1
|
Lu W, Wen J. The relationship among H 2S, neuroinflammation and MMP-9 in BBB injury following ischemic stroke. Int Immunopharmacol 2024; 146:113902. [PMID: 39724730 DOI: 10.1016/j.intimp.2024.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Blood-brain barrier (BBB) is located at the interface between the central nervous system (CNS) and the circulatory system, which maintains the microenvironmental homeostasis of the CNS. BBB damage is a result of CNS diseases, including ischemic stroke, and is a cause of CNS deterioration. Cerebral ischemia unleashes a profound inflammatory response to remove the damaged tissue in the CNS and prepare the brain for repair. However, the excessive neuroinflammation following stroke onset is associated with BBB breakdown, resulting in neuronal injury and worse neurological outcomes. Additionally, matrix metalloproteinases (MMPs) are likewise responsible for the BBB injury and participate in the pathological processes of neuroinflammation following ischemic stroke. Hydrogen sulfide (H2S) is one of gaseous signaling and freely diffusing molecules. Low concentration of H2S yields the neuroprotection against BBB damage following stroke. This review discussed the current knowledge about the detrimental roles of neuroinflammation and MMPs in BBB injury following ischemic stroke. Specifically, we provided an updated overview of H2S in protecting against BBB injury following ischemic stroke via anti-neuroinflammation and inhibiting MMP-9.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Medical Branch, Hefei Technology College, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Che J, Sun Y, Deng Y, Zhang J. Blood-brain barrier disruption: a culprit of cognitive decline? Fluids Barriers CNS 2024; 21:63. [PMID: 39113115 PMCID: PMC11305076 DOI: 10.1186/s12987-024-00563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Cognitive decline covers a broad spectrum of disorders, not only resulting from brain diseases but also from systemic diseases, which seriously influence the quality of life and life expectancy of patients. As a highly selective anatomical and functional interface between the brain and systemic circulation, the blood-brain barrier (BBB) plays a pivotal role in maintaining brain homeostasis and normal function. The pathogenesis underlying cognitive decline may vary, nevertheless, accumulating evidences support the role of BBB disruption as the most prevalent contributing factor. This may mainly be attributed to inflammation, metabolic dysfunction, cell senescence, oxidative/nitrosative stress and excitotoxicity. However, direct evidence showing that BBB disruption causes cognitive decline is scarce, and interestingly, manipulation of the BBB opening alone may exert beneficial or detrimental neurological effects. A broad overview of the present literature shows a close relationship between BBB disruption and cognitive decline, the risk factors of BBB disruption, as well as the cellular and molecular mechanisms underlying BBB disruption. Additionally, we discussed the possible causes leading to cognitive decline by BBB disruption and potential therapeutic strategies to prevent BBB disruption or enhance BBB repair. This review aims to foster more investigations on early diagnosis, effective therapeutics, and rapid restoration against BBB disruption, which would yield better cognitive outcomes in patients with dysregulated BBB function, although their causative relationship has not yet been completely established.
Collapse
Affiliation(s)
- Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yixu Deng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
3
|
Pu B, Zhu H, Wei L, Gu L, Zhang S, Jian Z, Xiong X. The Involvement of Immune Cells Between Ischemic Stroke and Gut Microbiota. Transl Stroke Res 2024; 15:498-517. [PMID: 37140808 DOI: 10.1007/s12975-023-01151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023]
Abstract
Ischemic stroke, a disease with high mortality and disability rate worldwide, currently has no effective treatment. The systemic inflammation response to the ischemic stroke, followed by immunosuppression in focal neurologic deficits and other inflammatory damage, reduces the circulating immune cell counts and multiorgan infectious complications such as intestinal and gut dysfunction dysbiosis. Evidence showed that microbiota dysbiosis plays a role in neuroinflammation and peripheral immune response after stroke, changing the lymphocyte populations. Multiple immune cells, including lymphocytes, engage in complex and dynamic immune responses in all stages of stroke and may be a pivotal moderator in the bidirectional immunomodulation between ischemic stroke and gut microbiota. This review discusses the role of lymphocytes and other immune cells, the immunological processes in the bidirectional immunomodulation between gut microbiota and ischemic stroke, and its potential as a therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Bei Pu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Liang Wei
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, People's Republic of China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
4
|
Shang P, Zheng R, Wu K, Yuan C, Pan S. New Insights on Mechanisms and Therapeutic Targets of Cerebral Edema. Curr Neuropharmacol 2024; 22:2330-2352. [PMID: 38808718 PMCID: PMC11451312 DOI: 10.2174/1570159x22666240528160237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 05/30/2024] Open
Abstract
Cerebral Edema (CE) is the final common pathway of brain death. In severe neurological disease, neuronal cell damage first contributes to tissue edema, and then Increased Intracranial Pressure (ICP) occurs, which results in diminishing cerebral perfusion pressure. In turn, anoxic brain injury brought on by decreased cerebral perfusion pressure eventually results in neuronal cell impairment, creating a vicious cycle. Traditionally, CE is understood to be tightly linked to elevated ICP, which ultimately generates cerebral hernia and is therefore regarded as a risk factor for mortality. Intracranial hypertension and brain edema are two serious neurological disorders that are commonly treated with mannitol. However, mannitol usage should be monitored since inappropriate utilization of the substance could conversely have negative effects on CE patients. CE is thought to be related to bloodbrain barrier dysfunction. Nonetheless, a fluid clearance mechanism called the glial-lymphatic or glymphatic system was updated. This pathway facilitates the transport of cerebrospinal fluid (CSF) into the brain along arterial perivascular spaces and later into the brain interstitium. After removing solutes from the neuropil into meningeal and cervical lymphatic drainage arteries, the route then directs flows into the venous perivascular and perineuronal regions. Remarkably, the dual function of the glymphatic system was observed to protect the brain from further exacerbated damage. From our point of view, future studies ought to concentrate on the management of CE based on numerous targets of the updated glymphatic system. Further clinical trials are encouraged to apply these agents to the clinic as soon as possible.
Collapse
Affiliation(s)
- Pei Shang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Ruoyi Zheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kou Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao Yuan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Benarroch E. What Are the Roles of Pericytes in the Neurovascular Unit and Its Disorders? Neurology 2023; 100:970-977. [PMID: 37188542 PMCID: PMC10186232 DOI: 10.1212/wnl.0000000000207379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
|
6
|
Fukasawa M, Nishio K, Oikawa D, Itou T, Iinuma T, Asano M. Allograft inflammatory factor-1 released from the cerebral microglia affect several organs in the body. J Mol Histol 2023; 54:147-156. [PMID: 36877416 DOI: 10.1007/s10735-023-10116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/08/2023] [Indexed: 03/07/2023]
Abstract
Allograft inflammatory factor-1 (AIF-1) is expressed in microglia. Unilateral common carotid artery occlusion (UCCAO) was conducted to elucidate mechanisms that regulate AIF-1 expression in C57BL/6 male mice. Immunohistochemical reactivity of microglia against anti-AIF-1 antibody was increased significantly in the brain of this model. The increased AIF-1 production was further confirmed by ELISA using brain homogenate. Real-time PCR demonstrated that the increased AIF-1 production was regulated at the transcriptional level. Serum AIF-1 levels were further examined by ELISA and marked increase was observed on Day 1 of UCCAO. To examine the influence of AIF-1, immunohistochemical staining was performed and revealed that the immunoreactivity against anti-Iba-1 antibody was significantly increased in various organs. Among them, the accumulation of Iba-1+ cells were observed prominently in the spleen. Intraperitoneal injection of minocycline, a potent microglia inhibitor, reduced the number of Iba-1+ cells suggesting microglia activation-dependent accumulation. Based on these results, AIF-1 expression was further examined in the murine microglia cell line MG6. AIF-1 mRNA expression and secretion were up-regulated when the cells were cultured under hypoxic condition. Importantly, stimulation of the cells with recombinant AIF-1 induced the expression of AIF-1 mRNA. These results may suggest that increased AIF-1 production by microglia in cerebral ischemia regulate the AIF-1 mRNA expression at least in part by an autocrine manner.
Collapse
Affiliation(s)
- Mai Fukasawa
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Kensuke Nishio
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Daichi Oikawa
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Tomoka Itou
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan. .,Division of Immunology and Pathobiology, Nihon University School of Dentistry, Tokyo, Japan.
| |
Collapse
|
7
|
Hydrogen Sulphide-Based Therapeutics for Neurological Conditions: Perspectives and Challenges. Neurochem Res 2023; 48:1981-1996. [PMID: 36764968 PMCID: PMC10182124 DOI: 10.1007/s11064-023-03887-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Central nervous system (CNS)-related conditions are currently the leading cause of disability worldwide, posing a significant burden to health systems, individuals and their families. Although the molecular mechanisms implicated in these disorders may be varied, neurological conditions have been increasingly associated with inflammation and/or impaired oxidative response leading to further neural cell damages. Therefore, therapeutic approaches targeting these defective molecular mechanisms have been vastly explored. Hydrogen sulphide (H2S) has emerged as a modulator of both inflammation and oxidative stress with a neuroprotective role, therefore, has gained interest in the treatment of neurological disorders. H2S, produced by endogenous sources, is maintained at low levels in the CNS. However, defects in the biosynthetic and catabolic routes for H2S metabolism have been identified in CNS-related disorders. Approaches to restore H2S availability using H2S-donating compounds have been recently explored in many models of neurological conditions. Nonetheless, we still need to elucidate the potential for these compounds not only to ameliorate defective biological routes, but also to better comprehend the implications on H2S delivery, dosage regimes and feasibility to successfully target CNS tissues. Here, we highlight the molecular mechanisms of H2S-dependent restoration of neurological functions in different models of CNS disease whilst summarising current administration approaches for these H2S-based compounds. We also address existing barriers in H2S donor delivery by showcasing current advances in mediating these constrains through novel biomaterial-based carriers for H2S donors.
