-018-0496-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|