1
|
Dingyi L, Libin H, Jifeng P, Ding Z, Yulong L, Zhangyi W, Yunong Y, Qinghua W, Feng L. Silencing CXCL16 alleviate neuroinflammation and M1 microglial polarization in mouse brain hemorrhage model and BV2 cell model through PI3K/AKT pathway. Exp Brain Res 2024; 242:1917-1932. [PMID: 38896294 DOI: 10.1007/s00221-024-06875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Neuroinflammation and microglia polarization play pivotal roles in brain injury induced by intracerebral hemorrhage (ICH). Despite the well-established involvement of CXC motif chemokine ligand 16 (CXCL16) in regulating inflammatory responses across various diseases, its specific functions in the context of neuroinflammation and microglial polarization following ICH remain elusive. In this study, we investigated the impact of CXCL16 on neuroinflammation and microglia polarization using both mouse and cell models. Our findings revealed elevated CXCL16 expression in mice following ICH and in BV2 cells after lipopolysaccharide (LPS) stimulation. Specific silencing of CXCL16 using siRNA led to a reduction in the expression of neuroinflammatory factors, including IL-1β and IL-6, as well as decreased expression of the M1 microglia marker iNOS. Simultaneously, it enhanced the expression of anti-inflammatory factors such as IL-10 and the M2 microglia marker Arg-1. These results were consistent across both mouse and cell models. Intriguingly, co-administration of the PI3K-specific agonist 740 Y-P with siRNA in LPS-stimulated cells reversed the effects of siRNA. In conclusion, silencing CXCL16 can positively alleviate neuroinflammation and M1 microglial polarization in BV2 inflammation models and ICH mice. Furthermore, in BV2 cells, this beneficial effect is mediated through the PI3K/Akt pathway. Inhibition of CXCL16 could be a novel approach for treating and diagnosing cerebral hemorrhage.
Collapse
Affiliation(s)
- Lv Dingyi
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Hu Libin
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Piao Jifeng
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Zhiquan Ding
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Li Yulong
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Wu Zhangyi
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Yin Yunong
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Wang Qinghua
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| | - Li Feng
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
2
|
Liu Y, Qiu T, Fu Z, Wang K, Zheng H, Li M, Yu G. Systemic immune-inflammation index and serum glucose-potassium ratio predict poor prognosis in patients with spontaneous cerebral hemorrhage: An observational study. Medicine (Baltimore) 2024; 103:e39041. [PMID: 39029027 PMCID: PMC11398737 DOI: 10.1097/md.0000000000039041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Recent studies have shown systemic inflammatory response, serum glucose, and serum potassium are associated with poor prognosis in spontaneous intracerebral hemorrhage (SICH). This retrospective study aimed to investigate the association of systemic immune-inflammatory index (SII) and serum glucose-potassium ratio (GPR) with the severity of disease and the poor prognosis of patients with SICH at 3 months after hospital discharge. We reviewed the clinical data of 105 patients with SICH, assessed the extent of their disease using Glasgow Coma Scale score, National Institutes of Health Stroke Scale (NIHSS) score, and hematoma volume, and categorized them into a good prognosis group (0-3 scores) and a poor prognosis group (4-6 scores) based on their mRS scores at 3 months after hospital discharge. Demographic characteristics, clinical, laboratory, and imaging data at admission were compared between the 2 groups, bivariate correlations were analyzed using Spearman's correlation coefficients, multivariate logistic regression analysis was used to determine the independent risk factors for poor prognosis of patients with SICH, and finally, SII, GPR, and platelet/lymphocyte ratio (PLR) were examined using the subject's work characteristics (ROC) curve, lymphocyte/monocyte ratio (LMR), and neutrophil/lymphocyte ratio (NLR) for their predictive efficacy for poor prognosis. Patients in the poor prognosis group had significantly higher SII and serum GPR than those in the good prognosis group, and Spearman analysis showed that SII and serum GPR were significantly correlated with the admission Glasgow Coma Scale score as well as the NIHSS score and that SII and GPR increased with the increase in mRS score. Multivariate logistic regression analysis showed that admission NIHSS score, hematoma volume SII, GPR, NLR, and PLR were independently associated with poor patient prognosis. Analysis of the subjects' work characteristic curves showed that the areas under the SII, GPR, NLR, PLR, LMR, and coSII-GPR curves were 0.838, 0.837, 0.825, 0.718, 0.616, and 0.883. SII and GRP were significantly associated with disease severity and short-term prognosis in SICH patients 3 months after discharge, and SII and GPR had better predictive value compared with NLR, PLR, and LMR. In addition, coSII-GPR, a joint indicator based on SII and GPR, can improve the predictive accuracy of poor prognosis 3 months after discharge in patients with SICH.
