1
|
Jiang Y, Tang X, Deng P, Jiang C, He Y, Hao D, Yang H. The Neuroprotective Role of Fisetin in Different Neurological Diseases: a Systematic Review. Mol Neurobiol 2023; 60:6383-6394. [PMID: 37453993 DOI: 10.1007/s12035-023-03469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Neurological diseases place a substantial burden on public health and have a serious impact on the quality of life of patients. Despite the multifaceted pathological process involved in the occurrence and development of these neurological diseases, each disease has its own unique pathological characteristics and underlying molecular mechanisms which trigger their onset. Thus, it is unlikely to achieve effective treatment of neurological diseases by means of a single approach. To this end, we reason that it is pivotal to seek an efficient strategy that implements multitherapeutic targeting and addresses the multifaceted pathological process to overcome the complex issues related to neural dysfunction. In recent years, natural medicinal plant-derived monomers have received extensive attention as new neuroprotective agents for treatment of neurological disorders. Fisetin, a flavonoid, has emerged as a novel potential molecule that enhances neural protection and reverses cognitive abnormalities. The neuroprotective effects of fisetin are attributed to its multifaceted biological activity and multiple therapeutic mechanisms associated with different neurological disorders. In this review article, we summarize recent research progression regarding the pharmacological effects of fisetin in treating several neurological diseases and the potential mechanisms.
Collapse
Affiliation(s)
- Yizhen Jiang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Basic Medical school Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Xiangwen Tang
- Basic Medical school Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Peng Deng
- Basic Medical school Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Chao Jiang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yuqing He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
2
|
Liu G, Zhao Z, Li M, Zhao M, Xu T, Wang S, Zhang Y. Current perspectives on benzoflavone analogues with potent biological activities: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
3
|
Screening and Structure-Activity Relationship of D2AAK1 Derivatives for Potential Application in the Treatment of Neurodegenerative Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072239. [PMID: 35408637 PMCID: PMC9000546 DOI: 10.3390/molecules27072239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Neurodegenerative and mental diseases are serious medical, economic and social problems. Neurodegeneration is referred to as a pathological condition associated with damage to nerve cells leading to their death. Treatment of neurodegenerative diseases is at present symptomatic only, and novel drugs are urgently needed which would be able to stop disease progression. We performed screening of reactive oxygen species, reactive nitrogen species, glutathione and level intracellular Ca2+. The studies were assessed using one-way ANOVA of variance with Dunnett’s post hoc test. Previously, we reported D2AAK1 as a promising compound for the treatment of neurodegenerative and mental disorders. Here, we show a screening of D2AAK1 derivatives aimed at the selection of the compound with the most favorable pharmacological profile. Selected compounds cause an increase in the proliferation of a hippocampal neuron-like cell line, changes in the levels of reactive oxygen and nitrogen forms, reduced glutathione and a reduced intracellular calcium pool. Upon analyzing the structure–activity relationship, we selected the compound with the most favorable profile for a neuroprotective activity for potential application in the treatment of neurodegenerative diseases.
Collapse
|
4
|
Véras JH, do Vale CR, da Silva Lima DC, dos Anjos MM, Bernardes A, de Moraes Filho AV, e Silva CR, de Oliveira GR, Pérez CN, Chen-Chen L. Modulating effect of a hydroxychalcone and a novel coumarin–chalcone hybrid against mitomycin-induced genotoxicity in somatic cells of Drosophila melanogaster. Drug Chem Toxicol 2020; 45:775-784. [DOI: 10.1080/01480545.2020.1776314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jefferson Hollanda Véras
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | - Camila Regina do Vale
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | - Débora Cristina da Silva Lima
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Aline Bernardes
- Chemistry Institute, Universidade Federal de Goiás, Goiânia, Brazil
| | - Aroldo Vieira de Moraes Filho
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | - Carolina Ribeiro e Silva
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | | | | | - Lee Chen-Chen
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
5
|