Collapse
|
8
|
Makievskaya CI, Popkov VA, Andrianova NV, Liao X, Zorov DB, Plotnikov EY. Ketogenic Diet and Ketone Bodies against Ischemic Injury: Targets, Mechanisms, and Therapeutic Potential. Int J Mol Sci 2023; 24:2576. [PMID: 36768899 PMCID: PMC9916612 DOI: 10.3390/ijms24032576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The ketogenic diet (KD) has been used as a treatment for epilepsy since the 1920s, and its role in the prevention of many other diseases is now being considered. In recent years, there has been an intensive investigation on using the KD as a therapeutic approach to treat acute pathologies, including ischemic ones. However, contradictory data are observed for the effects of the KD on various organs after ischemic injury. In this review, we provide the first systematic analysis of studies conducted from 1980 to 2022 investigating the effects and main mechanisms of the KD and its mimetics on ischemia-reperfusion injury of the brain, heart, kidneys, liver, gut, and eyes. Our analysis demonstrated a high diversity of both the composition of the used KD and the protocols for the treatment of animals, which could be the reason for contradictory effects in different studies. It can be concluded that a true KD or its mimetics, such as β-hydroxybutyrate, can be considered as positive exposure, protecting the organ from ischemia and its negative consequences, whereas the shift to a rather similar high-calorie or high-fat diet leads to the opposite effect.
Collapse
Affiliation(s)
- Ciara I. Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Xinyu Liao
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
9
|
Jena AB, Dash UC, Duttaroy AK. An in silico investigation on the interactions of curcumin and epigallocatechin-3-gallate with NLRP3 Inflammasome complex. Biomed Pharmacother 2022; 156:113890. [DOI: 10.1016/j.biopha.2022.113890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/02/2022] Open
|
10
|
Zhang Z, Lv M, Zhou X, Cui Y. Roles of peripheral immune cells in the recovery of neurological function after ischemic stroke. Front Cell Neurosci 2022; 16:1013905. [PMID: 36339825 PMCID: PMC9634819 DOI: 10.3389/fncel.2022.1013905] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 10/15/2023] Open
Abstract
Stroke is a leading cause of mortality and long-term disability worldwide, with limited spontaneous repair processes occurring after injury. Immune cells are involved in multiple aspects of ischemic stroke, from early damage processes to late recovery-related events. Compared with the substantial advances that have been made in elucidating how immune cells modulate acute ischemic injury, the understanding of the impact of the immune system on functional recovery is limited. In this review, we summarized the mechanisms of brain repair after ischemic stroke from both the neuronal and non-neuronal perspectives, and we review advances in understanding of the effects on functional recovery after ischemic stroke mediated by infiltrated peripheral innate and adaptive immune cells, immune cell-released cytokines and cell-cell interactions. We also highlight studies that advance our understanding of the mechanisms underlying functional recovery mediated by peripheral immune cells after ischemia. Insights into these processes will shed light on the double-edged role of infiltrated peripheral immune cells in functional recovery after ischemic stroke and provide clues for new therapies for improving neurological function.
Collapse
Affiliation(s)
- Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xin Zhou
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
11
|
Frank D, Zlotnik A, Boyko M, Gruenbaum BF. The Development of Novel Drug Treatments for Stroke Patients: A Review. Int J Mol Sci 2022; 23:5796. [PMID: 35628606 PMCID: PMC9145977 DOI: 10.3390/ijms23105796] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Acute ischemic stroke is a critical condition that can result in disability and death. The consequences of this medical condition depend on various factors, including the size of the stroke, affected brain region, treatment onset, and the type of treatment. The primary objective of stroke treatment is to restart ischemic penumbra tissue perfusion and reduce infarct volume by sustaining blood flow. Recent research on the condition's pathological pathways and processes has significantly improved treatment options beyond restoring perfusion. Many studies have concentrated on limiting injury severity via the manipulation of molecular mechanisms of ischemia, particularly in animal research. This article reviews completed and ongoing research on the development of acute ischemic stroke drugs. This study focuses on three main categories of antithrombotic drugs, thrombolytic drugs, and neuroprotective agents. The paper outlines findings from animal and clinical trials and explores the working mechanisms of these drugs.
Collapse
Affiliation(s)
- Dmitry Frank
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel; (A.Z.); (M.B.)
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel; (A.Z.); (M.B.)
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel; (A.Z.); (M.B.)
| | | |
Collapse
|
12
|
Kingsbury C, Shear A, Heyck M, Sadanandan N, Zhang H, Gonzales-Portillo B, Cozene B, Sheyner M, Navarro-Torres L, García-Sánchez J, Lee JY, Borlongan CV. Inflammation-relevant microbiome signature of the stroke brain, gut, spleen, and thymus and the impact of exercise. J Cereb Blood Flow Metab 2021; 41:3200-3212. [PMID: 34427146 PMCID: PMC8669279 DOI: 10.1177/0271678x211039598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stroke remains a significant unmet need in the clinic with few therapeutic options. We, and others, have implicated the role of inflammatory microbiota in stroke secondary cell death. Elucidating this inflammation microbiome as a biomarker may improve stroke diagnosis and treatment. Here, adult Sprague-Dawley rats performed 30 minutes of exercise on a motorized treadmill for 3 consecutive days prior to transient middle cerebral artery occlusion (MCAO). Stroke animals that underwent exercise showed 1) robust behavioral improvements, 2) significantly smaller infarct sizes and increased peri-infarct cell survival and 3) decreasing trends of inflammatory microbiota BAC303, EREC482, and LAB158 coupled with significantly reduced levels of inflammatory markers ionized calcium binding adaptor molecule 1, tumor necrosis factor alpha, and mouse monoclonal MHC Class II RT1B in the brain, gut, spleen, and thymus compared to non-exercised stroke rats. These results suggest that a specific set of inflammatory microbiota exists in central and peripheral organs and can serve as a disease biomarker and a therapeutic target for stroke.
Collapse
Affiliation(s)
- Chase Kingsbury
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alex Shear
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Matt Heyck
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Henry Zhang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Bella Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Blaise Cozene
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michael Sheyner
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Lisset Navarro-Torres
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Julián García-Sánchez
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
13
|
Zhang M, Cui Y, Cheng Y, Wang Q, Sun H. The neuroprotective effect and possible therapeutic application of xenon in neurological diseases. J Neurosci Res 2021; 99:3274-3283. [PMID: 34716615 DOI: 10.1002/jnr.24958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 07/19/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022]
Abstract
Xenon is an inert gas with stable chemical properties which is used as an anesthetic. Recent in vitro and in vivo findings indicate that xenon also elicits an excellent neuroprotective effect in subanesthetic concentrations. The mechanisms underlying this primarily involve the attenuation of excitotoxicity and the inhibition of N-methyl-d-aspartic acid (NMDA) receptors and NMDA receptor-related effects, such as antioxidative effects, reduced activation of microglia, and Ca2+ -dependent mechanisms, as well as the interaction with certain ion channels and glial cells. Based on this strong neuroprotective role, a large number of experimental and clinical studies have confirmed the significant therapeutic effect of xenon in the treatment of neurological diseases. This review summarizes the reported neuroprotective mechanisms of xenon and discusses its possible therapeutic application in the treatment of various neurological diseases.
Collapse
Affiliation(s)
- Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
14
|
Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke. Int J Mol Sci 2021; 22:ijms22179486. [PMID: 34502395 PMCID: PMC8431165 DOI: 10.3390/ijms22179486] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022] Open
Abstract
Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood–brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communication. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation within the brain. Then, we focus on the lymphatic vessels surrounding the brain and their ability to coordinate both immune response and fluid homeostasis within the brain after stroke. Finally, we discuss how therapeutic manipulation of peripheral systems may provide new mechanisms to treat stroke injury.
Collapse
|
15
|
Pomierny B, Krzyżanowska W, Jurczyk J, Skórkowska A, Strach B, Szafarz M, Przejczowska-Pomierny K, Torregrossa R, Whiteman M, Marcinkowska M, Pera J, Budziszewska B. The Slow-Releasing and Mitochondria-Targeted Hydrogen Sulfide (H 2S) Delivery Molecule AP39 Induces Brain Tolerance to Ischemia. Int J Mol Sci 2021; 22:ijms22157816. [PMID: 34360581 PMCID: PMC8346077 DOI: 10.3390/ijms22157816] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is the third leading cause of death in the world, which accounts for almost 12% of the total deaths worldwide. Despite decades of research, the available and effective pharmacotherapy is limited. Some evidence underlines the beneficial properties of hydrogen sulfide (H2S) donors, such as NaSH, in an animal model of brain ischemia and in in vitro research; however, these data are ambiguous. This study was undertaken to verify the neuroprotective activity of AP39, a slow-releasing mitochondria-targeted H2S delivery molecule. We administered AP39 for 7 days prior to ischemia onset, and the potential to induce brain tolerance to ischemia was verified. To do this, we used the rat model of 90-min middle cerebral artery occlusion (MCAO) and used LC-MS/MS, RT-PCR, LuminexTM assays, Western blot and immunofluorescent double-staining to determine the absolute H2S levels, inflammatory markers, neurotrophic factor signaling pathways and apoptosis marker in the ipsilateral frontal cortex, hippocampus and in the dorsal striatum 24 h after ischemia onset. AP39 (50 nmol/kg) reduced the infarct volume, neurological deficit and reduced the microglia marker (Iba1) expression. AP39 also exerted prominent anti-inflammatory activity in reducing the release of Il-1β, Il-6 and TNFα in brain areas particularly affected by ischemia. Furthermore, AP39 enhanced the pro-survival pathways of neurotrophic factors BDNF-TrkB and NGF-TrkA and reduced the proapoptotic proNGF-p75NTR-sortilin pathway activity. These changes corresponded with reduced levels of cleaved caspase 3. Altogether, AP39 treatment induced adaptative changes within the brain and, by that, developed brain tolerance to ischemia.