Collapse
Affiliation(s)
- Yongqi Liu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Tianwen Qiu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, People's Republic of China
| | - Zhizhan Fu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, People's Republic of China
| | - Kewei Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Huiwen Zheng
- The Quzhou Affiliated Hospital of Wenzhou Medical University, People's Republic of China
| | - Meiying Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, People's Republic of China
| | - Guofeng Yu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, People's Republic of China
| |
Collapse
|
3
|
Giede-Jeppe A, Gerner ST, Sembill JA, Kuramatsu JB, Lang S, Luecking H, Staykov D, Huttner HB, Volbers B. Peak Edema Extension Distance: An Edema Measure Independent from Hematoma Volume Associated with Functional Outcome in Intracerebral Hemorrhage. Neurocrit Care 2024; 40:1089-1098. [PMID: 38030878 PMCID: PMC11147861 DOI: 10.1007/s12028-023-01886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Our objective was to test the association between hematoma volume and long-term (> 72 h) edema extension distance (EED) evolution and the association between peak EED and early EED increase with functional outcome at 3 months in patients with intracerebral hemorrhage (ICH). METHODS This retrospective cohort study included patients with spontaneous supratentorial ICH between January 2006 and January 2014. EED, an edema measure defined as the distance between the hematoma border and the outer edema border, was calculated by using absolute hematoma and edema volumes. We used multivariable logistic regression accounting for age, ICH volume, and location and receiver operating characteristic analysis for assessing measures associated with functional outcome and EED evolution. Functional outcome after 3 months was assessed by using the modified Rankin Scale (0-3 = favorable, 4-6 = unfavorable). To identify properties associated with peak EED multivariable linear and logistic regression analyses were conducted. RESULTS A total of 292 patients were included. Median age was 70 years (interquartile range [IQR] 62-78), median ICH volume on admission 17.7 mL (IQR 7.9-40.2), median peak perihemorrhagic edema (PHE) volume was 37.5 mL (IQR 19.1-60.6), median peak EED was 0.67 cm (IQR 0.51-0.84) with an early EED increase up to 72 h (EED72-0) of 0.06 cm (- 0.02 to 0.15). Peak EED was found to be independent of ICH volume (R2 = 0.001, p = 0.6). In multivariable analyses, peak EED (odds ratio 0.224, 95% confidence interval [CI] [0.071-0.705]) and peak PHE volume (odds ratio 0.984 [95% CI 0.973-0.994]) were inversely associated with favorable functional outcome at 3 months. Receiver operating characteristic analysis identified a peak PHE volume of 26.8 mL (area under the curve 0.695 [95% CI 0.632-0.759]; p ≤ 0.001) and a peak EED of 0.58 cm (area under the curve 0.608 [95% CI 0.540-0.676]; p = 0.002) as best predictive values for outcome discrimination. CONCLUSIONS Compared with absolute peak PHE volume, peak EED represents a promising edema measure in patients with ICH that is largely hematoma volume-independent and nevertheless associated with functional outcome.
