1
|
Zhang G, Diamante G, Ahn IS, Palafox-Sanchez V, Cheng J, Cheng M, Ying Z, Wang SSM, Abuhanna KD, Phi N, Arneson D, Cely I, Arellano K, Wang N, Zhang S, Peng C, Gomez-Pinilla F, Yang X. Thyroid hormone T4 mitigates traumatic brain injury in mice by dynamically remodeling cell type specific genes, pathways, and networks in hippocampus and frontal cortex. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167344. [PMID: 39004380 DOI: 10.1016/j.bbadis.2024.167344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/30/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
The complex pathology of mild traumatic brain injury (mTBI) is a main contributor to the difficulties in achieving a successful therapeutic regimen. Thyroxine (T4) administration has been shown to prevent the cognitive impairments induced by mTBI in mice but the mechanism is poorly understood. To understand the underlying mechanism, we carried out a single cell transcriptomic study to investigate the spatiotemporal effects of T4 on individual cell types in the hippocampus and frontal cortex at three post-injury stages in a mouse model of mTBI. We found that T4 treatment altered the proportions and transcriptomes of numerous cell types across tissues and timepoints, particularly oligodendrocytes, astrocytes, and microglia, which are crucial for injury repair. T4 also reversed the expression of mTBI-affected genes such as Ttr, mt-Rnr2, Ggn12, Malat1, Gnaq, and Myo3a, as well as numerous pathways such as cell/energy/iron metabolism, immune response, nervous system, and cytoskeleton-related pathways. Cell-type specific network modeling revealed that T4 mitigated select mTBI-perturbed dynamic shifts in subnetworks related to cell cycle, stress response, and RNA processing in oligodendrocytes. Cross cell-type ligand-receptor networks revealed the roles of App, Hmgb1, Fn1, and Tnf in mTBI, with the latter two ligands having been previously identified as TBI network hubs. mTBI and/or T4 signature genes were enriched for human genome-wide association study (GWAS) candidate genes for cognitive, psychiatric and neurodegenerative disorders related to mTBI. Our systems-level single cell analysis elucidated the temporal and spatial dynamic reprogramming of cell-type specific genes, pathways, and networks, as well as cell-cell communications as the mechanisms through which T4 mitigates cognitive dysfunction induced by mTBI.
Collapse
Affiliation(s)
- Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Victoria Palafox-Sanchez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jenny Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Susanna Sue-Ming Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin Daniel Abuhanna
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Nguyen Phi
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kayla Arellano
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ning Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shujing Zhang
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chao Peng
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Mary S. Easton Center for Alzheimer's Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. HISTOLOGICAL COMPARISON OF REPEATED MILD WEIGHT DROP AND LATERAL FLUID PERCUSSION INJURY MODELS OF TRAUMATIC BRAIN INJURY IN FEMALE AND MALE RATS. Shock 2024; 62:398-409. [PMID: 38813916 DOI: 10.1097/shk.0000000000002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT In preclinical traumatic brain injury (TBI) research, the animal model should be selected based on the research question and outcome measures of interest. Direct side-by-side comparisons of different injury models are essential for informing such decisions. Here, we used immunohistochemistry to compare the outcomes from two common models of TBI, lateral fluid percussion (LFP) and repeated mild weight drop (rmWD) in adult female and male Wistar rats. Specifically, we measured the effects of LFP and rmWD on markers of cerebrovascular and tight junction disruption, neuroinflammation, mature neurons, and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA 2/3 area of the hippocampus. Animals were randomized into the LFP or rmWD group. On day 1, the LFP group received a craniotomy, and on day 4, injury (or sham procedure; randomly assigned). The rmWD animals underwent either injury or isoflurane only (randomly assigned) on each of those 4 days. Seven days after injury, brains were harvested for analysis. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy only, whereas rmWD animals showed the least residual changes compared with isoflurane-only controls, supporting consideration of rmWD as a mild injury. LFP led to longer-lasting disruptions, perhaps more representative of moderate TBI. We also report that craniotomy and LFP produced greater disruptions in females relative to males. These findings will assist the field in the selection of animal models based on target severity of postinjury outcomes and support the inclusion of both sexes and appropriate control groups.
Collapse
Affiliation(s)
| | - Shealan C Cruise
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | | |
Collapse
|
3
|
Svirsky SE, Henchir J, Li Y, Carlson SW, Dixon CE. Temporal-Specific Sex and Injury-Dependent Changes on Neurogranin-Associated Synaptic Signaling After Controlled Cortical Impact in Rats. Mol Neurobiol 2024; 61:7256-7268. [PMID: 38376763 DOI: 10.1007/s12035-024-04043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
Extensive effort has been made to study the role of synaptic deficits in cognitive impairment after traumatic brain injury (TBI). Neurogranin (Ng) is a calcium-sensitive calmodulin (CaM)-binding protein essential for Ca2+/CaM-dependent kinase II (CaMKII) autophosphorylation which subsequently modulates synaptic plasticity. Given the loss of Ng expression after injury, additional research is warranted to discern changes in hippocampal post-synaptic signaling after TBI. Under isoflurane anesthesia, adult, male and female Sprague-Dawley rats received a sham/control or controlled cortical impact (CCI) injury. Ipsilateral hippocampal synaptosomes were isolated at 24 h and 1, 2, and 4 weeks post-injury, and western blot was used to evaluate protein expression of Ng-associated signaling proteins. Non-parametric Mann-Whitney tests were used to determine significance of injury for each sex at each time point. There were significant changes in the hippocampal synaptic expression of Ng and associated synaptic proteins such as phosphorylated Ng, CaMKII, and CaM up to 4 weeks post-CCI, demonstrating TBI alters hippocampal post-synaptic signaling. This study furthers our understanding of mechanisms of cognitive dysfunction within the synapse sub-acutely after TBI.
Collapse
Affiliation(s)
- Sarah E Svirsky
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Jeremy Henchir
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Youming Li
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Shaun W Carlson
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - C Edward Dixon
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
- V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Navabi SP, Badreh F, Khombi Shooshtari M, Hajipour S, Moradi Vastegani S, Khoshnam SE. Microglia-induced neuroinflammation in hippocampal neurogenesis following traumatic brain injury. Heliyon 2024; 10:e35869. [PMID: 39220913 PMCID: PMC11365414 DOI: 10.1016/j.heliyon.2024.e35869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Traumatic brain injury (TBI) is one of the most causes of death and disability among people, leading to a wide range of neurological deficits. The important process of neurogenesis in the hippocampus, which includes the production, maturation and integration of new neurons, is affected by TBI due to microglia activation and the inflammatory response. During brain development, microglia are involved in forming or removing synapses, regulating the number of neurons, and repairing damage. However, in response to injury, activated microglia release a variety of pro-inflammatory cytokines, chemokines and other neurotoxic mediators that exacerbate post-TBI injury. These microglia-related changes can negatively affect hippocampal neurogenesis and disrupt learning and memory processes. To date, the intracellular signaling pathways that trigger microglia activation following TBI, as well as the effects of microglia on hippocampal neurogenesis, are poorly understood. In this review article, we discuss the effects of microglia-induced neuroinflammation on hippocampal neurogenesis following TBI, as well as the intracellular signaling pathways of microglia activation.
Collapse
Affiliation(s)
- Seyedeh Parisa Navabi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Maryam Khombi Shooshtari
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Arizanovska D, Dallera CA, Folorunso OO, Bush GF, Frye JB, Doyle KP, Jagid JR, Wolosker H, Monaco BA, Cordeiro JG, Atkins CM, Griswold AJ, Liebl DJ. Cognitive dysfunction following brain trauma results from sex-specific reactivation of the developmental pruning processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607610. [PMID: 39211262 PMCID: PMC11360988 DOI: 10.1101/2024.08.13.607610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cognitive losses resulting from severe brain trauma have long been associated with the focal region of tissue damage, leading to devastating functional impairment. For decades, researchers have focused on the sequelae of cellular alterations that exist within the perilesional tissues; however, few clinical trials have been successful. Here, we employed a mouse brain injury model that resulted in expansive synaptic damage to regions outside the focal injury. Our findings demonstrate that synaptic damage results from the prolonged increase in D-serine release from activated microglia and astrocytes, which leads to hyperactivation of perisynaptic NMDARs, tagging of damaged synapses by complement components, and the reactivation of developmental pruning processes. We show that this mechanistic pathway is reversible at several stages within a prolonged and progressive period of synaptic loss. Importantly, these key factors are present in acutely injured brain tissue acquired from patients with brain injury, which supports a therapeutic neuroprotective strategy.
Collapse
|
6
|
Ergul Erkec O, Acikgoz E, Huyut Z, Akyol ME, Ozyurt EO, Keskin S. Ghrelin ameliorates neuronal damage, oxidative stress, inflammatory parameters, and GFAP expression in traumatic brain injury. Brain Inj 2024; 38:514-523. [PMID: 38433464 DOI: 10.1080/02699052.2024.2324012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE This study investigated the effects of ghrelin on oxidative stress, working memory, inflammatory parameters, and neuron degeneration. METHODS TBI was produced with the weight-drop technique. Rats in the G+TBI and TBI+G groups received ghrelin for 7 or 2 days, respectively. The control group received saline. On the 8th day of the study, the brain and blood tissue were taken under anesthesia. RESULTS A significant increase in brain GSH-PX, MDA, IL-1β, TGF-β1, and IL-8 levels and a significant decrease in CAT levels were found in the TBI group compared to the control. Serum MDA, GSH, IL-1β, and IL-8 levels were increased with TBI. Ghrelin treatment after TBI significantly increased the serum GSH, CAT, GSH-PX, and brain GSH and CAT levels, while it significantly decreased the serum MDA, IL-1β, and brain MDA, TGF-β1, and IL-8 levels. Histological evaluations revealed that ghrelin treatment led to a reduction in inflammation, while also significantly ameliorating TBI-induced neuron damage and vascular injuries. Immunohistochemistry staining showed that GFAP staining intensity was significantly increased in the cortex and hippocampus in TBI, and GFAP immunoreactivity was decreased with ghrelin treatment. CONCLUSION The results from this study suggested that ghrelin may have curative effects on TBI.