Collapse
Affiliation(s)
- Bartosz Pomierny
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.K.); (J.J.); (A.S.); (B.B.)
- Correspondence:
| | - Weronika Krzyżanowska
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.K.); (J.J.); (A.S.); (B.B.)
| | - Jakub Jurczyk
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.K.); (J.J.); (A.S.); (B.B.)
| | - Alicja Skórkowska
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.K.); (J.J.); (A.S.); (B.B.)
| | - Beata Strach
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Botaniczna 3, 31-503 Kraków, Poland; (B.S.); (J.P.)
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.S.); (K.P.-P.)
| | - Katarzyna Przejczowska-Pomierny
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.S.); (K.P.-P.)
| | - Roberta Torregrossa
- St. Luke’s Campus, University of Exeter Medical School, Exeter EX1 2LU, UK; (R.T.); (M.W.)
| | - Matthew Whiteman
- St. Luke’s Campus, University of Exeter Medical School, Exeter EX1 2LU, UK; (R.T.); (M.W.)
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Botaniczna 3, 31-503 Kraków, Poland; (B.S.); (J.P.)
| | - Bogusława Budziszewska
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.K.); (J.J.); (A.S.); (B.B.)
| |
Collapse
|
16
|
Zhang M, Yang JK, Ma J. Regulation of the long noncoding RNA XIST on the inflammatory polarization of microglia in cerebral infarction. Exp Ther Med 2021; 22:924. [PMID: 34306193 PMCID: PMC8281447 DOI: 10.3892/etm.2021.10356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 03/22/2021] [Indexed: 01/09/2023] Open
Abstract
Proinflammatory polarization of microglia aggravates brain injury in cerebral infarction. The present study focused on the role of long non-coding (lnc)RNA X-inactive specific transcript (XIST) in the phenotype modulation of microglia. It was revealed that lncRNA XIST was significantly upregulated in both a mouse cerebral infarction model induced by middle cerebral artery occlusion (MCAO) and an activated microglial model induced by oxygen/glucose deprivation (OGD). The overexpression of XIST enhanced the expression and release of pro-inflammatory mediators [such as tumor necrosis factor (TNF)-α, IL-6, and iNOS] in microglia. Culture supernatant from lncRNA XIST-overexpressed microglial cells induced the apoptosis of primary neurons, while TNF-α antibody counteracted this neurotoxic effect. LncRNA XIST served as a sponge for miR-96-5p, counteracting its inhibitory effect on IKKβ/NF-κB signaling and TNF-α production. Notably, TNF-α was positively regulated by XIST and in turn enhanced XIST expression in microglia. The lncRNA XIST-TNF-α feedback promoted the proinflammatory polarization of microglia, thereby exacerbating cerebral neuron apoptosis.
Collapse
Affiliation(s)
- Min Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei 054000, P.R. China
| | - Jian-Kai Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jing Ma
- Meteorological Service and Applied Meteorology, Ren County Meteorological Bureau of Hebei Province, Xingtai, Hebei 055150, P.R. China
| |
Collapse
|
17
|
Carmona-Mora P, Ander BP, Jickling GC, Dykstra-Aiello C, Zhan X, Ferino E, Hamade F, Amini H, Hull H, Sharp FR, Stamova B. Distinct peripheral blood monocyte and neutrophil transcriptional programs following intracerebral hemorrhage and different etiologies of ischemic stroke. J Cereb Blood Flow Metab 2021; 41:1398-1416. [PMID: 32960689 PMCID: PMC8142129 DOI: 10.1177/0271678x20953912] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/07/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022]
Abstract
Understanding cell-specific transcriptome responses following intracerebral hemorrhage (ICH) and ischemic stroke (IS) will improve knowledge of the immune response to brain injury. Transcriptomic profiles of 141 samples from 48 subjects with ICH, different IS etiologies, and vascular risk factor controls were characterized using RNA-seq in isolated neutrophils, monocytes and whole blood. In both IS and ICH, monocyte genes were down-regulated, whereas neutrophil gene expression changes were generally up-regulated. The monocyte down-regulated response to ICH included innate, adaptive immune, dendritic, NK cell and atherosclerosis signaling. Neutrophil responses to ICH included tRNA charging, mitochondrial dysfunction, and ER stress pathways. Common monocyte and neutrophil responses to ICH included interferon signaling, neuroinflammation, death receptor signaling, and NFAT pathways. Suppressed monocyte responses to IS included interferon and dendritic cell maturation signaling, phagosome formation, and IL-15 signaling. Activated neutrophil responses to IS included oxidative phosphorylation, mTOR, BMP, growth factor signaling, and calpain proteases-mediated blood-brain barrier (BBB) dysfunction. Common monocyte and neutrophil responses to IS included JAK1, JAK3, STAT3, and thrombopoietin signaling. Cell-type and cause-specific approaches will assist the search for future IS and ICH biomarkers and treatments.
Collapse
Affiliation(s)
- Paulina Carmona-Mora
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Bradley P Ander
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Glen C Jickling
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Cheryl Dykstra-Aiello
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Xinhua Zhan
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Eva Ferino
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Farah Hamade
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Hajar Amini
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Heather Hull
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Frank R Sharp
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Boryana Stamova
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
18
|
Chen J, Wang L, Xu H, Wang Y, Liang Q. The lymphatic drainage system of the CNS plays a role in lymphatic drainage, immunity, and neuroinflammation in stroke. J Leukoc Biol 2021; 110:283-291. [PMID: 33884651 DOI: 10.1002/jlb.5mr0321-632r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
The lymphatic drainage system of the central nervous system (CNS) plays an important role in maintaining interstitial fluid balance and regulating immune responses and immune surveillance. The impaired lymphatic drainage system of the CNS might be involved in the onset and progression of various neurodegenerative diseases, neuroinflammation, and cerebrovascular diseases. A significant immune response and brain edema are observed after stroke, resulting from disrupted homeostasis in the brain. Thus, understanding the lymphatic drainage system of the CNS in stroke may lead to the development of new approaches for therapeutic interventions in the future. Here, we review recent evidence implicating the lymphatic drainage system of the CNS in stroke.
Collapse
Affiliation(s)
- Jinman Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of theory and therapy of muscles and bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Linmei Wang
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of theory and therapy of muscles and bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of theory and therapy of muscles and bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of theory and therapy of muscles and bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| |
Collapse
|
19
|
Simvastatin attenuates spatial memory impairment via inhibiting microgliosis and apoptotic cell death against ethanol induced neurotoxicity in the developing rat hippocampus. Brain Res 2021; 1758:147341. [PMID: 33548270 DOI: 10.1016/j.brainres.2021.147341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/29/2022]
Abstract
Ethanol is associated with oxidative stress. Exposure to ethanol during childhood may lead to neurological disorders. Congenital disorders induced by alcohol are mainly caused by an oxidative-inflammatory cascade due to extensive apoptotic neurodegeneration in the brain, particularly in the hippocampus. Simvastatin, which acts as an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA), is widely used to manage cardiovascular diseases. Recently, the neuroprotective effects of simvastatin against nervous system disorders have been introduced. In this study, we examined the protective effects of simvastatin on ethanol-related neurotoxicity in the hippocampus of rat pups. Ethanol (5.27 g/kg) in a milk solution (27.8 mL/kg) was administered to male rat pups via intragastric intubation at 2-10 days after birth. Also, 10 and 20 mg/kg of simvastatin were injected to the animals. By using Morris water maze task, the hippocampus-dependent memory and spatial learning was evaluated 36 days after birth. An ELISA assay was performed to investigate the antioxidant and anti-inflammatory effects of simvastatin by measuring the levels of tumor necrosis factor-α (TNF-α), and antioxidant enzymes. To assess the expression levels of Iba1 immunohistochemical staining and caspase-3 immunofluorescence staining was performed. The current study demonstrated that administration of simvastatin significantly attenuates spatial memory impairment (P < 0.01) after ethanol neurotoxicity. Also simvastatin could considerably increase the total superoxide dismutaseand glutathione levels (P < 0.01). Moreover, it was associated with a greater reduction in malondialdehyde (P < 0.05) and TNF-α levels, compared to the ethanol group (P < 0.01). Furthermore, in the simvastatin group, the hippocampal level of caspase-3 and the level of Iba1-positive cells, reduced (P < 0.01). This study demonstrated that apoptotic signaling, mediated by the oxidative-inflammatory cascade, could be inhibited by simvastatin in rat pups with ethanol exposure in the postnatal period.
Collapse
|
20
|
Biologic Effect of Hydrogen Sulfide and Its Role in Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:7301615. [PMID: 33425216 PMCID: PMC7773448 DOI: 10.1155/2020/7301615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/27/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022]
Abstract
Ever since endogenous hydrogen sulfide (H2S) was found in mammals in 1989, accumulated evidence has demonstrated that H2S functions as a novel neurological gasotransmitter in brain tissues and may play a key role in traumatic brain injury. It has been proved that H2S has an antioxidant, anti-inflammatory, and antiapoptosis function in the neuron system and functions as a neuroprotective factor against secondary brain injury. In addition, H2S has other biologic effects such as regulating the intracellular concentration of Ca2+, facilitating hippocampal long-term potentiation (LTP), and activating ATP-sensitive K channels. Due to the toxic nature of H2S when exceeding the physiological dose in the human body, only a small amount of H2S-related therapies was applied to clinical treatment. Therefore, it has huge therapeutic potential and has great hope for recovering patients with traumatic brain injury.