Lapchak PA, Lara JM, Boitano PD. Cytoprotective Drug-Tissue Plasminogen Activator Protease Interaction Assays: Screening of Two Novel Cytoprotective Chromones. Transl Stroke Res 2017; 8:10.1007/s12975-017-0533-7. [PMID: 28405804 DOI: 10.1007/s12975-017-0533-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/21/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Tissue plasminogen activator (tPA) is currently used in combination with endovascular procedures to enhance recanalization and cerebral reperfusion and is also currently administered as standard-of-care thrombolytic therapy to patients within 3-4.5 h of an ischemic stroke. Since tPA is not neuroprotective or cytoprotective, adjuvant therapy with a neuroprotective or an optimized cytoprotective compound is required to provide the best care to stroke victims to maximally promote clinical recovery. In this article, we describe the use of a sensitive standardized protease assay with CH3SO2-D-hexahydrotyrosine-Gly-Arg-p-nitroanilide•AcOH, a chromogenic protease substrate that is cleaved to 4-nitroaniline (p-nitroaniline) and measured spectrophotometrically at 405 nm (OD405 nm), and how the assay can be used as an effective screening assay to study drug-tPA interactions. While we focus on two compounds of interest in our drug development pipeline, the assay is broadly applicable to all small molecule neuroprotective or cytoprotective compounds currently being discovered and developed worldwide. In this present study, we found that the specific tPA inhibitor, plasminogen activator inhibitor-1 (PAI-1; 0.25 μM), significantly (p < 0.0001) inhibited 4-nitroaniline release, by 97.74% during the 10-min duration of the assay, which is indicative of tPA protease inhibition. In addition, two lead chromone cytoprotective candidates, 2-(3',4',5'-trihydroxyphenyl)chromen-4-one (3',4',5'-trihydroxyflavone) (CSMC-19) and 3-hydroxy-2-[3-hydroxy-4-(pyrrolidin-1-yl)phenyl]benzo[h]chromen-4-one (CSMC-140), also significantly (p < 0.05) reduced 4-nitroaniline accumulation, but to a lesser extent. The reduction was 68 and 45%, respectively, at 10 μM, and extrapolated IC50 values were 4.37 and >10 μM for CSMC-19 and CSMC-140, respectively. Using bonafide 4-nitroaniline, we then demonstrated that the reduction of 4-nitroaniline detection was not due to drug-4-nitroaniline quenching of signal detection at OD405 nm. In conclusion, the results suggest that high concentrations of both cytoprotectives reduced 4-nitroaniline production in vitro, but the inhibition only occurs with concentrations 104-1025-fold that of EC50 values in an efficacy assay. Thus, CSMC-19 and CSMC-140 should be further developed and evaluated in embolic stroke models in the absence or presence of a thrombolytic. If necessary, they could be administered once effective tPA thrombolysis has been confirmed to avoid the possibility that the chromone will reduce the efficacy of tPA in patients. Stroke investigator developing new cytoprotective small molecules should consider adding this sensitive assay to their development and screening repertoire to assess possible drug-tPA interactions in vitro as a de-risking step.
Collapse
Affiliation(s)
- Paul A Lapchak
- Department of Neurology, Cedars-Sinai Medical Center, Advanced Health Sciences Pavilion, Suite 8318, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
- Department of Neurosurgery, Cedars-Sinai Medical Center, Advanced Health Sciences Pavilion, Suite 8318, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
| | - Jacqueline M Lara
- Department of Neurology, Cedars-Sinai Medical Center, Advanced Health Sciences Pavilion, Suite 8318, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Paul D Boitano
- Department of Neurology, Cedars-Sinai Medical Center, Advanced Health Sciences Pavilion, Suite 8318, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| |
Collapse
|
6
|
Lima DCDS, do Vale CR, Véras JH, Bernardes A, Pérez CN, Chen-Chen L. Absence of genotoxic effects of the chalcone (E)-1-(2-hydroxyphenyl)-3-(4-methylphenyl)-prop-2-en-1-one) and its potential chemoprevention against DNA damage using in vitro and in vivo assays. PLoS One 2017; 12:e0171224. [PMID: 28207781 PMCID: PMC5312962 DOI: 10.1371/journal.pone.0171224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/17/2017] [Indexed: 01/28/2023] Open
Abstract
The chalcone (E)-1-(2-hydroxyphenyl)-3-(4-methylphenyl)-prop-2-en-1-one), or 2HMC, displays antileishmanial, antimalarial, and antioxidant activities. The aim of this study was to investigate the cytotoxic, genotoxic, mutagenic, and protective effects of 2HMC using the Ames mutagenicity test, the mouse bone marrow micronucleus test, and the comet assay in mice. In the assessment using the Ames test, 2HMC did not increase the number of His+ revertants in Salmonella typhimurium strains, demonstrating lack of mutagenicity. 2HMC showed no significant increase in micronucleated polychromatic erythrocyte frequency (MNPCE) in the micronucleus test, or in DNA strand breaks using the comet assay, evidencing absence of genotoxicity. Regarding cytotoxicity, 2HMC exhibited moderate cytotoxicity in mouse bone marrow cells by micronucleus test. 2HMC showed antimutagenic action in co-administration with the positive controls, sodium azide (SA) and 4-nitroquinoline-1-oxide (4NQO), in the Ames test. Co-administered and mainly pre-administered with cyclophosphamide (CPA), 2HMC caused a decrease in the frequency of MNPCE using the micronucleus test and in DNA strand breaks using the comet assay. Thus, 2HMC exhibited antimutagenic and antigenotoxic effects, displaying a DNA-protective effect against CPA, SA, and 4NQO carcinogens. In conclusion, 2HMC presented antimutagenic, antigenotoxic and moderate cytotoxic effects; therefore it is a promising molecule for cancer prevention.