Collapse
Affiliation(s)
- Ozlem Ergul Erkec
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Zubeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Mehmet Edip Akyol
- Department of Neurosurgery, Faculty of Mecine, Van Yuzuncu Yil University, Van, Turkey
| | | | - Sıddık Keskin
- Department of Biostatistics, Van Yuzuncu Yıl University, Van, Turkey
| |
Collapse
|
7
|
Oganezovi N, Lagani V, Kikvidze M, Gamkrelidze G, Tsverava L, Lepsveridze E, Kelly KM, Solomonia R. Long-term effects of myo-inositol on traumatic brain injury: Epigenomic and transcriptomic studies. IBRO Neurosci Rep 2024; 16:291-299. [PMID: 38374956 PMCID: PMC10875114 DOI: 10.1016/j.ibneur.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/27/2024] [Indexed: 02/21/2024] Open
Abstract
Background and purpose Traumatic brain injury (TBI) and its consequences remain great challenges for neurology. Consequences of TBI are associated with various alterations in the brain but little is known about long-term changes of epigenetic DNA methylation patterns. Moreover, nothing is known about potential treatments that can alter these epigenetic changes in beneficial ways. Therefore, we have examined myo-inositol (MI), which has positive effects on several pathological conditions. Methods TBI was induced in mice by controlled cortical impact (CCI). One group of CCI animals received saline injections for two months (TBI+SAL), another CCI group received MI treatment (TBI+MI) for the same period and one group served as a sham-operated control. Mice were sacrificed 4 months after CCI and changes in DNA methylome and transcriptomes were examined. Results For the first time we: (i) provide comprehensive map of long-term DNA methylation changes after CCI in the hippocampus; (ii) identify differences by methylation sites between the groups; (iii) characterize transcriptome changes; (iv) provide association between DNA methylation sites and gene expression. MI treatment is linked with upregulation of genes covering 33 biological processes, involved in immune response and inflammation. In support of these findings, we have shown that expression of BATF2, a transcription factor involved in immune-regulatory networks, is upregulated in the hippocampus of the TBI+MI group where the BATF2 gene is demethylated. Conclusion TBI is followed by long-term epigenetic and transcriptomic changes in hippocampus. MI treatment has a significant effect on these processes by modulation of immune response and biological pathways of inflammation.
Collapse
Affiliation(s)
- Nino Oganezovi
- School of Natural Sciences and Medicine, Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Vincenzo Lagani
- School of Natural Sciences and Medicine, Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Marine Kikvidze
- School of Natural Sciences and Medicine, Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Georgi Gamkrelidze
- School of Natural Sciences and Medicine, Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Lia Tsverava
- School of Natural Sciences and Medicine, Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
- Iv. Beritashvili Centre of Experimental Biomedicine, Tbilisi, Georgia
| | - Eka Lepsveridze
- School of Natural Sciences and Medicine, Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Kevin M. Kelly
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
- Department of Neurology, Philadelphia, PA, United States
- Department of Neurology, Allegheny General Hospital, Pittsburgh, PA, United States
- Center for Neuroscience Research, Allegheny Health Network Research Institute, Pittsburgh, PA, United States, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Revaz Solomonia
- School of Natural Sciences and Medicine, Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
- Iv. Beritashvili Centre of Experimental Biomedicine, Tbilisi, Georgia
| |
Collapse
|
8
|
Maity S, Huang Y, Kilgore MD, Thurmon AN, Vaasjo LO, Galazo MJ, Xu X, Cao J, Wang X, Ning B, Liu N, Fan J. Mapping dynamic molecular changes in hippocampal subregions after traumatic brain injury through spatial proteomics. Clin Proteomics 2024; 21:32. [PMID: 38735925 PMCID: PMC11089002 DOI: 10.1186/s12014-024-09485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) often results in diverse molecular responses, challenging traditional proteomic studies that measure average changes at tissue levels and fail to capture the complexity and heterogeneity of the affected tissues. Spatial proteomics offers a solution by providing insights into sub-region-specific alterations within tissues. This study focuses on the hippocampal sub-regions, analyzing proteomic expression profiles in mice at the acute (1 day) and subacute (7 days) phases of post-TBI to understand subregion-specific vulnerabilities and long-term consequences. METHODS Three mice brains were collected from each group, including Sham, 1-day post-TBI and 7-day post-TBI. Hippocampal subregions were extracted using Laser Microdissection (LMD) and subsequently analyzed by label-free quantitative proteomics. RESULTS The spatial analysis reveals region-specific protein abundance changes, highlighting the elevation of FN1, LGALS3BP, HP, and MUG-1 in the stratum moleculare (SM), suggesting potential immune cell enrichment post-TBI. Notably, established markers of chronic traumatic encephalopathy, IGHM and B2M, exhibit specific upregulation in the dentate gyrus bottom (DG2) independent of direct mechanical injury. Metabolic pathway analysis identifies disturbances in glucose and lipid metabolism, coupled with activated cholesterol synthesis pathways enriched in SM at 7-Day post-TBI and subsequently in deeper DG1 and DG2 suggesting a role in neurogenesis and the onset of recovery. Coordinated activation of neuroglia and microtubule dynamics in DG2 suggest recovery mechanisms in less affected regions. Cluster analysis revealed spatial variations post-TBI, indicative of dysregulated neuronal plasticity and neurogenesis and further predisposition to neurological disorders. TBI-induced protein upregulation (MUG-1, PZP, GFAP, TJP, STAT-1, and CD44) across hippocampal sub-regions indicates shared molecular responses and links to neurological disorders. Spatial variations were demonstrated by proteins dysregulated in both or either of the time-points exclusively in each subregion (ELAVL2, CLIC1 in PL, CD44 and MUG-1 in SM, and SHOC2, LGALS3 in DG). CONCLUSIONS Utilizing advanced spatial proteomics techniques, the study unveils the dynamic molecular responses in distinct hippocampal subregions post-TBI. It uncovers region-specific vulnerabilities and dysregulated neuronal processes, and potential recovery-related pathways that contribute to our understanding of TBI's neurological consequences and provides valuable insights for biomarker discovery and therapeutic targets.
Collapse
Affiliation(s)
- Sudipa Maity
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yuanyu Huang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mitchell D Kilgore
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Abbigail N Thurmon
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, New Orleans, LA, USA
| | | | - Maria J Galazo
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, New Orleans, LA, USA
| | - Xiaojiang Xu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jing Cao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bo Ning
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane University Translational Sciences Institute, New Orleans, LA, USA.
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
9
|
Arora P, Trivedi R, Kumari M, Singh K, Sandhir R, D'Souza MM, Rana P. Altered DTI scalars in the hippocampus are associated with morphological and structural changes after traumatic brain injury. Brain Struct Funct 2024; 229:853-863. [PMID: 38381381 DOI: 10.1007/s00429-024-02758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/03/2024] [Indexed: 02/22/2024]
Abstract
Blunt and diffuse injury is a highly prevalent form of traumatic brain injury (TBI) which can result in microstructural alterations in the brain. The blunt impact on the brain can affect the immediate contact region but can also affect the vulnerable regions like hippocampus, leading to functional impairment and long-lasting cognitive deficits. The hippocampus of the moderate weight drop injured male rats was longitudinally assessed for microstructural changes using in vivo MR imaging from 4 h to Day 30 post-injury (PI). The DTI analysis found a prominent decline in the apparent diffusion coefficient (ADC), radial diffusivity (RD), and axial diffusivity (AD) values after injury. The perturbed DTI scalars accompanied histological changes in the hippocampus, wherein both the microglia and astrocytes showed changes in the morphometric parameters at all timepoints. Along with this, the hippocampus showed presence of Aβ positive fibrils and neurite plaques after injury. Therefore, this study concludes that TBI can lead to a complex morphological, cellular, and structural alteration in the hippocampus which can be diagnosed using in vivo MR imaging techniques to prevent long-term functional deficits.
Collapse
Affiliation(s)
- Palkin Arora
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Richa Trivedi
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India.
| | - Megha Kumari
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
- Department of Biotechnology, Delhi Technological University (DTU), Delhi, India
| | - Kavita Singh
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Maria M D'Souza
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Poonam Rana
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| |
Collapse
|
10
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. Histological comparison of repeated mild weight drop and lateral fluid percussion injury models of traumatic brain injury (TBI) in female and male rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578177. [PMID: 38352449 PMCID: PMC10862833 DOI: 10.1101/2024.01.31.578177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Traumatic brain injury (TBI) heterogeneity has led to the development of several preclinical models, each modeling a distinct subset of outcomes. Selection of an injury model should be guided by the research question and the specific outcome measures of interest. Consequently, there is a need for conducting direct comparisons of different TBI models. Here, we used immunohistochemistry to directly compare the outcomes from two common models, lateral fluid percussion (LFP) and repeat mild weight drop (rmWD), on neuropathology in adult female and male Wistar rats. Specifically, we used immunohistochemistry to measure the effects of LFP and rmWD on cerebrovascular and tight junction disruption, inflammatory markers, mature neurons and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA2/3 area of the hippocampus. Animals were randomized into either LFP or rmWD groups. The LFP group received a craniotomy prior to LFP (or corresponding sham procedure) three days later, while rmWD animals underwent either weight drop or sham (isoflurane only) on each of those four days. After a recovery period of 7 days, animals were euthanized, and brains were harvested for analysis of RECA-1, claudin-5, GFAP, Iba-1, CD-68, NeuN, and wisteria floribunda lectin. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy-only, while rmWD animals showed the least residual changes compared to isoflurane-only controls. These findings support consideration of rmWD as a mild, transient injury. LFP leads to longer-lasting disruptions that are more closely associated with a moderate TBI. We further show that both craniotomy and LFP produced greater disruptions in females relative to males at 7 days post-injury. These findings support the inclusion of a time-matched experimentally-naïve or anesthesia-only control group in preclinical TBI research to enhance the validity of data interpretation and conclusions.