Collapse
|
21
|
A20-Binding Inhibitor of NF- κB 1 Ameliorates Neuroinflammation and Mediates Antineuroinflammatory Effect of Electroacupuncture in Cerebral Ischemia/Reperfusion Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6980398. [PMID: 33110436 PMCID: PMC7582058 DOI: 10.1155/2020/6980398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
Abstract
A20-binding inhibitor of NF-κB 1 (ABIN1) is an inhibitor of NF-κB and exerts anti-inflammatory effect. Electroacupuncture (EA) is considered as a neuroprotective strategy by inhibiting neuroinflammatory damage after cerebral ischemia. This study was performed to explore the role of ABIN1 and investigate whether the ABIN1 is involved in the mechanism of EA in cerebral ischemia/reperfusion (I/R) rats. Male Sprague-Dawley (SD) rats were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and received EA after reperfusion once a day. Lentivirus-mediated ABIN1 gene knockdown was used to detect the role of ABIN1 in neuroinflammation after I/R. ABIN1 expression, proinflammatory cytokine levels, microglial activation, neurological function, infarct volumes, and NF-κB activation were assessed. ABIN1 expression was elevated in the peri-infarct cortex and was further upregulated by EA. ABIN1 knockdown increased the levels of proinflammatory cytokines and activation of microglia, worsened neurological deficits, and enlarged the infarct volume. Moreover, ABIN1 was blocked to partially reverse the neuroprotective effect of EA, and this treatment weakened the ability of EA to suppress NF-κB activity. Based on these findings, ABIN1 is a potential suppressor of neuroinflammation and ABIN1 mediates the antineuroinflammatory effect of EA in cerebral I/R rats.
Collapse
|
22
|
Gamdzyk M, Doycheva DM, Kang R, Tang H, Travis ZD, Tang J, Zhang JH. GW0742 activates miR-17-5p and inhibits TXNIP/NLRP3-mediated inflammation after hypoxic-ischaemic injury in rats and in PC12 cells. J Cell Mol Med 2020; 24:12318-12330. [PMID: 33034416 PMCID: PMC7686982 DOI: 10.1111/jcmm.15698] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/23/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the effects of PPAR‐β/δ receptor agonist GW0742 on neuroinflammation in a rat model of hypoxia‐ischaemia (HI) and in PC12 cells in OGD model. HI was induced by ligating the common carotid artery and inducing hypoxia for 150 minutes. Immunofluorescence was used for quantification of microglia activation and for determining cellular localization of PPAR‐β/δ. Expression of proteins was measured by Western blot. Activation of miR‐17‐5p by GW0742 was assessed in PC12 cells by Dual‐Luciferase Reporter Gene Assay. The endogenous expression of TXNIP, NLRP3, cleaved caspase‐1 and IL‐1β was increased after HI. GW0742 treatment significantly reduced the number of activated pro‐inflammatory microglia in ipsilateral hemisphere after HI. Mechanistically, GW0742 significantly decreased the expression of TXNIP, NLRP3, IL‐6 and TNF‐α. Either PPAR‐β/δ antagonist GSK3787, miR‐17‐5p inhibitor, or TXNIP CRISPR activation abolished the anti‐inflammatory effects of GW0742. Activation of PPAR‐β/δ by GW0742 activated miR‐17‐5p expression in PC12 cells and increased cell viability after OGD, which was accompanied by decreased expression of TXNIP and reduced secretion of IL‐1β and TNF‐α. In conclusion, GW0742 may be a promising neurotherapeutic for the management of HI patients.
Collapse
Affiliation(s)
- Marcin Gamdzyk
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Ruiqing Kang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Hong Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Zackary D Travis
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
23
|
Zhang ZY, Fang YJ, Luo YJ, Lenahan C, Zhang JM, Chen S. The role of medical gas in stroke: an updated review. Med Gas Res 2020; 9:221-228. [PMID: 31898607 PMCID: PMC7802415 DOI: 10.4103/2045-9912.273960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Medical gas is a large class of bioactive gases used in clinical medicine and basic scientific research. At present, the role of medical gas in neuroprotection has received growing attention. Stroke is a leading cause of death and disability in adults worldwide, but current treatment is still very limited. The common pathological changes of these two types of stroke may include excitotoxicity, free radical release, inflammation, cell death, mitochondrial disorder, and blood-brain barrier disruption. In this review, we will discuss the pathological mechanisms of stroke and the role of two medical gases (hydrogen and hydrogen sulfide) in stroke, which may potentially provide a new insight into the treatment of stroke.
Collapse
Affiliation(s)
- Ze-Yu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yuan-Jian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yu-Jie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM; Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jian-Ming Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
24
|
Zera KA, Buckwalter MS. The Local and Peripheral Immune Responses to Stroke: Implications for Therapeutic Development. Neurotherapeutics 2020; 17:414-435. [PMID: 32193840 PMCID: PMC7283378 DOI: 10.1007/s13311-020-00844-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The immune response to stroke is an exciting target for future stroke therapies. Stroke is a leading cause of morbidity and mortality worldwide, and clot removal (mechanical or pharmacological) to achieve tissue reperfusion is the only therapy currently approved for patient use. Due to a short therapeutic window and incomplete effectiveness, however, many patients are left with infarcted tissue that stimulates inflammation. Although this is critical to promote repair, it can also damage surrounding healthy brain tissue. In addition, acute immunodepression and subsequent infections are common and are associated with worse patient outcomes. Thus, the acute immune response is a major focus of researchers attempting to identify ways to amplify its benefits and suppress its negative effects to improve short-term recovery of patients. Here we review what is known about this powerful process. This includes the role of brain resident cells such as microglia, peripherally activated cells such as macrophages and neutrophils, and activated endothelium. The role of systemic immune activation and subsequent immunodepression in the days after stroke is also discussed, as is the chronic immune responses and its effects on cognitive function. The biphasic role of inflammation, as well as complex timelines of cell production, differentiation, and trafficking, suggests that the relationship between the acute and chronic phases of stroke recovery is complex. Gaining a more complete understanding of this intricate process by which inflammation is initiated, propagated, and terminated may potentially lead to therapeutics that can treat a larger population of stroke patients than what is currently available. The immune response plays a critical role in patient recovery in both the acute and chronic phases after stroke. In patients, the immune response can be beneficial by promoting repair and recovery, and also detrimental by propagating a pro-inflammatory microenvironment. Thus, it is critical to understand the mechanisms of immune activation following stroke in order to successfully design therapeutics.
Collapse
Affiliation(s)
- Kristy A Zera
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford Univeristy School of Medicine, Stanford, CA, USA.
| |
Collapse
|
25
|
Guo S, Luo Y. Brain Foxp3+ regulatory T cells can be expanded by Interleukin-33 in mouse ischemic stroke. Int Immunopharmacol 2020; 81:106027. [DOI: 10.1016/j.intimp.2019.106027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
|
26
|
Mohseni F, Bagheri F, Khaksari M. Hydrogen Sulfide Attenuates the Neurotoxicity in the Animal Model of Fetal Alcohol Spectrum Disorders. Neurotox Res 2020; 37:977-986. [PMID: 31900896 DOI: 10.1007/s12640-019-00152-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022]
Abstract
Fetal alcohol spectrum disorder (FASD), which is caused by prenatal alcohol exposure, can result in cell death in specific brain regions. Alcohol-induced neurocognitive defects offspring's are included with activation of oxidative-inflammatory cascade followed with wide apoptotic neurodegeneration in many brain's regions such as hippocampus. According to the latest studies, H2S (hydrogen sulfide) can protect neuronal cells via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms in different animal models. Therefore, we aimed to evaluate the protective effects of H2S on ethanol-induced neuroinflammation and neuronal apoptosis in pup hippocampus with postnatal alcohol exposure. Administration of ethanol (5.27 g/kg) in milk solution (27.8 mL/kg) for each rat pups was performed through intragastric intubation on 2 to 10 postnatal days and NaHS as H2S donor (1 mg/kg) was injected on similar time, subcutaneously. For examining the antioxidant and anti-inflammatory effects, ELISA assay was performed to determine the levels of TNF-α, IL1β, and antioxidant enzymes. Immunohistochemical staining was performed to evaluate the expression levels of GFAP and caspase-3 also Nissl staining was done for necrotic cell death evaluation. H2S treatment could significantly increase the activity of total superoxide dismutase, catalase, and glutathione (P < 0.05). It also decreased the levels of TNF-α, IL1β, and malondialdehyde, compared with the ethanol group (P < 0.05). Moreover, the number of hippocampal caspase-3, GFAP-positive cells, and necrotic cells death reduced in the H2S group (P < 0.01). Based on the findings, H2S can inhibit apoptotic signaling that is mediated by the oxidative-inflammatory cascade following ethanol exposure of rat pups on postnatal period.
Collapse
Affiliation(s)
- Fahimeh Mohseni
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
27
|
Caporarello N, D’Angeli F, Cambria MT, Candido S, Giallongo C, Salmeri M, Lombardo C, Longo A, Giurdanella G, Anfuso CD, Lupo G. Pericytes in Microvessels: From "Mural" Function to Brain and Retina Regeneration. Int J Mol Sci 2019; 20:ijms20246351. [PMID: 31861092 PMCID: PMC6940987 DOI: 10.3390/ijms20246351] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022] Open
Abstract
Pericytes are branched cells located in the wall of capillary blood vessels that are found throughout the body, embedded within the microvascular basement membrane and wrapping endothelial cells, with which they establish a strong physical contact. Pericytes regulate angiogenesis, vessel stabilization, and contribute to the formation of both the blood-brain and blood-retina barriers by Angiopoietin-1/Tie-2, platelet derived growth factor (PDGF) and transforming growth factor (TGF) signaling pathways, regulating pericyte-endothelial cell communication. Human pericytes that have been cultured for a long period give rise to multilineage progenitor cells and exhibit mesenchymal stem cell (MSC) features. We focused our attention on the roles of pericytes in brain and ocular diseases. In particular, pericyte involvement in brain ischemia, brain tumors, diabetic retinopathy, and uveal melanoma is described. Several molecules, such as adenosine and nitric oxide, are responsible for pericyte shrinkage during ischemia-reperfusion. Anti-inflammatory molecules, such as IL-10, TGFβ, and MHC-II, which are increased in glioblastoma-activated pericytes, are responsible for tumor growth. As regards the eye, pericytes play a role not only in ocular vessel stabilization, but also as a stem cell niche that contributes to regenerative processes in diabetic retinopathy. Moreover, pericytes participate in melanoma cell extravasation and the genetic ablation of the PDGF receptor reduces the number of pericytes and aberrant tumor microvessel formation with important implications for therapy efficacy. Thanks to their MSC features, pericytes could be considered excellent candidates to promote nervous tissue repair and for regenerative medicine.