Collapse
Affiliation(s)
| | - Camila Regina do Vale
- Department of Genetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jefferson Hollanda Véras
- Department of Genetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Aline Bernardes
- Institute of Chemistry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Caridad Noda Pérez
- Institute of Chemistry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Lee Chen-Chen
- Department of Genetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
- * E-mail:
| |
Collapse
|
7
|
|
8
|
Figueira I, Menezes R, Macedo D, Costa I, Nunes dos Santos C. Polyphenols Beyond Barriers: A Glimpse into the Brain. Curr Neuropharmacol 2017; 15:562-594. [PMID: 27784225 PMCID: PMC5543676 DOI: 10.2174/1570159x14666161026151545] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 08/02/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ageing can be simply defined as the process of becoming older, which is genetically determined but also environmentally modulated. With the continuous increase of life expectancy, quality of life during ageing has become one of the biggest challenges of developed countries. The quest for a healthy ageing has led to the extensive study of plant polyphenols with the aim to prevent age-associated deterioration and diseases, including neurodegenerative diseases. The world of polyphenols has fascinated researchers over the past decades, and in vitro, cell-based, animal and human studies have attempted to unravel the mechanisms behind dietary polyphenols neuroprotection. METHODS In this review, we compiled some of the extensive and ever-growing research in the field, highlighting some of the most recent trends in the area. RESULTS The main findings regarding polypolyphenols neuroprotective potential performed using in vitro, cellular and animal studies, as well as human trials are covered in this review. Concepts like bioavailability, polyphenols biotransformation, transport of dietary polyphenols across barriers, including the blood-brain barrier, are here explored. CONCLUSION The diversity and holistic properties of polypolyphenol present them as an attractive alternative for the treatment of multifactorial diseases, where a multitude of cellular pathways are disrupted. The underlying mechanisms of polypolyphenols for nutrition or therapeutic applications must be further consolidated, however there is strong evidence of their beneficial impact on brain function during ageing. Nevertheless, only the tip of the iceberg of nutritional and pharmacological potential of dietary polyphenols is hitherto understood and further research needs to be done to fill the gaps in pursuing a healthy ageing.
Collapse
Affiliation(s)
- Inês Figueira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
| | - Regina Menezes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Diana Macedo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Inês Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Cláudia Nunes dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| |
Collapse
|
9
|
Escobar-Peso A, Chioua M, Frezza V, Martínez-Alonso E, Marco-Contelles J, Alcázar A. Nitrones, Old Fellows for New Therapies in Ischemic Stroke. SPRINGER SERIES IN TRANSLATIONAL STROKE RESEARCH 2017. [DOI: 10.1007/978-3-319-45345-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Lapchak PA, Zhang JH. The High Cost of Stroke and Stroke Cytoprotection Research. Transl Stroke Res 2016; 8:307-317. [PMID: 28039575 DOI: 10.1007/s12975-016-0518-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Acute ischemic stroke is inadequately treated in the USA and worldwide due to a lengthy history of neuroprotective drug failures in clinical trials. The majority of victims must endure life-long disabilities that not only affect their livelihood, but also have an enormous societal economic impact. The rapid development of a neuroprotective or cytoprotective compound would allow future stroke victims to receive a treatment to reduce disabilities and further promote recovery of function. This opinion article reviews in detail the enormous costs associated with developing a small molecule to treat stroke, as well as providing a timely overview of the cell-death time-course and relationship to the ischemic cascade. Distinct temporal patterns of cell-death of neurovascular unit components provide opportunities to intervene and optimize new cytoprotective strategies. However, adequate research funding is mandatory to allow stroke researchers to develop and test their novel therapeutic approach to treat stroke victims.