Collapse
|
11
|
Gillam W, Godbole N, Sangam S, DeTommaso A, Foreman M, Lucke-Wold B. Neurologic Injury-Related Predisposing Factors of Post-Traumatic Stress Disorder: A Critical Examination. Biomedicines 2023; 11:2732. [PMID: 37893106 PMCID: PMC10604790 DOI: 10.3390/biomedicines11102732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
The present review aimed to identify the means through which neurologic injury can predispose individuals to Post-Traumatic Stress Disorder (PTSD). In recent years, comprehensive studies have helped to clarify which structures in the central nervous system can lead to distinct PTSD symptoms-namely, dissociative reactions or flashbacks-when damaged. Our review narrowed its focus to three common neurologic injuries, traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), and stroke. We found that in each of the three cases, individuals may be at an increased risk of developing PTSD symptoms. Beyond discussing the potential mechanisms by which neurotrauma may lead to PTSD, we summarized our current understanding of the pathophysiology of the disorder and discussed predicted associations between the limbic system and PTSD. In particular, the effect of noradrenergic neuromodulatory signaling on the hypothalamic pituitary adrenal (HPA) axis as it pertains to fear memory recall needs to be further explored to better understand its effects on limbic structures in PTSD patients. At present, altered limbic activity can be found in both neurotrauma and PTSD patients, suggesting a potential causative link. Particularly, changes in the function of the limbic system may be associated with characteristic symptoms of PTSD such as intrusive memories and acute psychological distress. Despite evidence demonstrating the correlation between neurotrauma and PTSD, a lack of PTSD prognosis exists in TBI, SAH, and stroke patients who could benefit from early treatment. It should be noted that PTSD symptoms often compound with pre-existing issues, further deteriorating health outcomes for these patients. It is ultimately our goal to clarify the relationship between neurotrauma and PTSD so that earlier diagnoses and appropriate treatment are observed in clinic.
Collapse
Affiliation(s)
- Wiley Gillam
- College of Medicine, University of Florida, Gainesville, FL 32610, USA; (W.G.)
| | - Nikhil Godbole
- School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Shourya Sangam
- College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Alyssa DeTommaso
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32827, USA
| | - Marco Foreman
- College of Medicine, University of Florida, Gainesville, FL 32610, USA; (W.G.)
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
12
|
Rejdak K, Sienkiewicz-Jarosz H, Bienkowski P, Alvarez A. Modulation of neurotrophic factors in the treatment of dementia, stroke and TBI: Effects of Cerebrolysin. Med Res Rev 2023; 43:1668-1700. [PMID: 37052231 DOI: 10.1002/med.21960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophic factors (NTFs) are involved in the pathophysiology of neurological disorders such as dementia, stroke and traumatic brain injury (TBI), and constitute molecular targets of high interest for the therapy of these pathologies. In this review we provide an overview of current knowledge of the definition, discovery and mode of action of five NTFs, nerve growth factor, insulin-like growth factor 1, brain derived NTF, vascular endothelial growth factor and tumor necrosis factor alpha; as well as on their contribution to brain pathology and potential therapeutic use in dementia, stroke and TBI. Within the concept of NTFs in the treatment of these pathologies, we also review the neuropeptide preparation Cerebrolysin, which has been shown to resemble the activities of NTFs and to modulate the expression level of endogenous NTFs. Cerebrolysin has demonstrated beneficial treatment capabilities in vitro and in clinical studies, which are discussed within the context of the biochemistry of NTFs. The review focuses on the interactions of different NTFs, rather than addressing a single NTF, by outlining their signaling network and by reviewing their effect on clinical outcome in prevalent brain pathologies. The effects of the interactions of these NTFs and Cerebrolysin on neuroplasticity, neurogenesis, angiogenesis and inflammation, and their relevance for the treatment of dementia, stroke and TBI are summarized.
Collapse
Affiliation(s)
- Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | | | | | - Anton Alvarez
- Medinova Institute of Neurosciences, Clinica RehaSalud, Coruña, Spain
| |
Collapse
|
13
|
Brazdzionis J, Radwan MM, Thankam F, Rajesh Lal M, Baron D, Connett DA, Agrawal DK, Miulli DE. A Swine Model of Traumatic Brain Injury: Effects of Neuronally Generated Electromagnetic Fields and Electromagnetic Field Stimulation on Traumatic Brain Injury-Related Changes. Cureus 2023; 15:e42544. [PMID: 37637613 PMCID: PMC10460141 DOI: 10.7759/cureus.42544] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Background and objective Traumatic brain injury (TBI) has been associated with aberrations in neural circuitry attributable to the pathology resulting in electromagnetic field (EMF) changes. These changes have been evaluated in a variety of settings including through novel induction sensors with an ultra-portable shielded helmet and EMF channels with differences identified by comparing pre-injury and post-injury states. Modulation of the EMF has undergone cursory evaluation in neurologic conditions but has not yet been fully evaluated for clinical effects in treatment. Target EMF stimulation using EMF-related changes preoperatively to postoperatively has not yet been attempted and has not been completed using induction sensor technology. Our objectives in this study were twofold: we wanted to test the hypothesis that targeted stimulation using an EMF signal generator and stimulator to abnormal thresholds identified by real-time measurement of EMFs may enable early resolution of EMF changes and treatment of the TBI as modeled through controlled cortical impact (CCI); we also aimed to assess the feasibility of attempting this using real-time measurements with an EMF shielded helmet with EMF channels and non-contact, non-invasive induction sensors with attached EMF transmitters in real-time. Methods A singular Yucatan miniswine was obtained and baseline EMF recordings were obtained. A CCI of TBI and postoperative assessment of cortical EMF in a non-invasive, non-contact fashion were completed. Alterations in EMF were evaluated and EMF stimulation using those abnormal frequencies was completed using multiple treatments involving three minutes of EMF stimulation at abnormal frequencies. Stimulation thresholds of 2.5 Hz, 3.5 Hz, and 5.5 Hz with 1 V signal intensity were evaluated using sinusoidal waves. Additionally, stimulation thresholds using differing offsets to the sine wave at -500 mV, 0 mV, and 500 mv were assessed. Daily EMF and post-stimulation EMF measurements were recorded. EMF patterns were then assessed using an artificial intelligence (AI) model. Results AI modeling appropriately identified differences in EMF signal in pre-injury, post-injury, and post-stimulation states. EMF stimulation using a positive offset of 500 mV appeared to have maximal beneficial effects in return to baseline. Similarly targeted stimulation using thresholds of 2.5 Hz and 5.5 Hz with a positive 500 mV offset at 1 V allowed for recovery of EMF patterns post-injury towards patterns seen in baseline EMF measurements on stimulation day seven (postoperative day 17). Conclusion Stimulation of neural circuits with targeted EMF in a sinusoidal pattern with targeted thresholds after measurement with induction sensors with shielding isolated to a Mu-metal and copper mesh helmet and EMF channels is efficacious in promoting neuronal circuit recovery to preoperative baselines in the TBI miniswine model. Similarly, our findings confirm the appropriateness of this translational model in the evaluation of brain neuronal circuit EMF and that preoperative and post-trauma differences can be appropriately assessed with this technology.
Collapse
Affiliation(s)
- James Brazdzionis
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Mohamed M Radwan
- Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA
| | - Finosh Thankam
- Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA
| | - Merlin Rajesh Lal
- Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA
| | - David Baron
- Psychiatry and Behavioral Sciences, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA
| | - David A Connett
- Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA
| | - Devendra K Agrawal
- Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA
| | - Dan E Miulli
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| |
Collapse
|
14
|
Umfress A, Chakraborti A, Priya Sudarsana Devi S, Adams R, Epstein D, Massicano A, Sorace A, Singh S, Iqbal Hossian M, Andrabi SA, Crossman DK, Kumar N, Shahid Mukhtar M, Luo H, Simpson C, Abell K, Stokes M, Wiederhold T, Rosen C, Lu H, Natarajan A, Bibb JA. Cdk5 mediates rotational force-induced brain injury. Sci Rep 2023; 13:3394. [PMID: 36854738 PMCID: PMC9974974 DOI: 10.1038/s41598-023-29322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/02/2023] [Indexed: 03/02/2023] Open
Abstract
Millions of traumatic brain injuries (TBIs) occur annually. TBIs commonly result from falls, traffic accidents, and sports-related injuries, all of which involve rotational acceleration/deceleration of the brain. During these injuries, the brain endures a multitude of primary insults including compression of brain tissue, damaged vasculature, and diffuse axonal injury. All of these deleterious effects can contribute to secondary brain ischemia, cellular death, and neuroinflammation that progress for weeks, months, and lifetime after injury. While the linear effects of head trauma have been extensively modeled, less is known about how rotational injuries mediate neuronal damage following injury. Here, we developed a new model of repetitive rotational head trauma in rodents and demonstrated acute and prolonged pathological, behavioral, and electrophysiological effects of rotational TBI (rTBI). We identify aberrant Cyclin-dependent kinase 5 (Cdk5) activity as a principal mediator of rTBI. We utilized Cdk5-enriched phosphoproteomics to uncover potential downstream mediators of rTBI and show pharmacological inhibition of Cdk5 reduces the cognitive and pathological consequences of injury. These studies contribute meaningfully to our understanding of the mechanisms of rTBI and how they may be effectively treated.