Collapse
Affiliation(s)
- Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
| | - Floriana D’Angeli
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
| | - Maria Teresa Cambria
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
| | - Saverio Candido
- Section of General and Clinical Pathology and Oncology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Cesarina Giallongo
- Section of Haematology, Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy;
| | - Mario Salmeri
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.S.); (C.L.)
| | - Cinzia Lombardo
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.S.); (C.L.)
| | - Anna Longo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
| | - Giovanni Giurdanella
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
| | - Carmelina Daniela Anfuso
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
- Correspondence: (G.L.); (C.D.A.); Tel.: +39-095-4781158 (G.L.); +39-095-4781170 (C.D.A.)
| | - Gabriella Lupo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
- Correspondence: (G.L.); (C.D.A.); Tel.: +39-095-4781158 (G.L.); +39-095-4781170 (C.D.A.)
| |
Collapse
|
28
|
Modern Concepts in Regenerative Therapy for Ischemic Stroke: From Stem Cells for Promoting Angiogenesis to 3D-Bioprinted Scaffolds Customized via Carotid Shear Stress Analysis. Int J Mol Sci 2019; 20:ijms20102574. [PMID: 31130624 PMCID: PMC6566983 DOI: 10.3390/ijms20102574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is associated with a tremendous economic and societal burden, and only a few therapies are currently available for the treatment of this devastating disease. The main therapeutic approaches used nowadays for the treatment of ischemic brain injury aim to achieve reperfusion, neuroprotection and neurorecovery. Therapeutic angiogenesis also seems to represent a promising tool to improve the prognosis of cerebral ischemia. This review aims to present the modern concepts and the current status of regenerative therapy for ischemic stroke and discuss the main results of major clinical trials addressing the effectiveness of stem cell therapy for achieving neuroregeneration in ischemic stroke. At the same time, as a glimpse into the future, this article describes modern concepts for stroke prevention, such as the implantation of bioprinted scaffolds seeded with stem cells, whose 3D geometry is customized according to carotid shear stress.
Collapse
|
29
|
Xiao W, Guo S, Chen L, Luo Y. The role of Interleukin-33 in the modulation of splenic T-cell immune responses after experimental ischemic stroke. J Neuroimmunol 2019; 333:576970. [PMID: 31146104 DOI: 10.1016/j.jneuroim.2019.576970] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/26/2022]
Abstract
The splenic T-cell immune response to stroke has been identified as an important role in the progression of brain injury following ischemic stroke. Interleukin (IL)-33 as a novel cytokine of IL-1 family has been found to be protective for ischemic brain injury. Here, we determined the contribution of IL-33 to the T-cell immune responses in the spleen after experimental ischemic stroke. Mice were subjected to 30 min of middle cerebral artery occlusion (MCAO) for ischemic stroke induction. Recombinant mouse IL-33 (100 μg/kg) was pre-treated intraperitoneally at 30 min prior to MCAO, then the percentages of T cell subsets, related cytokines and transcription factors in the spleen tissues were measured. Intraperitoneal IL-33 pre-treatment may attenuate neurological deficit scores and infarct volumes after MCAO, which was accompanied by reduced IFN-γ+ T cells and increased Foxp3+ T cells in the spleen tissues. Meanwhile, IL-33 pre-treatment could decrease the production of IFN-γ and increase the secretion of IL-4, IL-10 and TGF-β from the spleen at 24 h after MCAO. Additionally, the mRNA level of the transcription factor T-bet was downregulated by IL-33, and the levels of GATA-3 and Foxp3 mRNA were upregulated. These results showed that the long-term protective mechanism of IL-33 in ischemic stroke may be partly associated to its modulation role for splenic T-cell immune responses through inhibiting Th1 response and promoting Treg response, suggesting that IL-33 may be a candidate treatment for human stroke via modulating the peripheral immune system following stroke.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Shuang Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lin Chen
- School of Physical Education, Jianghan University, Wuhan 430056, China; Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan 430056, China
| | - Yi Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
30
|
Yang X, Wang C, Zhang X, Chen S, Chen L, Lu S, Lu S, Yan X, Xiong K, Liu F, Yan J. Redox regulation in hydrogen sulfide action: From neurotoxicity to neuroprotection. Neurochem Int 2019; 128:58-69. [PMID: 31015021 DOI: 10.1016/j.neuint.2019.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Xue Yang
- Department of Forensic Science,Changsha, Hunan, 410013, China
| | - Chudong Wang
- Department of Forensic Science,Changsha, Hunan, 410013, China
| | - Xudong Zhang
- Narcotics Division, Municipal Security Bureau, Changsha, Hunan, 410013, China
| | - Siqi Chen
- Department of Forensic Science,Changsha, Hunan, 410013, China
| | - Liangpei Chen
- Department of Forensic Science,Changsha, Hunan, 410013, China
| | - Shanshan Lu
- Department of Forensic Science,Changsha, Hunan, 410013, China; Histology and Embryology,Changsha, Hunan, 410013, China
| | - Shuang Lu
- Department of Forensic Science,Changsha, Hunan, 410013, China; Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Xisheng Yan
- Department of Cardiovascular Medicine, Wuhan Third Hospital, Wuhan, 430060, China
| | - Kun Xiong
- Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Jie Yan
- Department of Forensic Science,Changsha, Hunan, 410013, China; Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China.
| |
Collapse
|
31
|
Xiao Y, Geng F, Wang G, Li X, Zhu J, Zhu W. Bone marrow-derived mesenchymal stem cells-derived exosomes prevent oligodendrocyte apoptosis through exosomal miR-134 by targeting caspase-8. J Cell Biochem 2019; 120:2109-2118. [PMID: 30191592 DOI: 10.1002/jcb.27519] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
Ischemic stroke causes severe brain damage and remains one of the leading causes of morbidity and mortality worldwide. The microRNA-134 (miR-134) is involved in regulating the process of ischemia injury in neural cells and brain with ischemia stroke. The role of miR-134 in ischemic stroke remains poorly understood. The purpose of the current study was to investigate the effect of bone marrow-derived mesenchymal stem cells (BMSCs)-derived exosomal miR-134 on rat oligodendrocytes (OLs) apoptosis and its underlying mechanism of action. The results demonstrated that levels of miR-134 in BMSCs-exosome decreased but increased incaspase-8 after oxygen-glucose deprivation (OGD) treatment. Exosomal miR-134 significantly inhibited apoptosis by decreasing caspase-8 expression and activity in OGD-treated group cultured with BMSCs-exosome and OLs. In addition, the miR-134 mimics decreased caspase-8 expression in OGD-treated OLs, whereas miR-134 inhibitors exacerbated the changes in the expression of the procaspase-8 and caspase-8 cleaved product proteins caused by OGD. The caspase-8 knockdown using caspase-8 small interfering RNA decreased OLs apoptosis, reversing the improvements that the miR-134 inhibited cells apoptosis by targeting caspase-8. Taken together, these results demonstrated that BMSCs-derived exosomes suppressed OLs apoptosis through exosomal miR-134 by negatively regulating the caspase-8-dependent apoptosis pathway and may, therefore, be a novel potential therapeutic target for ischemic stroke treatment.
Collapse
Affiliation(s)
- Yilei Xiao
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Fengyang Geng
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Guifang Wang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, China
| | - Xueyuan Li
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Jianxin Zhu
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Weijie Zhu
- Department of Neurosurgery, General Hospital of Jinan Military Region, Jinan, China
| |
Collapse
|
32
|
Tan S, Shan Y, Lin Y, Liao S, Zhang B, Zeng Q, Wang Y, Deng Z, Chen C, Hu X, Peng L, Qiu W, Lu Z. Neutralization of interleukin-9 ameliorates experimental stroke by repairing the blood-brain barrier via down-regulation of astrocyte-derived vascular endothelial growth factor-A. FASEB J 2019; 33:4376-4387. [PMID: 30694693 DOI: 10.1096/fj.201801595rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Astrocytes mediate the destruction of the blood-brain barrier (BBB) during ischemic stroke (IS). IL-9 is a pleiotropic cytokine that we previously found to be highly expressed in peripheral blood mononuclear cells from patients with IS, and the presence of IL-9 receptors on astrocytes has been reported in the literature. Here, we detected the effect of IL-9 on astrocytes using an anti-IL-9-neutralizing antibody to treat rats with experimental stroke. Supernatants from astrocytes treated with or without oxygen-glucose deprivation and/or IL-9 were incubated with bEnd.3 cell monolayers after blocking the IL-9 receptor on the endothelium. Immunofluorescence staining and Western blot analyses were conducted to observe the change in tight junction proteins (TJPs) in bEnd.3 cells as well as the level of VEGF-A and possible signal pathways in astrocytes. We also applied middle cerebral artery occlusion (MCAO) models to determine the effect of anti-IL-9-neutralizing antibodies on IS. As a result, astrocyte-conditioned medium treated with IL-9 aggravated the disruption of the BBB accomplished by the degradation of TJPs in endothelial cells. In addition, IL-9 increased the level of VEGF-A in astrocytes, and blocking the effect of VEGF-A reversed the breakdown of the BBB. In the MCAO model, anti-IL-9-neutralizing antibody reduced the infarct volume and BBB destruction. Mechanistically, the anti-IL-9-neutralizing antibody repaired the damaged TJPs (zonula occludens 1, occludin, and claudin-5) and induced a decrease in VEGF-A expression in ischemic lateral brain tissue. In contrast, a local injection of recombinant murine IL-9 to the brain resulted in a marked up-regulation of VEGF-A in the striatum. In conclusion, anti-IL-9-neutralizing antibody can reduce the severity of IS partially by alleviating the destruction of the BBB via down-regulation of astrocyte-derived VEGF-A. This finding suggests that targeting IL-9 or VEGF-A could provide a new direction for the treatment of IS.-Tan, S., Shan, Y., Lin, Y., Liao, S., Zhang, B., Zeng, Q., Wang, Y., Deng, Z., Chen, C., Hu, X., Peng, L., Qiu, W., Lu, Z. Neutralization of IL-9 ameliorates experimental stroke by repairing the blood-brain barrier via down-regulation of astrocyte-derived vascular endothelial growth factor-A.