Collapse
Affiliation(s)
- Paul A Lapchak
- Director of Translational Research, Department of Neurology & Neurosurgery, Advanced Health Sciences Pavilion, Suite 8305, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA, 90048, USA.
| | - John H Zhang
- Director, Center for Neuroscience Research, Loma Linda University School of Medicine, 11175 Campus St, Loma Linda, CA, 92350, USA
| |
Collapse
|
11
|
Subarachnoid Hemorrhage-Triggered Acute Hypotension Is Associated with Left Ventricular Cardiomyocyte Apoptosis in a Rat Model. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:145-50. [PMID: 26463939 DOI: 10.1007/978-3-319-18497-5_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Whether hypotension that occurs due to neurogenic stunned myocardium after subarachnoid hemorrhage (SAH) is associated with cardiomyocyte apoptotic cell death remains unknown. In this study, 18 male rats were subjected to sham or the endovascular perforation model of SAH surgery. Based on the mean arterial pressure (MAP) after SAH, rats were separated into SAH with hypotension (SAH hypotension) or SAH with blood pressure preservation (SAH BP preservation) groups. All animals were euthanized 2 h after the surgical procedure. Hearts were removed and separated transversely into base and apex parts, then Western blot analyses and immunohistochemistry were performed only in the apex part. One rat died as a result of severe SAH and two rats with mild SAH were excluded. We analyzed data from 15 rats that were divided into three groups: sham, SAH hypotension, and SAH BP preservation (n = 5, each). There was a significantly higher cleaved caspase-3/caspase-3 ratio in the SAH hypotension group compared with sham and the SAH BP preservation group. Cardiomyocyte apoptosis was demonstrated in the SAH rats. This is the first experimental report that describes SAH-induced neurogenic stunned myocardium with ensuing hypotension may result from the acute apoptotic cardiomyocyte cell death in the left ventricle.
Collapse
|
12
|
Zhou CH, Wang CX, Xie GB, Wu LY, Wei YX, Wang Q, Zhang HS, Hang CH, Zhou ML, Shi JX. Fisetin alleviates early brain injury following experimental subarachnoid hemorrhage in rats possibly by suppressing TLR 4/NF-κB signaling pathway. Brain Res 2015; 1629:250-9. [PMID: 26475978 DOI: 10.1016/j.brainres.2015.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/13/2015] [Accepted: 10/02/2015] [Indexed: 11/27/2022]
Abstract
Early brain injury (EBI) determines the unfavorable outcomes after subarachnoid hemorrhage (SAH). Fisetin, a natural flavonoid, has anti-inflammatory and neuroprotection properties in several brain injury models, but the role of fisetin on EBI following SAH remains unknown. Our study aimed to explore the effects of fisetin on EBI after SAH in rats. Adult male Sprague-Dawley rats were randomly divided into the sham and SAH groups, fisetin (25mg/kg or 50mg/kg) or equal volume of vehicle was given at 30min after SAH. Neurological scores and brain edema were assayed. The protein expression of toll-like receptor 4 (TLR 4), p65, ZO-1 and bcl-2 was examined by Western blot. TLR 4 and p65 were also assessed by immunohistochemistry (IHC). Enzyme-linked immunosorbent assay (ELISA) was performed to detect the production of pro-inflammatory cytokines. Terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling (TUNEL) was perform to assess neural cell apoptosis. High-dose (50mg/kg) fisetin significantly improved neurological function and reduced brain edema at both 24h and 72h after SAH. Remarkable reductions of TLR 4 expression and nuclear factor κB (NF-κB) translocation to nucleus were detected after fisetin treatment. In addition, fisetin significantly reduced the productions of pro-inflammatory cytokines, decreased neural cell apoptosis and increased the protein expression of ZO-1 and bcl-2. Our data provides the evidence for the first time that fisetin plays a protective role in EBI following SAH possibly by suppressing TLR 4/NF-κB mediated inflammatory pathway.
Collapse
Affiliation(s)
- Chen-hui Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Chun-xi Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Guang-bin Xie
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Ling-yun Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Yong-xiang Wei
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Qiang Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Hua-sheng Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Chun-hua Hang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Meng-liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Ji-xin Shi
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China.