Collapse
Affiliation(s)
- Alan Umfress
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ayanabha Chakraborti
- Department of Translational Neuroscience, University of Arizona College of Medicine in Phoeni, Biomedical Sciences Partnership Bldg, Phoenix, AZ, 85004 , USA
| | | | - Raegan Adams
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel Epstein
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adriana Massicano
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anna Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases University of Nebraska Medical Center, Omaha, NE, USA
| | - M Iqbal Hossian
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shaida A Andrabi
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nilesh Kumar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Shahid Mukhtar
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | - Charles Rosen
- OSF Healthcare Illinois Neurological Institute, Peoria, IL, USA
| | - Hongbing Lu
- Department of Mechanical Engineering, University of Texas at Dallas, Dallas, TX, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases University of Nebraska Medical Center, Omaha, NE, USA
| | - James A Bibb
- Department of Translational Neuroscience, University of Arizona College of Medicine in Phoeni, Biomedical Sciences Partnership Bldg, Phoenix, AZ, 85004 , USA.
| |
Collapse
|
15
|
Svirsky SE, Ranellone NS, Parry M, Holets E, Henchir J, Li Y, Carlson SW, Edward Dixon C. All-trans Retinoic Acid has Limited Therapeutic Effects on Cognition and Hippocampal Protein Expression After Controlled Cortical Impact. Neuroscience 2022; 499:130-141. [PMID: 35878718 DOI: 10.1016/j.neuroscience.2022.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
Traumatic brain injury (TBI) is known to impair synaptic function, and subsequently contribute to observed cognitive deficits. Retinoic Acid (RA) signaling modulates expression of synaptic plasticity proteins and is involved in hippocampal learning and memory. All trans-retinoic acid (ATRA), a metabolite of Vitamin A, has been identified as a potential pharmacotherapeutic for other neurological disorders due to this role. This study conducted an ATRA dose response to determine its therapeutic effects on cognitive behaviors and expression of hippocampal markers of synaptic plasticity and RA signaling proteins after experimental TBI. Under isoflurane anesthesia, adult male Sprague Dawley rats received either controlled cortical impact (CCI, 2.5 mm deformation, 4 m/s) or control surgery. Animals received daily intraperitoneal injection of 0.5, 1, 5, or 10 mg/kg of ATRA or vehicle for 2 weeks. Animals underwent motor and spatial learning and memory testing. Hippocampal expression of synaptic plasticity proteins neurogranin (Ng), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA1 sub-unit, as well as RA signaling proteins STRA6, ADLH1a1, CYP26A1 and CYP26B1 were evaluated by western blot at 2-weeks post-injury. ATRA treatment significantly recovered Ng synaptic protein expression, while having no effect on motor performance, spatial learning, and memory, and GluA1 expression after TBI. RA signaling protein expression is unchanged 2 weeks after TBI. Overall, ATRA administration after TBI showed limited therapeutic benefits compared to the vehicle.
Collapse
Affiliation(s)
- Sarah E Svirsky
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Nicholas S Ranellone
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Madison Parry
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Erik Holets
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Jeremy Henchir
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Youming Li
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Shaun W Carlson
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - C Edward Dixon
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; V.A. Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
16
|
Dulas MR, Morrow EL, Schwarb H, Cohen NJ, Duff MC. Temporal order memory impairments in individuals with moderate-severe traumatic brain injury. J Clin Exp Neuropsychol 2022; 44:210-225. [PMID: 35876336 PMCID: PMC9422773 DOI: 10.1080/13803395.2022.2101620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Temporal order memory is a core cognitive function that underlies much of our behavior. The ability to bind together information within and across events, and to reconstruct that sequence of information, critically relies upon the hippocampal relational memory system. Recent work has suggested traumatic brain injury (TBI) may particularly impact hippocampally mediated relational memory. However, it is currently unclear whether such deficits extend to temporal order memory, and whether deficits only arise at large memory loads. The present study assessed temporal order memory in individuals with chronic, moderate-severe TBI across multiple set sizes. METHOD Individuals with TBI and Neurotypical Comparison participants studied sequences of three to nine objects, one a time. At test, all items were re-presented in pseudorandom order, and participants indicated the temporal position (i.e., first, second, etc.) in which each object had appeared. Critically, we assessed both the frequency and the magnitude of errors (i.e., how far from its studied position was an item remembered). RESULTS Individuals with TBI were not impaired for the smallest set size, but showed significant impairments at 5+ items. Group differences in the error frequency did not increase further with larger set sizes, but group differences in error magnitude did increase with larger memory loads. Individuals with TBI showed spared performance for the first object of each list (primacy) but were impaired on the last object (recency), though error frequency was better for last compared to middle items. CONCLUSIONS Our findings demonstrate that TBI results in impaired temporal order memory for lists as small as five items, and that impairments are exacerbated with increasing memory loads. Assessments that test only small set sizes may be insufficient to detect these deficits. Further, these data highlight the importance of additional, sensitive measures in the assessment of cognitive impairments in TBI.
Collapse
Affiliation(s)
- Michael R. Dulas
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana (IL)
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana (IL)
| | - Emily L. Morrow
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville (TN)
| | - Hillary Schwarb
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana (IL)
- Interdisciplinary Health Sciences Institutes, University of Illinois at Urbana-Champaign, Urbana (IL)
| | - Neal J. Cohen
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana (IL)
- Interdisciplinary Health Sciences Institutes, University of Illinois at Urbana-Champaign, Urbana (IL)
| | - Melissa C. Duff
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville (TN)
| |
Collapse
|
17
|
Haidar MA, Shakkour Z, Barsa C, Tabet M, Mekhjian S, Darwish H, Goli M, Shear D, Pandya JD, Mechref Y, El Khoury R, Wang K, Kobeissy F. Mitoquinone Helps Combat the Neurological, Cognitive, and Molecular Consequences of Open Head Traumatic Brain Injury at Chronic Time Point. Biomedicines 2022; 10:biomedicines10020250. [PMID: 35203460 PMCID: PMC8869514 DOI: 10.3390/biomedicines10020250] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a heterogeneous disease in its origin, neuropathology, and prognosis, with no FDA-approved treatments. The pathology of TBI is complicated and not sufficiently understood, which is the reason why more than 30 clinical trials in the past three decades turned out unsuccessful in phase III. The multifaceted pathophysiology of TBI involves a cascade of metabolic and molecular events including inflammation, oxidative stress, excitotoxicity, and mitochondrial dysfunction. In this study, an open head TBI mouse model, induced by controlled cortical impact (CCI), was used to investigate the chronic protective effects of mitoquinone (MitoQ) administration 30 days post-injury. Neurological functions were assessed with the Garcia neuroscore, pole climbing, grip strength, and adhesive removal tests, whereas cognitive and behavioral functions were assessed using the object recognition, Morris water maze, and forced swim tests. As for molecular effects, immunofluorescence staining was conducted to investigate microgliosis, astrocytosis, neuronal cell count, and axonal integrity. The results show that MitoQ enhanced neurological and cognitive functions 30 days post-injury. MitoQ also decreased the activation of astrocytes and microglia, which was accompanied by improved axonal integrity and neuronal cell count in the cortex. Therefore, we conclude that MitoQ has neuroprotective effects in a moderate open head CCI mouse model by decreasing oxidative stress, neuroinflammation, and axonal injury.
Collapse
Affiliation(s)
- Muhammad Ali Haidar
- Faculty of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (M.A.H.); (C.B.); (S.M.); (H.D.)
| | - Zaynab Shakkour
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA;
| | - Chloe Barsa
- Faculty of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (M.A.H.); (C.B.); (S.M.); (H.D.)
| | - Maha Tabet
- Centre de Biologie Integrative (CBI), Molecular, Cellular, and Developmental Biology Department (MCD), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), 31062 Toulouse, France;
| | - Sarin Mekhjian
- Faculty of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (M.A.H.); (C.B.); (S.M.); (H.D.)
| | - Hala Darwish
- Faculty of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (M.A.H.); (C.B.); (S.M.); (H.D.)
| | - Mona Goli
- Chemistry and Bioehcmistry Department, Texas Tech University, Lubbock, TX 79409, USA; (M.G.); (Y.M.)
| | - Deborah Shear
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (D.S.); (J.D.P.)
| | - Jignesh D. Pandya
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (D.S.); (J.D.P.)
| | - Yehia Mechref
- Chemistry and Bioehcmistry Department, Texas Tech University, Lubbock, TX 79409, USA; (M.G.); (Y.M.)
| | - Riyad El Khoury
- Neuromuscular Diagnostic Laboratory, Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
- Correspondence: (R.E.K.); (K.W.); (F.K.)
| | - Kevin Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (R.E.K.); (K.W.); (F.K.)
| | - Firas Kobeissy
- Faculty of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (M.A.H.); (C.B.); (S.M.); (H.D.)
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (R.E.K.); (K.W.); (F.K.)
| |
Collapse
|
18
|
Whitney K, Nikulina E, Rahman SN, Alexis A, Bergold PJ. Delayed dosing of minocycline plus N-acetylcysteine reduces neurodegeneration in distal brain regions and restores spatial memory after experimental traumatic brain injury. Exp Neurol 2021; 345:113816. [PMID: 34310944 DOI: 10.1016/j.expneurol.2021.113816] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
Multiple drugs to treat traumatic brain injury (TBI) have failed clinical trials. Most drugs lose efficacy as the time interval increases between injury and treatment onset. Insufficient therapeutic time window is a major reason underlying failure in clinical trials. Few drugs have been developed with therapeutic time windows sufficiently long enough to treat TBI because little is known about which brain functions can be targeted if therapy is delayed hours to days after injury. We identified multiple injury parameters that are improved by first initiating treatment with the drug combination minocycline (MINO) plus N-acetylcysteine (NAC) at 72 h after injury (MN72) in a mouse closed head injury (CHI) experimental TBI model. CHI produces spatial memory deficits resulting in impaired performance on Barnes maze, hippocampal neuronal loss, and bilateral damage to hippocampal neurons, dendrites, spines and synapses. MN72 treatment restores Barnes maze acquisition and retention, protects against hippocampal neuronal loss, limits damage to dendrites, spines and synapses, and accelerates recovery of microtubule associated protein 2 (MAP2) expression, a key protein in maintaining proper dendritic architecture and synapse density. These data show that in addition to the structural integrity of the dendritic arbor, spine and synapse density can be successfully targeted with drugs first dosed days after injury. Retention of substantial drug efficacy even when first dosed 72 h after injury makes MINO plus NAC a promising candidate to treat clinical TBI.