Collapse
Affiliation(s)
- Sha Tan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yilong Shan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yinyao Lin
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Siyuan Liao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingjun Zhang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qin Zeng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhezhi Deng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xueqiang Hu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lisheng Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Wang Z, Zhou Y, Yu Y, He K, Cheng LM. Lipopolysaccharide preconditioning increased the level of regulatory B cells in the spleen after acute ischaemia/reperfusion in mice. Brain Res 2018; 1701:46-57. [DOI: 10.1016/j.brainres.2018.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/19/2018] [Accepted: 05/23/2018] [Indexed: 12/31/2022]
|
34
|
Gasdermin Family: a Promising Therapeutic Target for Stroke. Transl Stroke Res 2018; 9:555-563. [DOI: 10.1007/s12975-018-0666-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022]
|
35
|
Ott BR, Jones RN, Daiello LA, de la Monte SM, Stopa EG, Johanson CE, Denby C, Grammas P. Blood-Cerebrospinal Fluid Barrier Gradients in Mild Cognitive Impairment and Alzheimer's Disease: Relationship to Inflammatory Cytokines and Chemokines. Front Aging Neurosci 2018; 10:245. [PMID: 30186149 PMCID: PMC6110816 DOI: 10.3389/fnagi.2018.00245] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 07/25/2018] [Indexed: 01/30/2023] Open
Abstract
Background: The pathophysiology underlying altered blood-cerebrospinal fluid barrier (BCSFB) function in Alzheimer's disease (AD) is unknown but may relate to endothelial cell activation and cytokine mediated inflammation. Methods: Cerebrospinal fluid (CSF) and peripheral blood were concurrently collected from cognitively healthy controls (N = 21) and patients with mild cognitive impairment (MCI) (N = 8) or AD (N = 11). The paired serum and CSF samples were assayed for a panel of cytokines, chemokines, and related trophic factors using multiplex ELISAs. Dominance analysis models were conducted to determine the relative importance of the inflammatory factors in relationship to BCSFB permeability, as measured by CSF/serum ratios for urea, creatinine, and albumin. Results: BCSFB disruption to urea, a small molecule distributed by passive diffusion, had a full model coefficient of determination (r2) = 0.35, and large standardized dominance weights (>0.1) for monocyte chemoattractant protein-1, interleukin (IL)-15, IL-1rα, and IL-2 in serum. BCSFB disruption to creatinine, a larger molecule governed by active transport, had a full model r2 = 0.78, and large standardized dominance weights for monocyte inhibitor protein-1b in CSF and tumor necrosis factor-α in serum. BCSFB disruption to albumin, a much larger molecule, had a full model r2 = 0.62, and large standardized dominance weights for IL-17a, interferon-gamma, IL-2, and VEGF in CSF, as well IL-4 in serum. Conclusions: Inflammatory proteins have been widely documented in the AD brain. The results of the current study suggest that changes in BCSFB function resulting in altered permeability and transport are related to expression of specific inflammatory proteins, and that the shifting distribution of these proteins from serum to CSF in AD and MCI is correlated with more severe perturbations in BCSFB function.
Collapse
Affiliation(s)
- Brian R. Ott
- Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States,*Correspondence: Brian R. Ott
| | - Richard N. Jones
- Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Lori A. Daiello
- Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Suzanne M. de la Monte
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States,Division of Neuropathology, Department of Pathology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Edward G. Stopa
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States,Division of Neuropathology, Department of Pathology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Conrad E. Johanson
- Department of Neurosurgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Charles Denby
- Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Paula Grammas
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
36
|
McDonough A, Weinstein JR. Correction to: Neuroimmune Response in Ischemic Preconditioning. Neurotherapeutics 2018; 15:511-524. [PMID: 29110213 PMCID: PMC5935631 DOI: 10.1007/s13311-017-0580-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ischemic preconditioning (IPC) is a robust neuroprotective phenomenon in which a brief period of cerebral ischemia confers transient tolerance to subsequent ischemic challenge. Research on IPC has implicated cellular, molecular, and systemic elements of the immune response in this phenomenon. Potent molecular mediators of IPC include innate immune signaling pathways such as Toll-like receptors and type 1 interferons. Brain ischemia results in release of pro- and anti-inflammatory cytokines and chemokines that orchestrate the neuroinflammatory response, resolution of inflammation, and transition to neurological recovery and regeneration. Cellular mediators of IPC include microglia, the resident central nervous system immune cells, astrocytes, and neurons. All of these cell types engage in cross-talk with each other using a multitude of signaling pathways that modulate activation/suppression of each of the other cell types in response to ischemia. As the postischemic neuroimmune response evolves over time there is a shift in function toward provision of trophic support and neuroprotection. Peripheral immune cells infiltrate the central nervous system en masse after stroke and are largely detrimental, with a few subtypes having beneficial, protective effects, though the role of these immune cells in IPC is largely unknown. The role of neural progenitor cells in IPC-mediated neuroprotection is another active area of investigation as is the role of microglial proliferation in this setting. A mechanistic understanding of these molecular and cellular mediators of IPC may not only facilitate more effective direct application of IPC to specific clinical scenarios, but also, more broadly, reveal novel targets for therapeutic intervention in stroke.
Collapse
Affiliation(s)
- Ashley McDonough
- Department of Neurology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
37
|
Guo M, Wang X, Zhao Y, Yang Q, Ding H, Dong Q, Chen X, Cui M. Ketogenic Diet Improves Brain Ischemic Tolerance and Inhibits NLRP3 Inflammasome Activation by Preventing Drp1-Mediated Mitochondrial Fission and Endoplasmic Reticulum Stress. Front Mol Neurosci 2018; 11:86. [PMID: 29662437 PMCID: PMC5890101 DOI: 10.3389/fnmol.2018.00086] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/05/2018] [Indexed: 01/26/2023] Open
Abstract
Background: Neuroprotective effects of ketogenic diets (KD) have been reported in stroke models, and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome has also been implicated in the pathogenesis of stroke. This study aimed to investigate the effects of KD on NLRP3 inflammasome and explore the potential molecular mechanisms. Methods: In in vivo study, mice were fed with KD for 3 weeks and then subjected to middle cerebral artery occlusion/reperfusion (MCAO/R)-injury. In in vitro study, SH-SY-5Y cells were treated with β-hydroxybutyrate (BHB) followed by oxygen–glucose deprivation/reoxygenation (OGD/R). NLRP3 inflammasome activation and related regulatory mechanisms were evaluated. Results: Mice fed with KD had increased tolerance to MCAO/R. KD inhibited endoplasmic reticulum (ER) stress and suppressed TXNIP/NLRP3 inflammasome activation in the brain. The in vitro study showed BHB (10 mM) prevented the mitochondrial translocation of dynamin-related protein 1 (Drp1) to inhibit mitochondrial fission. Furthermore, BHB decreased reactive oxygen species (ROS) generation, inhibited ROS-NLRP3 pathway in OGD/R-treated cells, and suppressed ER stress-induced NLRP3 inflammasome activation. Conclusions: KD may suppress ER stress and protect mitochondrial integrity by suppressing the mitochondrial translocation of Drp1 to inhibit NLRP3 inflammasome activation, thus exerting neuroprotective effects. Our findings provide evidence for the potential application of KD in the prevention of ischemic stroke.
Collapse
Affiliation(s)
- Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xun Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanxin Zhao
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Qi Yang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongyan Ding
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingdong Chen
- The State Key Laboratory of Genetic Engineering, Collaborative Innovativation Center for Genetics and Development, School of Life Science, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Science, Taizhou, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Xiao Y, Li G, Chen Y, Zuo Y, Rashid K, He T, Feng H, Zhang JH, Liu F. Milk Fat Globule-Epidermal Growth Factor-8 Pretreatment Attenuates Apoptosis and Inflammation via the Integrin-β3 Pathway after Surgical Brain Injury in Rats. Front Neurol 2018. [PMID: 29535679 PMCID: PMC5834760 DOI: 10.3389/fneur.2018.00096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Iatrogenic brain injury inevitably occurs in neurosurgical operations, leading to brain edema, ischemia, intracranial hematoma, and other postoperative complications, eventually worsening neurological outcomes of patients. If apoptotic cells are not rapidly eliminated by phagocytic engulfment, they may communicate with surrounding cells to undergo secondary necrosis and releasing toxic signals. Recent studies have shown that milk fat globule-epidermal growth factor-8 (MFGE8), which promotes phagocytosis and inhibits inflammation, is an endogenous protective factor in response to brain infarction, Alzheimer’s disease, subarachnoid hemorrhage, and prion disease. In the present study, we sought to investigate the different effects of both pretreated and posttreated recombinant milk fat globule-epidermal growth factor-8 (rhMFGE8) for the surgical brain injury (SBI) rat model and potential involvement of its receptor integrin β3 for apoptosis and neuroinflammation after SBI. One hundred and sixty-seven male rats were employed in the preset study. Experiment 1 was performed to evaluate neurological scores and MFGE8, cleaved caspase-3 (CC3), and interleukine-1 beta (IL-1β) levels at 3, 24, and 120 h after SBI. Experiment 2 was performed to evaluate the effects of rhMFGE8 pretreatment (10 min before SBI) and rhMFGE8 posttreatment (6 h after SBI) on brain edema at 24 and 72 h after SBI. Experiment 3 was performed to evaluate the potential anti-apoptotic and anti-inflammatory effects of rhMFGE8 pretreatment and posttreatment. Experiment 4 sought to investigate the involvement of the integrin-β3 signal in the effects of MFGE8 pretreatment. Our data showed rhMFGE8 pretreatment alleviated neurological deficits and decreased brain water content and apoptotic cells in the SBI model, which exhibited neurological dysfunction, apoptosis, and inflammation. Meanwhile, MFGE8 siRNA, which inhibited endogenous MFGE8 expression, significantly increased IL-1β, TUNEL positive cells, and CC3. Furthermore, knockdown of its receptor integrin β3 by siRNA abolished the effects of rhMFGE8 in the SBI model. In conclusion, we found that rhMFGE8 pretreatment effectively alleviated neurological deficits and decreased brain water content and apoptotic cells in the SBI model through the MFGE8/integrin-β3 pathway, and treatment time was an important factor in achieving curative effects. Therefore, MFGE8 pretreatment may serve as a promising therapeutic strategy for SBI patients.