| |
Collapse
|
13
|
Lapchak PA. A cost-effective rabbit embolic stroke bioassay: insight into the development of acute ischemic stroke therapy. Transl Stroke Res 2015; 6:99-103. [PMID: 25637174 PMCID: PMC4359071 DOI: 10.1007/s12975-015-0386-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 01/06/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Paul A Lapchak
- Departments of Neurology and Neurosurgery, Cedars-Sinai Medical Center, Advanced Health Sciences Pavilion Suite 8305, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA,
| |
Collapse
|
14
|
Campos-Bedolla P, Walter FR, Veszelka S, Deli MA. Role of the Blood–Brain Barrier in the Nutrition of the Central Nervous System. Arch Med Res 2014; 45:610-38. [DOI: 10.1016/j.arcmed.2014.11.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
|
15
|
Fujii M, Sherchan P, Soejima Y, Hasegawa Y, Flores J, Doycheva D, Zhang JH. Cannabinoid receptor type 2 agonist attenuates apoptosis by activation of phosphorylated CREB-Bcl-2 pathway after subarachnoid hemorrhage in rats. Exp Neurol 2014; 261:396-403. [PMID: 25058046 DOI: 10.1016/j.expneurol.2014.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/27/2014] [Accepted: 07/10/2014] [Indexed: 11/18/2022]
Abstract
Early brain injury (EBI) which comprises of vasogenic edema and apoptotic cell death is an important component of subarachnoid hemorrhage (SAH) pathophysiology. This study evaluated whether cannabinoid receptor type 2 (CB2R) agonist, JWH133, attenuates EBI after SAH and whether CB2R stimulation reduces pro-apoptotic caspase-3 via up-regulation of cAMP response element-binding protein (CREB)-Bcl-2 signaling pathway. Male Sprague-Dawley rats (n=123) were subjected to SAH by endovascular perforation. Rats received vehicle or JWH133 at 1h after SAH. Neurological deficits and brain water content were evaluated at 24h after SAH. Western blot was performed to quantify phosphorylated CREB (pCREB), Bcl-2, and cleaved caspase-3 levels. Neuronal cell death was evaluated with terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling staining. Additionally, CREB siRNA was administered to manipulate the proposed pathway. JWH133 (1.0mg/kg) improved neurological deficits and reduced brain water content in left hemisphere 24h after SAH. JWH133 significantly increased activated CREB (pCREB) and Bcl-2 levels and significantly decreased cleaved caspase-3 levels in left hemisphere 24h after SAH. CREB siRNA reversed the effects of treatment. TUNEL positive neurons in the cortex were reduced with JWH133 treatment. Thus, CB2R stimulation attenuated EBI after SAH possibly through activation of pCREB-Bcl-2 pathway.
Collapse
Affiliation(s)
- Mutsumi Fujii
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - Prativa Sherchan
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - Yoshiteru Soejima
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - Yu Hasegawa
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - Jerry Flores
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | | | - John H Zhang
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
16
|
Lapchak PA, Bombien R, Rajput PS. J-147 a Novel Hydrazide Lead Compound to Treat Neurodegeneration: CeeTox ™ Safety and Genotoxicity Analysis. ACTA ACUST UNITED AC 2013; 4. [PMID: 25364619 PMCID: PMC4215638 DOI: 10.4172/2155-9562.1000158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
J-147 is a broad spectrum neuroprotective phenyl hydrazide compound with significant neurotrophic properties related to the induction of brain-derived neurotrophic factor (BDNF). Because this molecule is pleiotropic, it may have substantial utility in the treatment of a wide range of neurodegenerative diseases including acute ischemic stroke (AIS), traumatic brain injury(TBI), and Alzheimer’s disease(AD) where both neuroprotection and neurotrophism would be beneficial. Because of the pleiotropic actions of J-147, we sought to determine the safety profile of the drug using multiple assay analysis. For CeeTox analyses, we used a rat hepatoma cell line (H4IIE) resulted in estimated CTox value (i.e.: sustained concentration expected to produce toxicity in a 14 day repeat dosing study) of 90 μM for J-147. The CeeTox panel shows that J-147 produced some adverse effects on cellular activities, in particular mitochondrial function, but only with high concentrations of the drug. J-147 was also not genetoxic with or without Aroclor-1254 treatment. For J-147, based upon extensive neuroprotection assay data previously published, and the CeeTox assay (CTox value of 90 μM) in this study, we estimated in vitro neuroprotection efficacy (EC50 range 0.06–0.115 μM)/toxicity ratio is 782.6–1500 fold and the neurotrophism (EC50 range 0.025 μM)/toxicity ratio is 3600, suggesting that there is a significant therapeutic safety window for J-147 and that it should be further developed as a novel neuroprotective-neurotrophic agent to treat neurodegenerative disease taking into account current National Institute of Neurological Disorders and Stroke (NINDS) RIGOR guidelines.
Collapse
Affiliation(s)
- Paul A Lapchak
- Department of Neurology and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Rene Bombien
- Division of Cardiothoracic Surgery, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Padmesh S Rajput
- Department of Neurology, Advanced Health Sciences Pavilion, Los Angeles, USA
| |
Collapse
|