Collapse
Affiliation(s)
- Kristen Whitney
- Department of Physiology and Pharmacology, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America; Program in Neural and Behavioral Science, School of Graduate Studies, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America
| | - Elena Nikulina
- Department of Physiology and Pharmacology, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America
| | - Syed N Rahman
- Department of Physiology and Pharmacology, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America
| | - Alisia Alexis
- Department of Physiology and Pharmacology, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America
| | - Peter J Bergold
- Department of Physiology and Pharmacology, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America; Program in Neural and Behavioral Science, School of Graduate Studies, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America.
| |
Collapse
|
19
|
McDaid J, Briggs CA, Barrington NM, Peterson DA, Kozlowski DA, Stutzmann GE. Sustained Hippocampal Synaptic Pathophysiology Following Single and Repeated Closed-Head Concussive Impacts. Front Cell Neurosci 2021; 15:652721. [PMID: 33867941 PMCID: PMC8044326 DOI: 10.3389/fncel.2021.652721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
Traumatic brain injury (TBI), and related diseases such as chronic traumatic encephalopathy (CTE) and Alzheimer's (AD), are of increasing concern in part due to enhanced awareness of their long-term neurological effects on memory and behavior. Repeated concussions, vs. single concussions, have been shown to result in worsened and sustained symptoms including impaired cognition and histopathology. To assess and compare the persistent effects of single or repeated concussive impacts on mediators of memory encoding such as synaptic transmission, plasticity, and cellular Ca2+ signaling, a closed-head controlled cortical impact (CCI) approach was used which closely replicates the mode of injury in clinical cases. Adult male rats received a sham procedure, a single impact, or three successive impacts at 48-hour intervals. After 30 days, hippocampal slices were prepared for electrophysiological recordings and 2-photon Ca2+ imaging, or fixed and immunostained for pathogenic phospho-tau species. In both concussion groups, hippocampal circuits showed hyper-excitable synaptic responsivity upon Schaffer collateral stimulation compared to sham animals, indicating sustained defects in hippocampal circuitry. This was not accompanied by sustained LTP deficits, but resting Ca2+ levels and voltage-gated Ca2+ signals were elevated in both concussion groups, while ryanodine receptor-evoked Ca2+ responses decreased with repeat concussions. Furthermore, pathogenic phospho-tau staining was progressively elevated in both concussion groups, with spreading beyond the hemisphere of injury, consistent with CTE. Thus, single and repeated concussions lead to a persistent upregulation of excitatory hippocampal synapses, possibly through changes in postsynaptic Ca2+ signaling/regulation, which may contribute to histopathology and detrimental long-term cognitive symptoms.
Collapse
Affiliation(s)
- John McDaid
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Clark A. Briggs
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Nikki M. Barrington
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Daniel A. Peterson
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Stem Cell and Regenerative Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Dorothy A. Kozlowski
- Department of Biological Sciences and Neuroscience Program, DePaul University, Chicago, IL, United States
| | - Grace E. Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Stem Cell and Regenerative Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
20
|
Donepezil attenuates injury following ischaemic stroke by stimulation of neurogenesis, angiogenesis, and inhibition of inflammation and apoptosis. Inflammopharmacology 2020; 29:153-166. [PMID: 33201349 DOI: 10.1007/s10787-020-00769-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Donepezil has proven to be an effective drug to reduce neuronal death and subsequently injury in neurodegenerative diseases. The current study evaluated the neuroprotective effects of donepezil in a rat model of ischaemic stroke and explored possible mechanisms which by this drug may reduce cell death. Temporary middle cerebral artery occlusion (tMCAO) was exerted for 45 min to induce ischaemic stroke. The animals were assigned into five groups: sham, control, and three groups treated with different doses of donepezil. Donepezil was intraperitoneally (IP) injected 4 h after reperfusion for 10 consecutive days. Infarct size was determined using TTC staining. The expression of proteins was evaluated using immunohistochemistry assays. Compared with the control group, infarct size was significantly reduced in tMCAO rats treated with different doses of donepezil. Moreover, our results showed significant decreased expression levels of apoptotic markers and pro-inflammatory mediators after treatment with different doses of donepezil for 10 days (P < 0.05). Likewise, significant increase of brain-derived neurotrophic factor (BDNF) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) proteins were found in tMCAO rats treated with donepezil compared with the control group (P < 0.05). Collectively, our findings show the validity of donepezil as a new therapeutic agent for attenuation of injury following ischaemic stroke through attenuation of inflammation and improvement of mitochondrial function, neurogenesis, and angiogenesis.
Collapse
|
21
|
León-Moreno LC, Castañeda-Arellano R, Aguilar-García IG, Desentis-Desentis MF, Torres-Anguiano E, Gutiérrez-Almeida CE, Najar-Acosta LJ, Mendizabal-Ruiz G, Ascencio-Piña CR, Dueñas-Jiménez JM, Rivas-Carrillo JD, Dueñas-Jiménez SH. Kinematic Changes in a Mouse Model of Penetrating Hippocampal Injury and Their Recovery After Intranasal Administration of Endometrial Mesenchymal Stem Cell-Derived Extracellular Vesicles. Front Cell Neurosci 2020; 14:579162. [PMID: 33192324 PMCID: PMC7533596 DOI: 10.3389/fncel.2020.579162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
Locomotion speed changes appear following hippocampal injury. We used a hippocampal penetrating brain injury mouse model to analyze other kinematic changes. We found a significant decrease in locomotion speed in both open-field and tunnel walk tests. We described a new quantitative method that allows us to analyze and compare the displacement curves between mice steps. In the tunnel walk, we marked mice with indelible ink on the knee, ankle, and metatarsus of the left and right hindlimbs to evaluate both in every step. Animals with hippocampal damage exhibit slower locomotion speed in both hindlimbs. In contrast, in the cortical injured group, we observed significant speed decrease only in the right hindlimb. We found changes in the displacement patterns after hippocampal injury. Mesenchymal stem cell-derived extracellular vesicles had been used for the treatment of several diseases in animal models. Here, we evaluated the effects of intranasal administration of endometrial mesenchymal stem cell-derived extracellular vesicles on the outcome after the hippocampal injury. We report the presence of vascular endothelial growth factor, granulocyte–macrophage colony-stimulating factor, and interleukin 6 in these vesicles. We observed locomotion speed and displacement pattern preservation in mice after vesicle treatment. These mice had lower pyknotic cells percentage and a smaller damaged area in comparison with the nontreated group, probably due to angiogenesis, wound repair, and inflammation decrease. Our results build up on the evidence of the hippocampal role in walk control and suggest that the extracellular vesicles could confer neuroprotection to the damaged hippocampus.
Collapse
Affiliation(s)
- Lilia Carolina León-Moreno
- Laboratory of Neurophysiology, Department of Neuroscience, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico.,Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara, Mexico
| | - Rolando Castañeda-Arellano
- Laboratory of Tissue Engineering and Transplant, Department of Physiology, cGMP Cell Processing Facility, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Irene Guadalupe Aguilar-García
- Laboratory of Neurophysiology, Department of Neuroscience, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | | | - Elizabeth Torres-Anguiano
- Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara, Mexico
| | - Coral Estefanía Gutiérrez-Almeida
- Laboratory of Neurophysiology, Department of Neuroscience, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Luis Jesús Najar-Acosta
- Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara, Mexico
| | - Gerardo Mendizabal-Ruiz
- Department of Computer Sciences, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara, Mexico
| | - César Rodolfo Ascencio-Piña
- Department of Computer Sciences, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara, Mexico
| | - Judith Marcela Dueñas-Jiménez
- Laboratory of Neurophysiology, Department of Neuroscience, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Jorge David Rivas-Carrillo
- Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara, Mexico
| | - Sergio Horacio Dueñas-Jiménez
- Laboratory of Neurophysiology, Department of Neuroscience, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
22
|
Tummala SR, Hemphill MA, Nam A, Meaney DF. Concussion increases CA1 activity during prolonged inactivity in a familiar environment. Exp Neurol 2020; 334:113435. [PMID: 32818488 DOI: 10.1016/j.expneurol.2020.113435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 11/30/2022]
Abstract
Although hippocampal damage plays a key role in impairments after concussion, differences in hippocampal information processing during recovery are unknown. Micro-endoscopic calcium imaging was performed before and after primary blast injury in freely behaving mice in two environments: their familiar home cage and a novel open field. Results show that after concussion CA1 activity increased in the familiar environment in which animals were awake and mostly immobile but was unaltered in a novel environment which the animals actively and constantly explored. As awake immobility parallels cognitive rest, a common treatment for patients, the results imply that prolonged cognitive rest may unwittingly impede concussion recovery.
Collapse
Affiliation(s)
- Shanti R Tummala
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthew A Hemphill
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea Nam
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - David F Meaney
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Morrow EL, Dulas MR, Cohen NJ, Duff MC. Relational Memory at Short and Long Delays in Individuals With Moderate-Severe Traumatic Brain Injury. Front Hum Neurosci 2020; 14:270. [PMID: 32754022 PMCID: PMC7366514 DOI: 10.3389/fnhum.2020.00270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/16/2020] [Indexed: 11/13/2022] Open
Abstract
Memory deficits are a common and frequently-cited consequence of moderate-severe traumatic brain injury (TBI). However, we know less about how TBI influences relational memory, which allows the binding of the arbitrary elements of experience and the flexible use and recombination of relational representations in novel situations. Relational memory is of special interest for individuals with TBI, given the vulnerability of the hippocampus to injury mechanisms, as well as a growing body of literature establishing the role of relational memory in flexible and goal-directed behavior. In this study, participants with and without a history of moderate-severe TBI completed a continuous relational memory task for face-scene pairings. Participants with TBI exhibited a disruption in relational memory not only when tested after a delay, but also when tested with no experimenter-imposed delay after stimulus presentation. Further, canonical assessments of working and episodic memory did not correspond with performance on the face-scene task, suggesting that this task may tap into relational memory differently and with greater sensitivity than standardized memory assessments. These results highlight the need for rigorous assessment of relational memory in TBI, which is likely to detect deficits that have specific consequences for community reintegration and long-term functional outcomes.