Collapse
Affiliation(s)
- Yicai Xiao
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Gaofeng Li
- Departments of Oncology, Zhuzhou Central Hospital, Hunan, Zhuzhou, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yuchun Zuo
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Kauthar Rashid
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Tibiao He
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - John H Zhang
- Neuroscience Research Center, Loma Linda University, Loma Linda, CA, United States
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| |
Collapse
|
39
|
Wang X, Lan YL, Xing JS, Lan XQ, Wang LT, Zhang B. Alantolactone plays neuroprotective roles in traumatic brain injury in rats via anti-inflammatory, anti-oxidative and anti-apoptosis pathways. Am J Transl Res 2018; 10:368-380. [PMID: 29511431 PMCID: PMC5835802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/06/2018] [Indexed: 06/08/2023]
Abstract
Traumatic brain injury (TBI) is a common disease associated with a high rate of morbidity and mortality. Secondary brain injury following TBI triggers pathological, physiological, and biological reactions that lead to neurological dysfunctions. Alantolactone (ATL) is a well-known Chinese medicine that possesses strong anti-inflammatory properties, but its role in TBI remains poorly understood. The objective of this study was to evaluate the protective effect of ATL in a rat model of controlled cortical impact (CCI). We observed the neurological scores, brain water content, oxidative stress, neuroinflammation and apoptosis by performing an enzyme-linked immunosorbent assay, western blotting, quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR), immunohistochemical (IHC) staining and other methods after CCI. The neurological scores, brain water content, levels of oxidative stress and inflammatory cytokines, and apoptosis index were markedly decreased following the ATL treatment in rats after TBI. Moreover, the antioxidant and anti-inflammatory effects of ATL in TBI may be partially mediated by inhibition of the NF-κB pathway and suppression of Cyclooxygenase 2 (COX-2). In addition, ATL attenuated TBI-induced neuronal apoptosis by suppressing the cytochrome c/caspase-dependent apoptotic pathway. Thus, ATL could exert neuroprotection in rats in a TBI model. Importantly, ATL has great potential in the clinical treatment of TBI.
Collapse
Affiliation(s)
- Xun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical UniversityDalian 116023, China
- Department of Neurosurgery, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical UniversityDalian 116033, China
- Department of Pharmacy, Dalian Medical UniversityDalian 116044, China
| | - Yu-Long Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical UniversityDalian 116023, China
- Department of Pharmacy, Dalian Medical UniversityDalian 116044, China
- Department of Physiology, Dalian Medical UniversityDalian 116044, China
| | - Jin-Shan Xing
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical UniversityDalian 116023, China
- Department of Pharmacy, Dalian Medical UniversityDalian 116044, China
| | - Xiao-Qiang Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical UniversityDalian 116023, China
| | - Li-Tao Wang
- Department of Neurosurgery, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical UniversityDalian 116033, China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical UniversityDalian 116023, China
| |
Collapse
|
40
|
Chauhan A, Al Mamun A, Spiegel G, Harris N, Zhu L, McCullough LD. Splenectomy protects aged mice from injury after experimental stroke. Neurobiol Aging 2018; 61:102-111. [PMID: 29059593 PMCID: PMC5947993 DOI: 10.1016/j.neurobiolaging.2017.09.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/05/2017] [Accepted: 09/20/2017] [Indexed: 12/21/2022]
Abstract
Elderly stroke patients and aged animals subjected to experimental stroke have significantly worse functional recovery and higher mortality compared to younger subjects. Activation of the peripheral immune system is known to influence stroke outcome. Prior studies have shown that splenectomy reduces ischemic brain injury in young mice. As immune function changes with aging, it is unclear whether splenectomy will confer similar benefits in aged animals. We investigated the contribution of spleen to brain injury after cerebral ischemia in aged male mice. Splenic architecture and immune cell composition were altered in aged mice. Splenectomy 2 weeks before stroke resulted in improved neurobehavioral and infarct outcomes in aged male mice. In addition, there was a reduction in peripheral immune cell infiltration into the brain and decreased levels of peripheral inflammatory cytokines after stroke in aged splenectomized mice. Splenectomy immediately after reperfusion also improved behavioral and infarct outcomes. This study suggests that inhibition of the splenic immune response is a translationally relevant target to pursue for stroke treatment in aged individuals.
Collapse
Affiliation(s)
- Anjali Chauhan
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Abdullah Al Mamun
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Gabriel Spiegel
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Nia Harris
- University of Connecticut Health Science Center, Farmington, Connecticut, USA
| | - Liang Zhu
- Biostatistics & Epidemiology Research Design Core, Center for Clinical and Translational Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; Memorial Hermann Hospital-Texas Medical Center, Houston, TX, USA.
| |
Collapse
|
41
|
Dou Y, Tian X, Zhang J, Wang Z, Chen G. Roles of TRAF6 in Central Nervous System. Curr Neuropharmacol 2018; 16:1306-1313. [PMID: 29651950 PMCID: PMC6251041 DOI: 10.2174/1570159x16666180412094655] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/22/2017] [Accepted: 02/28/2018] [Indexed: 12/30/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) is an important binding protein of tumor necrosis factor (TNF) superfamily and the toll/IL-1 receptor (TIR) superfamily, which play an important role in innate immunity and acquired immunity. TRAFs family have 7 members (TRAF1-7), and TRAF6 has its special facture and biological function. TRAF6 has two special domains: C-terminal domain and N-terminal domain, which could integrate with multiple kinases and regulate signaling pathway function as an E3 ubiquitin ligase. Studies have increasingly found that TRAF6 is closely related to central nervous system diseases, such as stroke, Traumatic brain injury, neurodegenerative diseases and neuropathic pain. Further research on the pathophysiological mechanism may be expected to become the new targets for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
| | | | | | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou215006, P.R. China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou215006, P.R. China
| |
Collapse
|
42
|
Feng Y, Liao S, Wei C, Jia D, Wood K, Liu Q, Wang X, Shi FD, Jin WN. Infiltration and persistence of lymphocytes during late-stage cerebral ischemia in middle cerebral artery occlusion and photothrombotic stroke models. J Neuroinflammation 2017; 14:248. [PMID: 29246244 PMCID: PMC5732427 DOI: 10.1186/s12974-017-1017-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/29/2017] [Indexed: 01/05/2023] Open
Abstract
Background Evidence suggests that brain infiltration of lymphocytes contributes to acute neural injury after cerebral ischemia. However, the spatio-temporal dynamics of brain-infiltrating lymphocytes during the late stage after cerebral ischemia remains unclear. Methods C57BL/6 (B6) mice were subjected to sham, photothrombosis, or 60-min transient middle cerebral artery occlusion (MCAO) procedures. Infarct volume, neurodeficits, production of reactive oxygen species (ROS) and inflammatory factors, brain-infiltrating lymphocytes, and their activation as well as pro-inflammatory cytokine IFN-γ production were assessed. Brain-infiltrating lymphocytes were also measured in tissue sections from post-mortem patients after ischemic stroke by immunostaining. Results In mice subjected to transient MCAO or photothrombotic stroke, we found that lymphocyte infiltration persists in the ischemic brain until at least day 14 after surgery, during which brain infarct volume significantly diminished. These brain-infiltrating lymphocytes express activation marker CD69 and produce proinflammatory cytokines such as IFN-γ, accompanied with a sustained increase of reactive oxygen species (ROS) and inflammatory cytokines release in the brain. In addition, brain-infiltrating lymphocytes were observed in post-mortem brain sections from patients during the late stage of ischemic stroke. Conclusion Our results demonstrate that brain-infiltration of lymphocytes persists after the acute stage of cerebral ischemia, facilitating future advanced studies to reveal the precise role of lymphocytes during late stage of stroke. Electronic supplementary material The online version of this article (10.1186/s12974-017-1017-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Feng
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Center for Neuroinflammation, Beijing TianTan Hospital, Beijing, 100070, China
| | - Shiwei Liao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Changjuan Wei
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dongmei Jia
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Kristofer Wood
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, 85013, AZ, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, 85013, AZ, USA
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, 02129, MA, USA
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Center for Neuroinflammation, Beijing TianTan Hospital, Beijing, 100070, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, 85013, AZ, USA
| | - Wei-Na Jin
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China. .,Center for Neuroinflammation, Beijing TianTan Hospital, Beijing, 100070, China. .,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, 85013, AZ, USA.
| |
Collapse
|
43
|
Zhang JY, Ding YP, Wang Z, Kong Y, Gao R, Chen G. Hydrogen sulfide therapy in brain diseases: from bench to bedside. Med Gas Res 2017; 7:113-119. [PMID: 28744364 PMCID: PMC5510292 DOI: 10.4103/2045-9912.208517] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) has been recognized and studied for nearly 300 years, but past researches mainly focus on its toxicity effect. During the past two decades, the majority of researches have reported that H2S is a novel endogenous gaseous signal molecule in organisms, and play an important role in various systems and diseases. H2S is mainly produced by three enzymes, including cystathionine β-synthase, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase along with cysteine aminotransferase. H2S had been firstly reported as a neuromodulator in the brain, because of its essential role in the facilitating hippocampal long-term potentiation at physiological concentration. It is subsequently reported that H2S may have relevance to neurologic disorders through antioxidative, anti-inflammatory, anti-apoptotic and additional effects. Recent basic medical studies and preclinical studies on neurologic diseases have demonstrated that the administration of H2S at physiological or pharmacological levels attenuates brain injury. However, the neuroprotective effect of H2S is concentration-dependent, only a comparatively low dose of H2S can provide beneficial effect. Herein, we review the neuroprotevtive role of H2S therapy in brain diseases from its mechanism to clinical application in animal and human subjects, and therefore provide the potential strategies for further clinical treatment.