Collapse
Affiliation(s)
- Emily L Morrow
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Michael R Dulas
- Beckman Institute, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Neal J Cohen
- Beckman Institute, The University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Interdisciplinary Health Sciences Institutes, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Melissa C Duff
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
24
|
Traumatic brain injury and methamphetamine: A double-hit neurological insult. J Neurol Sci 2020; 411:116711. [DOI: 10.1016/j.jns.2020.116711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/27/2019] [Accepted: 01/29/2020] [Indexed: 11/17/2022]
|
25
|
Rigon A, Schwarb H, Klooster N, Cohen NJ, Duff MC. Spatial relational memory in individuals with traumatic brain injury. J Clin Exp Neuropsychol 2019; 42:14-27. [PMID: 31475607 DOI: 10.1080/13803395.2019.1659755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Relational memory is the ability to bind arbitrary relations between elements of experience into durable representations and the flexible expression of these representations. It is well known that individuals with traumatic brain injury (TBI) have declarative memory impairments, but less is known about how TBI affects relational memory binding, the deficit at the heart of declarative, or relational, memory impairment. The aim of the current study is to examine such deficits.Method: We used a spatial reconstruction task (SRT) with 29 individuals with TBI and 23 normal comparison (NC) participants to investigate four different types of spatial relations: (A) identity-location relations, i.e., the relationship between a specific item and its known location; (B) item-item relations, or the relationship between one item and another; (C) item-display relations, or the relationship between an item and its position in the display; and (D) compound-item relations, i.e., relations that involve combinations of A, B, and C.Results: Our data revealed that individuals with TBI showed impairments in learning identity-location relations and increased compound errors compared to NCs. We also found evidence that when item identity is disregarded, individuals with TBI do not perform differently from NCs. An exploratory analysis revealed that while relational memory performance was significantly correlated with scores on the California Verbal Learning Test (CVLT), more participants with TBI exhibited impairment on the SRT than of the CVLT.Conclusions: Our findings show that relational memory is impaired following TBI, and provide preliminary evidence for an easy-to-administer task with increased sensitivity to memory impairment.
Collapse
Affiliation(s)
- Arianna Rigon
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Communication Disorders, Marshall University, Huntington, WV
| | - Hillary Schwarb
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nathaniel Klooster
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Neal J Cohen
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Melissa C Duff
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
26
|
Marschner L, Schreurs A, Lechat B, Mogensen J, Roebroek A, Ahmed T, Balschun D. Single mild traumatic brain injury results in transiently impaired spatial long-term memory and altered search strategies. Behav Brain Res 2019; 365:222-230. [DOI: 10.1016/j.bbr.2018.02.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 10/02/2017] [Accepted: 02/26/2018] [Indexed: 11/16/2022]
|
27
|
MMP-9 Contributes to Dendritic Spine Remodeling Following Traumatic Brain Injury. Neural Plast 2019; 2019:3259295. [PMID: 31198417 PMCID: PMC6526556 DOI: 10.1155/2019/3259295] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/03/2019] [Indexed: 01/30/2023] Open
Abstract
Traumatic brain injury (TBI) occurs when a blow to the head causes brain damage. Apart from physical trauma, it causes a wide range of cognitive, behavioral, and emotional deficits including impairments in learning and memory. On neuronal level, TBI may lead to circuitry remodeling and in effect imbalance between excitatory and inhibitory neurotransmissions. Such change in brain homeostasis may often lead to brain disorders. The basic units of neuronal connectivity are dendritic spines that are tiny protrusions forming synapses between two cells in a network. Spines are dynamic structures that undergo morphological transformation throughout life. Their shape is strictly related to an on/off state of synapse and the strength of synaptic transmission. Matrix metalloproteinase-9 (MMP-9) is an extrasynaptically operating enzyme that plays a role in spine remodeling and has been reported to be activated upon TBI. The aim of the present study was to evaluate the influence of MMP-9 on dendritic spine density and morphology following controlled cortical impact (CCI) as animal model of TBI. We examined spine density and dendritic spine shape in the cerebral cortex and the hippocampus. CCI caused a marked decrease in spine density as well as spine shrinkage in the cerebral cortex ipsilateral to the injury, when compared to sham animals and contralateral side both 1 day and 1 week after the insult. Decreased spine density was also observed in the dentate gyrus of the hippocampus; however, in contrast to the cerebral cortex, spines in the DG became more filopodia-like. In mice lacking MMP-9, no effects of TBI on spine density and morphology were observed.
Collapse
|
28
|
Sta Maria NS, Sargolzaei S, Prins ML, Dennis EL, Asarnow RF, Hovda DA, Harris NG, Giza CC. Bridging the gap: Mechanisms of plasticity and repair after pediatric TBI. Exp Neurol 2019; 318:78-91. [PMID: 31055004 DOI: 10.1016/j.expneurol.2019.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/09/2019] [Accepted: 04/25/2019] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury is the leading cause of death and disability in the United States, and may be associated with long lasting impairments into adulthood. The multitude of ongoing neurobiological processes that occur during brain maturation confer both considerable vulnerability to TBI but may also provide adaptability and potential for recovery. This review will examine and synthesize our current understanding of developmental neurobiology in the context of pediatric TBI. Delineating this biology will facilitate more targeted initial care, mechanism-based therapeutic interventions and better long-term prognostication and follow-up.
Collapse
Affiliation(s)
- Naomi S Sta Maria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, ZNI115, Los Angeles, CA 90033, United States of America.
| | - Saman Sargolzaei
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America.
| | - Mayumi L Prins
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Emily L Dennis
- Brigham and Women's Hospital/Harvard University and Department of Psychology, Stanford University, 1249 Boylston Street, Boston, MA 02215, United States of America.
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Box 951759, 760 Westwood Plaza, 48-240C Semel Institute, Los Angeles, CA 90095-1759, United States of America.
| | - David A Hovda
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Department of Medical and Molecular Pharmacology, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562 & Semel 18-228A, Los Angeles, CA 90095-6901, United States of America.
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Christopher C Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America; Division of Pediatric Neurology, Mattel Children's Hospital - UCLA, Los Angeles, CA, United States of America.
| |
Collapse
|
29
|
Marchese E, Corvino V, Di Maria V, Furno A, Giannetti S, Cesari E, Lulli P, Michetti F, Geloso MC. The Neuroprotective Effects of 17β-Estradiol Pretreatment in a Model of Neonatal Hippocampal Injury Induced by Trimethyltin. Front Cell Neurosci 2018; 12:385. [PMID: 30416427 PMCID: PMC6213803 DOI: 10.3389/fncel.2018.00385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Hippocampal dysfunction plays a central role in neurodevelopmental disorders, resulting in severe impairment of cognitive abilities, including memory and learning. On this basis, developmental studies represent an important tool both to understanding the cellular and molecular phenomena underlying early hippocampal damage and to study possible therapeutic interventions, that may modify the progression of neuronal death. Given the modulatory role played by 17β-estradiol (E2) on hippocampal functions and its neuroprotective properties, the present study investigates the effects of pretreatment with E2 in a model of neonatal hippocampal injury obtained by trimethyltin (TMT) administration, characterized by neuronal loss in CA1 and CA3 subfields and astroglial and microglial activation. At post-natal days (P)5 and P6 animals received E2 administration (0.2 mg/kg/die i.p.) or vehicle. At P7 they received a single dose of TMT (6.5 mg/kg i.p.) and were sacrificed 72 h (P10) or 7 days after TMT treatment (P14). Our findings indicate that pretreatment with E2 exerts a protective effect against hippocampal damage induced by TMT administration early in development, reducing the extent of neuronal death in the CA1 subfield, inducing the activation of genes involved in neuroprotection, lowering the neuroinflammatory response and restoring neuropeptide Y- and parvalbumin- expression, which is impaired in the early phases of TMT-induced damage. Our data support the efficacy of estrogen-based neuroprotective approaches to counteract early occurring hippocampal damage in the developing hippocampus.
Collapse
Affiliation(s)
- Elisa Marchese
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Di Maria
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy.,Epilepsy Center, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Alfredo Furno
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Giannetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eleonora Cesari
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| | - Paola Lulli
- Laboratorio di Biochimica Clinica e Biologia Molecolare, IRCCS Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy.,Facoltà di Medicina e Chirurgia - IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milan, Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
30
|
Hansen KR, DeWalt GJ, Mohammed AI, Tseng HA, Abdulkerim ME, Bensussen S, Saligrama V, Nazer B, Eldred WD, Han X. Mild Blast Injury Produces Acute Changes in Basal Intracellular Calcium Levels and Activity Patterns in Mouse Hippocampal Neurons. J Neurotrauma 2018; 35:1523-1536. [PMID: 29343209 PMCID: PMC5998839 DOI: 10.1089/neu.2017.5029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI) represents a serious public health concern. Although much is understood about long-term changes in cell signaling and anatomical pathologies associated with mTBI, little is known about acute changes in neuronal function. Using large scale Ca2+ imaging in vivo, we characterized the intracellular Ca2+ dynamics in thousands of individual hippocampal neurons using a repetitive mild blast injury model in which blasts were directed onto the cranium of unanesthetized mice on two consecutive days. Immediately following each blast event, neurons exhibited two types of changes in Ca2+ dynamics at different time scales. One was a reduction in slow Ca2+ dynamics that corresponded to shifts in basal intracellular Ca2+ levels at a time scale of minutes, suggesting a disruption of biochemical signaling. The second was a reduction in the rates of fast transient Ca2+ fluctuations at the sub-second time scale, which are known to be closely linked to neural activity. Interestingly, the blast-induced changes in basal Ca2+ levels were independent of the changes in the rates of fast Ca2+ transients, suggesting that blasts had heterogeneous effects on different cell populations. Both types of changes recovered after ∼1 h. Together, our results demonstrate that mTBI induced acute, heterogeneous changes in neuronal function, altering intracellular Ca2+ dynamics across different time scales, which may contribute to the initiation of longer-term pathologies.
Collapse
Affiliation(s)
- Kyle R. Hansen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Ali I. Mohammed
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Hua-an Tseng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Moona E. Abdulkerim
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Seth Bensussen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Venkatesh Saligrama
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts
| | - Bobak Nazer
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts
| | | | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
31
|
Zhu L, Tang T, Fan R, Luo JK, Cui HJ, Zhang CH, Peng WJ, Sun P, Xiong XG, Wang Y. Xuefu Zhuyu decoction improves neurological dysfunction by increasing synapsin expression after traumatic brain injury. Neural Regen Res 2018; 13:1417-1424. [PMID: 30106054 PMCID: PMC6108199 DOI: 10.4103/1673-5374.235297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Xuefu Zhuyu decoction has been used for treating traumatic brain injury and improving post-traumatic dysfunction, but its mechanism of action needs further investigation. This study established rat models of traumatic brain injury by controlled cortical impact. Rat models were intragastrically administered 9 and 18 g/kg Xuefu Zhuyu decoction once a day for 14 or 21 days. Changes in neurological function were assessed by modified neurological severity scores and the Morris water maze. Immunohistochemistry, western blot assay, and reverse-transcription polymerase chain reaction were used to analyze synapsin protein and mRNA expression at the injury site of rats. Our results showed that Xuefu Zhuyu decoction visibly improved neurological function of rats with traumatic brain injury. These changes were accompanied by increased expression of synaptophysin, synapsin I, and postsynaptic density protein-95 protein and mRNA in a dose-dependent manner. These findings indicate that Xuefu Zhuyu decoction increases synapsin expression and improves neurological deficits after traumatic brain injury.
Collapse
Affiliation(s)
- Lin Zhu
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Rong Fan
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jie-Kun Luo
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Han-Jin Cui
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Chun-Hu Zhang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Wei-Jun Peng
- Department of Integrated Traditional Chinese and Western Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Peng Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xin-Gui Xiong
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
32
|
Neuberger EJ, Swietek B, Corrubia L, Prasanna A, Santhakumar V. Enhanced Dentate Neurogenesis after Brain Injury Undermines Long-Term Neurogenic Potential and Promotes Seizure Susceptibility. Stem Cell Reports 2017; 9:972-984. [PMID: 28826852 PMCID: PMC5599224 DOI: 10.1016/j.stemcr.2017.07.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/17/2023] Open
Abstract
Hippocampal dentate gyrus is a focus of enhanced neurogenesis and excitability after traumatic brain injury. Increased neurogenesis has been proposed to aid repair of the injured network. Our data show that an early increase in neurogenesis after fluid percussion concussive brain injury is transient and is followed by a persistent decrease compared with age-matched controls. Post-injury changes in neurogenesis paralleled changes in neural precursor cell proliferation and resulted in a long-term decline in neurogenic capacity. Targeted pharmacology to restore post-injury neurogenesis to control levels reversed the long-term decline in neurogenic capacity. Limiting post-injury neurogenesis reduced early increases in dentate excitability and seizure susceptibility. Our results challenge the assumption that increased neurogenesis after brain injury is beneficial and show that early post-traumatic increases in neurogenesis adversely affect long-term outcomes by exhausting neurogenic potential and enhancing epileptogenesis. Treatments aimed at limiting excessive neurogenesis can potentially restore neuroproliferative capacity and limit epilepsy after brain injury. Increase in neurogenesis after TBI is transient and leads to long-term decline Altered neural precursor proliferation underlies post-TBI changes in neurogenesis Brief antagonism of VEGFR2 restores post-injury neurogenesis to control levels Limiting neurogenesis improves excitability and seizure susceptibility after TBI
Collapse
Affiliation(s)
- Eric J Neuberger
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Rutgers Biomedical & Health Sciences, MSB-H-512, 185 S. Orange Ave., Newark, NJ 07103, USA
| | - Bogumila Swietek
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Rutgers Biomedical & Health Sciences, MSB-H-512, 185 S. Orange Ave., Newark, NJ 07103, USA
| | - Lucas Corrubia
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Rutgers Biomedical & Health Sciences, MSB-H-512, 185 S. Orange Ave., Newark, NJ 07103, USA
| | - Anagha Prasanna
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Rutgers Biomedical & Health Sciences, MSB-H-512, 185 S. Orange Ave., Newark, NJ 07103, USA
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Rutgers Biomedical & Health Sciences, MSB-H-512, 185 S. Orange Ave., Newark, NJ 07103, USA.
| |
Collapse
|
33
|
Phase I and Phase II Therapies for Acute Ischemic Stroke: An Update on Currently Studied Drugs in Clinical Research. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4863079. [PMID: 28286764 PMCID: PMC5329656 DOI: 10.1155/2017/4863079] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023]
Abstract
Acute ischemic stroke is a devastating cause of death and disability, consequences of which depend on the time from ischemia onset to treatment, the affected brain region, and its size. The main targets of ischemic stroke therapy aim to restore tissue perfusion in the ischemic penumbra in order to decrease the total infarct area by maintaining blood flow. Advances in research of pathological process and pathways during acute ischemia have resulted in improvement of new treatment strategies apart from restoring perfusion. Additionally, limiting the injury severity by manipulating the molecular mechanisms during ischemia has become a promising approach, especially in animal research. The purpose of this article is to review completed and ongoing phases I and II trials for the treatment of acute ischemic stroke, reviewing studies on antithrombotic, thrombolytic, neuroprotective, and antineuroinflammatory drugs that may translate into more effective treatments.
Collapse
|
34
|
Luque T, Kang MS, Schaffer DV, Kumar S. Microelastic mapping of the rat dentate gyrus. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150702. [PMID: 27152213 PMCID: PMC4852636 DOI: 10.1098/rsos.150702] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/24/2016] [Indexed: 05/14/2023]
Abstract
The lineage commitment of many cultured stem cells, including adult neural stem cells (NSCs), is strongly sensitive to the stiffness of the underlying extracellular matrix. However, it remains unclear how well the stiffness ranges explored in culture align with the microscale stiffness values stem cells actually encounter within their endogenous tissue niches. To address this question in the context of hippocampal NSCs, we used atomic force microscopy to spatially map the microscale elastic modulus (E) of specific anatomical substructures within living slices of rat dentate gyrus in which NSCs reside during lineage commitment in vivo. We measured depth-dependent apparent E-values at locations across the hilus (H), subgranular zone (SGZ) and granule cell layer (GCL) and found a two- to threefold increase in stiffness at 500 nm indentation from the H (49 ± 7 Pa) and SGZ (58 ± 8 Pa) to the GCL (115 ± 18 Pa), a fold change in stiffness we have previously found functionally relevant in culture. Additionally, E exhibits nonlinearity with depth, increasing significantly for indentations larger than 1 µm and most pronounced in the GCL. The methodological advances implemented for these measurements allow the quantification of the elastic properties of hippocampal NSC niche at unprecedented spatial resolution.
Collapse
Affiliation(s)
- Tomás Luque
- Unit of Biophysics and Bioengineering, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Michael S. Kang
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA 94720, USA
| | - David V. Schaffer
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
- Authors for correspondence: David V. Schaffer e-mail:
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Authors for correspondence: Sanjay Kumar e-mail:
| |
Collapse
|
35
|
Nikolakopoulou AM, Koeppen J, Garcia M, Leish J, Obenaus A, Ethell IM. Astrocytic Ephrin-B1 Regulates Synapse Remodeling Following Traumatic Brain Injury. ASN Neuro 2016; 8:1-18. [PMID: 26928051 PMCID: PMC4774052 DOI: 10.1177/1759091416630220] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/31/2015] [Indexed: 01/06/2023] Open
Abstract
Traumatic brain injury (TBI) can result in tissue alterations distant from the site of the initial injury, which can trigger pathological changes within hippocampal circuits and are thought to contribute to long-term cognitive and neuropsychological impairments. However, our understanding of secondary injury mechanisms is limited. Astrocytes play an important role in brain repair after injury and astrocyte-mediated mechanisms that are implicated in synapse development are likely important in injury-induced synapse remodeling. Our studies suggest a new role of ephrin-B1, which is known to regulate synapse development in neurons, in astrocyte-mediated synapse remodeling following TBI. Indeed, we observed a transient upregulation of ephrin-B1 immunoreactivity in hippocampal astrocytes following moderate controlled cortical impact model of TBI. The upregulation of ephrin-B1 levels in hippocampal astrocytes coincided with a decline in the number of vGlut1-positive glutamatergic input to CA1 neurons at 3 days post injury even in the absence of hippocampal neuron loss. In contrast, tamoxifen-induced ablation of ephrin-B1 from adult astrocytes in ephrin-B1loxP/yERT2-CreGFAP mice accelerated the recovery of vGlut1-positive glutamatergic input to CA1 neurons after TBI. Finally, our studies suggest that astrocytic ephrin-B1 may play an active role in injury-induced synapse remodeling through the activation of STAT3-mediated signaling in astrocytes. TBI-induced upregulation of STAT3 phosphorylation within the hippocampus was suppressed by astrocyte-specific ablation of ephrin-B1 in vivo, whereas the activation of ephrin-B1 in astrocytes triggered an increase in STAT3 phosphorylation in vitro. Thus, regulation of ephrin-B1 signaling in astrocytes may provide new therapeutic opportunities to aid functional recovery after TBI.