Collapse
Affiliation(s)
- Ju-Yi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yi-Ping Ding
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yan Kong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Rong Gao
- Department of Neurosurgery, Zhangjiagang First People's Hospital, Soochow University, Zhangjiagang, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Department of Neurosurgery, Zhangjiagang First People's Hospital, Soochow University, Zhangjiagang, Jiangsu Province, China.,Department of Neurosurgery, Huaian Hospital Affiliated of Xuzhou Medical University and Huaian Second People's Hospital, Huaian, Jiangsu Province, China
| |
Collapse
|
44
|
Exacerbation of oxygen-glucose deprivation-induced blood-brain barrier disruption: potential pathogenic role of interleukin-9 in ischemic stroke. Clin Sci (Lond) 2017; 131:1499-1513. [PMID: 28550144 DOI: 10.1042/cs20170984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-9 exerts a variety of functions in autoimmune diseases. However, its role in ischemic brain injury remains unknown. The present study explored the biological effects of IL-9 in ischemic stroke (IS). We recruited 42 patients newly diagnosed with IS and 22 age- and sex-matched healthy controls. The expression levels of IL-9 and percentages of IL-9-producing T cells, including CD3+CD4+IL-9+ and CD3+CD8+IL-9+ cells, were determined in peripheral blood mononuclear cells (PBMCs) obtained from patients and control individuals. We also investigated the effects of IL-9 on the blood-brain barrier (BBB) following oxygen-glucose deprivation (OGD) and the potential downstream signaling pathways. We found that patients with IS had higher IL-9 expression levels and increased percentages of IL-9-producing T cells in their PBMCs. The percentages of CD3+CD4+IL-9+ and CD3+CD8+IL-9+ T cells were positively correlated with the severity of illness. In in vitro experiments using bEnd.3 cells, exogenously administered IL-9 exacerbated the loss of tight junction proteins (TJPs) in cells subjected to OGD plus reoxygenation (RO). This effect was mediated via activation of IL-9 receptors, which increased the level of endothelial nitric oxide synthase (eNOS), as well as through up-regulated phosphorylation of signal transducer and activator of transcription 1 and 3 and down-regulated phosphorylated protein kinase B/phosphorylated phosphatidylinositol 3-kinase signaling. These results indicate that IL-9 has a destructive effect on the BBB following OGD, at least in part by inducing eNOS production, and raise the possibility of targetting IL-9 for therapeutic intervention in IS.
Collapse
|
45
|
Phase I and Phase II Therapies for Acute Ischemic Stroke: An Update on Currently Studied Drugs in Clinical Research. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4863079. [PMID: 28286764 PMCID: PMC5329656 DOI: 10.1155/2017/4863079] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023]
Abstract
Acute ischemic stroke is a devastating cause of death and disability, consequences of which depend on the time from ischemia onset to treatment, the affected brain region, and its size. The main targets of ischemic stroke therapy aim to restore tissue perfusion in the ischemic penumbra in order to decrease the total infarct area by maintaining blood flow. Advances in research of pathological process and pathways during acute ischemia have resulted in improvement of new treatment strategies apart from restoring perfusion. Additionally, limiting the injury severity by manipulating the molecular mechanisms during ischemia has become a promising approach, especially in animal research. The purpose of this article is to review completed and ongoing phases I and II trials for the treatment of acute ischemic stroke, reviewing studies on antithrombotic, thrombolytic, neuroprotective, and antineuroinflammatory drugs that may translate into more effective treatments.
Collapse
|
46
|
Abstract
Tissue plasminogen activator (tPA) was first approved in the USA 25 years ago for those who had experienced a recent occlusion (<3 h) of a cerebral vessel. Now, advances in clot retrieval (stentriever), in concert with tPA, heralds new optimism for ischemic stroke victims, but adds more pressure to identify therapies that will minimize hypoxic damage, protect compromised cells, and promote rehabilitation. In the past preclinical investigations have been poor at predicting potential clinical therapy, but they have contributed enormously to understanding post-stroke pathology. Current clinical trials ( www.strokecenter.org/trials ) anticipate a broad range of approaches: from hypothermia, to cell therapy, to neuroprotection.
Collapse
|
47
|
Targeting antioxidant enzyme expression as a therapeutic strategy for ischemic stroke. Neurochem Int 2016; 107:23-32. [PMID: 28043837 DOI: 10.1016/j.neuint.2016.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/05/2016] [Accepted: 12/17/2016] [Indexed: 11/24/2022]
Abstract
During ischemic stroke, neurons and glia are subjected to damage during the acute and neuroinflammatory phases of injury. Production of reactive oxygen species (ROS) from calcium dysregulation in neural cells and the invasion of activated immune cells are responsible for stroke-induced neurodegeneration. Scientists have failed thus far to identify antioxidant-based drugs that can enhance neural cell survival and improve recovery after stroke. However, several groups have demonstrated success in protecting against stroke by increasing expression of antioxidant enzymes in neural cells. These enzymes, which include but are not limited to enzymes in the glutathione peroxidase, catalase, and superoxide dismutase families, degrade ROS that otherwise damage cellular components such as DNA, proteins, and lipids. Several groups have identified cellular therapies including neural stem cells and human umbilical cord blood cells, which exert neuroprotective and oligoprotective effects through the release of pro-survival factors that activate PI3K/Akt signaling to upregulation of antioxidant enzymes. Other studies demonstrate that treatment with soluble factors released by these cells yield similar changes in enzyme expression after stroke. Treatment with the cytokine leukemia inhibitory factor increases the expression of peroxiredoxin IV and metallothionein III in glia and boosts expression of superoxide dismutase 3 in neurons. Through cell-specific upregulation of these enzymes, LIF and other Akt-inducing factors have the potential to protect multiple cell types against damage from ROS during the early and late phases of ischemic damage.
Collapse
|
48
|
Yang T, Sun Y, Zhang F. Anti-oxidative aspect of inhaled anesthetic gases against acute brain injury. Med Gas Res 2016; 6:223-226. [PMID: 28217295 PMCID: PMC5223314 DOI: 10.4103/2045-9912.196905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute brain injury is a critical and emergent condition in clinical settings, which needs to be addressed urgently. Commonly acute brain injuries include traumatic brain injury, ischemic and hemorrhagic strokes. Oxidative stress is a key contributor to the subsequent injuries and impedes the reparative process after acute brain injury; therefore, facilitating an anti-oxidative approach is important in the care of those diseases. Readiness to deliver and permeability to blood brain barrier are essential for the use of this purpose. Inhaled anesthetic gases are a group of such agents. In this article, we discuss the anti-oxidative roles of anesthetic gases against acute brain injury.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA; Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong Province, China
| |
Collapse
|
49
|
Li PY, Wang X, Stetler RA, Chen J, Yu WF. Anti-inflammatory signaling: the point of convergence for medical gases in neuroprotection against ischemic stroke. Med Gas Res 2016; 6:227-231. [PMID: 28217296 PMCID: PMC5223315 DOI: 10.4103/2045-9912.196906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent studies suggest that a variety of medical gases confer neuroprotective effects against cerebral ischemia, extending function beyond their regular clinical applications. The mechanisms underlying ischemic neuroprotection afforded by medical gases have been intensively studied over the past two decades. A number of signaling pathways have been proposed, among which anti-inflammatory signaling has been proven to be critical. Pursuit of the role for anti-inflammatory signaling may shed new light on the translational application of medical gas-afforded neuroprotection.
Collapse
Affiliation(s)
- Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xin Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - R Anne Stetler
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Hu SL, Feng H, Xi GH. Hyperbaric oxygen therapy and preconditioning for ischemic and hemorrhagic stroke. Med Gas Res 2016; 6:232-236. [PMID: 28217297 PMCID: PMC5223316 DOI: 10.4103/2045-9912.196907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To date, the therapeutic methods for ischemic and hemorrhagic stroke are still limited. The lack of oxygen supply is critical for brain injury following stroke. Hyperbaric oxygen (HBO), an approach through a process in which patients breathe in 100% pure oxygen at over 101 kPa, has been shown to facilitate oxygen delivery and increase oxygen supply. Hence, HBO possesses the potentials to produce beneficial effects on stroke. Actually, accumulated basic and clinical evidences have demonstrated that HBO therapy and preconditioning could induce neuroprotective functions via different mechanisms. Nevertheless, the lack of clinical translational study limits the application of HBO. More translational studies and clinical trials are needed in the future to develop effective HBO protocols.
Collapse
Affiliation(s)
- Sheng-Li Hu
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA; Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Collaborative Innovation Center for Brain Science, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Collaborative Innovation Center for Brain Science, Chongqing, China
| | - Guo-Hua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|