Collapse
Affiliation(s)
| | - Jordan Koeppen
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA Cell, Molecular, and Developmental Biology graduate program, University of California Riverside, CA, USA
| | - Michael Garcia
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA
| | - Joshua Leish
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, Loma Linda University, CA, USA
| | - Iryna M Ethell
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA Cell, Molecular, and Developmental Biology graduate program, University of California Riverside, CA, USA
| |
Collapse
|
36
|
Wilson NM, Titus DJ, Oliva AA, Furones C, Atkins CM. Traumatic Brain Injury Upregulates Phosphodiesterase Expression in the Hippocampus. Front Syst Neurosci 2016; 10:5. [PMID: 26903822 PMCID: PMC4742790 DOI: 10.3389/fnsys.2016.00005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) results in significant impairments in hippocampal synaptic plasticity. A molecule critically involved in hippocampal synaptic plasticity, 3′,5′-cyclic adenosine monophosphate, is downregulated in the hippocampus after TBI, but the mechanism that underlies this decrease is unknown. To address this question, we determined whether phosphodiesterase (PDE) expression in the hippocampus is altered by TBI. Young adult male Sprague Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. Animals were analyzed by western blotting for changes in PDE expression levels in the hippocampus. We found that PDE1A levels were significantly increased at 30 min, 1 h and 6 h after TBI. PDE4B2 and 4D2 were also significantly increased at 1, 6, and 24 h after TBI. Additionally, phosphorylation of PDE4A was significantly increased at 6 and 24 h after TBI. No significant changes were observed in levels of PDE1B, 1C, 3A, 8A, or 8B between 30 min to 7 days after TBI. To determine the spatial profile of these increases, we used immunohistochemistry and flow cytometry at 24 h after TBI. PDE1A and phospho-PDE4A localized to neuronal cell bodies. PDE4B2 was expressed in neuronal dendrites, microglia and infiltrating CD11b+ immune cells. PDE4D was predominantly found in microglia and infiltrating CD11b+ immune cells. To determine if inhibition of PDE4 would improve hippocampal synaptic plasticity deficits after TBI, we treated hippocampal slices with rolipram, a pan-PDE4 inhibitor. Rolipram partially rescued the depression in basal synaptic transmission and converted a decaying form of long-term potentiation (LTP) into long-lasting LTP. Overall, these results identify several possible PDE targets for reducing hippocampal synaptic plasticity deficits and improving cognitive function acutely after TBI.
Collapse
Affiliation(s)
- Nicole M Wilson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - David J Titus
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Anthony A Oliva
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Concepcion Furones
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|
37
|
Gibb SL, Zhao Y, Potter D, Hylin MJ, Bruhn R, Baimukanova G, Zhao J, Xue H, Abdel-Mohsen M, Pillai SK, Moore AN, Johnson EM, Cox CS, Dash PK, Pati S. TIMP3 Attenuates the Loss of Neural Stem Cells, Mature Neurons and Neurocognitive Dysfunction in Traumatic Brain Injury. Stem Cells 2015; 33:3530-44. [PMID: 26299440 DOI: 10.1002/stem.2189] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cells (MSCs) have been shown to have potent therapeutic effects in a number of disorders including traumatic brain injury (TBI). However, the molecular mechanism(s) underlying these protective effects are largely unknown. Herein we demonstrate that tissue inhibitor of matrix metalloproteinase-3 (TIMP3), a soluble protein released by MSCs, is neuroprotective and enhances neuronal survival and neurite outgrowth in vitro. In vivo in a murine model of TBI, intravenous recombinant TIMP3 enhances dendritic outgrowth and abrogates loss of hippocampal neural stem cells and mature neurons. Mechanistically we demonstrate in vitro and in vivo that TIMP3-mediated neuroprotection is critically dependent on activation of the Akt-mTORC1 pathway. In support of the neuroprotective effect of TIMP3, we find that intravenous delivery of recombinant TIMP3 attenuates deficits in hippocampal-dependent neurocognition. Taken together, our data strongly suggest that TIMP3 has direct neuroprotective effects that can mitigate the deleterious effects associated with TBI, an area with few if any therapeutic options.
Collapse
Affiliation(s)
- Stuart L Gibb
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yuhai Zhao
- Department of Neurobiology and Anatomy, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Daniel Potter
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Michael J Hylin
- Department of Neurobiology and Anatomy, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Roberta Bruhn
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Gyulnar Baimukanova
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Hasen Xue
- Department of Pediatric Surgery and Institute for Molecular Medicine, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Satish K Pillai
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Evan M Johnson
- Department of Neurobiology and Anatomy, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Charles S Cox
- Department of Pediatric Surgery and Institute for Molecular Medicine, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Shibani Pati
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
38
|
Titus DJ, Oliva AA, Wilson NM, Atkins CM. Phosphodiesterase inhibitors as therapeutics for traumatic brain injury. Curr Pharm Des 2015; 21:332-42. [PMID: 25159077 DOI: 10.2174/1381612820666140826113731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/25/2014] [Indexed: 11/22/2022]
Abstract
Developing therapeutics for traumatic brain injury remains a challenge for all stages of recovery. The pathological features of traumatic brain injury are diverse, and it remains an obstacle to be able to target the wide range of pathologies that vary between traumatic brain injured patients and that evolve during recovery. One promising therapeutic avenue is to target the second messengers cAMP and cGMP with phosphodiesterase inhibitors due to their broad effects within the nervous system. Phosphodiesterase inhibitors have the capability to target different injury mechanisms throughout the time course of recovery after brain injury. Inflammation and neuronal death are early targets of phosphodiesterase inhibitors, and synaptic dysfunction and circuitry remodeling are late potential targets of phosphodiesterase inhibitors. This review will discuss how signaling through cyclic nucleotides contributes to the pathology of traumatic brain injury in the acute and chronic stages of recovery. We will review our current knowledge of the successes and challenges of using phosphodiesterase inhibitors for the treatment of traumatic brain injury and conclude with important considerations in developing phosphodiesterase inhibitors as therapeutics for brain trauma.
Collapse
Affiliation(s)
| | | | | | - Coleen M Atkins
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA.
| |
Collapse
|
39
|
Kobori N, Moore AN, Dash PK. Altered regulation of protein kinase a activity in the medial prefrontal cortex of normal and brain-injured animals actively engaged in a working memory task. J Neurotrauma 2014; 32:139-48. [PMID: 25027811 DOI: 10.1089/neu.2014.3487] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) signaling is required for short- and long-term memory. In contrast, enhanced PKA activity has been shown to impair working memory, a prefrontal cortex (PFC)-dependent, transient form of memory critical for cognition and goal-directed behaviors. Working memory can be impaired after traumatic brain injury (TBI) in the absence of overt damage to the PFC. The cellular and molecular mechanisms that contribute to this deficit are largely unknown. In the present study, we examined whether altered PKA signaling in the PFC as a result of TBI is a contributing mechanism. We measured PKA activity in medial PFC (mPFC) tissue homogenates prepared from sham and 14-day postinjury rats. PKA activity was measured both when animals were inactive and when actively engaged in a spatial working memory task. Our results demonstrate, for the first time, that PKA activity in the mPFC is actively suppressed in uninjured animals performing a working memory task. By comparison, both basal and working memory-related PKA activity was elevated in TBI animals. Inhibition of PKA activity by intra-mPFC administration of Rp-cAMPS into TBI animals had no influence on working memory performance 30 min postinfusion, but significantly improved working memory when tested 24 h later. This improvement was associated with reduced glutamic acid decarboxylase 67 messenger RNA levels. Taken together, these results suggest that TBI-associated working memory dysfunction may result, in part, from enhanced PKA activity, possibly leading to altered expression of plasticity-related genes in the mPFC.
Collapse
Affiliation(s)
- Nobuhide Kobori
- 1 Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston , Houston, Texas
| | | | | |
Collapse
|
40
|
Sebastian V, Diallo A, Ling DSF, Serrano PA. Robust training attenuates TBI-induced deficits in reference and working memory on the radial 8-arm maze. Front Behav Neurosci 2013; 7:38. [PMID: 23653600 PMCID: PMC3642509 DOI: 10.3389/fnbeh.2013.00038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/18/2013] [Indexed: 11/13/2022] Open
Abstract
Globally, it is estimated that nearly 10 million people sustain severe brain injuries leading to hospitalization and/or death every year. Amongst survivors, traumatic brain injury (TBI) results in a wide variety of physical, emotional and cognitive deficits. The most common cognitive deficit associated with TBI is memory loss, involving impairments in spatial reference and working memory. However, the majority of research thus far has characterized the deficits associated with TBI on either reference or working memory systems separately, without investigating how they interact within a single task. Thus, we examined the effects of TBI on short-term working and long-term reference memory using the radial 8-arm maze (RAM) with a sequence of four baited and four unbaited arms. Subjects were given 10 daily trials for 6 days followed by a memory retrieval test 2 weeks after training. Multiple training trials not only provide robust training, but also test the subjects' ability to frequently update short-term memory while learning the reference rules of the task. Our results show that TBI significantly impaired short-term working memory function on previously acquired spatial information but has little effect on long-term reference memory. Additionally, TBI significantly increased working memory errors during acquisition and reference memory errors during retention testing 2 weeks later. With a longer recovery period after TBI, the robust RAM training mitigated the reference memory deficit in retention but not the short-term working memory deficit during acquisition. These results identify the resiliency and vulnerabilities of short-term working and long-term reference memory to TBI in the context of robust training. The data highlight the role of cognitive training and other behavioral remediation strategies implicated in attenuating deficits associated with TBI.
Collapse
Affiliation(s)
| | | | - Douglas S. F. Ling
- Department of Physiology and Pharmacology, SUNY Downstate Medical CenterBrooklyn, NY, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical CenterBrooklyn, NY, USA
| | - Peter A. Serrano
- Department of Psychology, Hunter CollegeNew York, NY, USA
- Department of Psychology, The Graduate Center of CUNYNew York, NY, USA
| |
Collapse
|
41
|
Translational research in neurotrauma: novel mechanisms and emerging therapies. Transl Stroke Res 2011; 2:425-6. [PMID: 24323677 DOI: 10.1007/s12975-011-0135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 10/29/2011] [Accepted: 10/29/2011] [Indexed: 10/15/2022]
|