Collapse
Affiliation(s)
- Antje Giede-Jeppe
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| | - Stefan T Gerner
- Department of Neurology, University of Gießen, Gießen, Germany
| | - Jochen A Sembill
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Joji B Kuramatsu
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Stefan Lang
- Department of Neuroradiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hannes Luecking
- Department of Neuroradiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Hagen B Huttner
- Department of Neurology, University of Gießen, Gießen, Germany
| | - Bastian Volbers
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
4
|
Lu W, Wang Y, Wen J. The Roles of RhoA/ROCK/NF-κB Pathway in Microglia Polarization Following Ischemic Stroke. J Neuroimmune Pharmacol 2024; 19:19. [PMID: 38753217 DOI: 10.1007/s11481-024-10118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Ischemic stroke is the leading cause of death and disability worldwide. Nevertheless, there still lacks the effective therapies for ischemic stroke. Microglia are resident macrophages of the central nervous system (CNS) and can initiate immune responses and monitor the microenvironment. Microglia are activated and polarize into proinflammatory or anti‑inflammatory phenotype in response to various brain injuries, including ischemic stroke. Proinflammatory microglia could generate immunomodulatory mediators, containing cytokines and chemokines, these mediators are closely associated with secondary brain damage following ischemic stroke. On the contrary, anti-inflammatory microglia facilitate recovery following stroke. Regulating the activation and the function of microglia is crucial in exploring the novel treatments for ischemic stroke patients. Accumulating studies have revealed that RhoA/ROCK pathway and NF-κB are famous modulators in the process of microglia activation and polarization. Inhibiting these key modulators can promote the polarization of microglia to anti-inflammatory phenotype. In this review, we aimed to provide a comprehensive overview on the role of RhoA/ROCK pathway and NF-κB in the microglia activation and polarization, reveal the relationship between RhoA/ROCK pathway and NF-κB in the pathological process of ischemic stroke. In addition, we likewise discussed the drug modulators targeting microglia polarization.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Yilin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Tang Y, Wu X, Li J, Li Y, Xu X, Li G, Zhang P, Qin C, Wu LJ, Tang Z, Tian DS. The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. Aging Dis 2024; 15:1176-1203. [PMID: 38029392 PMCID: PMC11081154 DOI: 10.14336/ad.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
In the central nervous system (CNS), the myelin sheath ensures efficient interconnection between neurons and contributes to the regulation of the proper function of neuronal networks. The maintenance of myelin and the well-organized subtle process of myelin plasticity requires cooperation among myelin-forming cells, glial cells, and neural networks. The process of cooperation is fragile, and the balance is highly susceptible to disruption by microenvironment influences. Reactive microglia play a critical and complicated role in the demyelination and remyelination process. Recent studies have shown that the voltage-gated proton channel Hv1 is selectively expressed in microglia in CNS, which regulates intracellular pH and is involved in the production of reactive oxygen species, underlying multifaceted roles in maintaining microglia function. This paper begins by examining the molecular mechanisms of demyelination and emphasizes the crucial role of the microenvironment in demyelination. It focuses specifically on the role of Hv1 in myelin repair and its therapeutic potential in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Tao C, Li Y, An N, Liu H, Liu Z, Sun Y, Qian Y, Li N, Xing Y, Gao Y. Pathological mechanisms and future therapeutic directions of thrombin in intracerebral hemorrhage: a systematic review. Front Pharmacol 2024; 15:1293428. [PMID: 38698822 PMCID: PMC11063263 DOI: 10.3389/fphar.2024.1293428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/05/2024] [Indexed: 05/05/2024] Open
Abstract
Intracerebral hemorrhage (ICH), a common subtype of hemorrhagic stroke, often causes severe disability or death. ICH induces adverse events that might lead to secondary brain injury (SBI), and there is currently a lack of specific effective treatment strategies. To provide a new direction for SBI treatment post-ICH, the systematic review discussed how thrombin impacts secondary injury after ICH through several potentially deleterious or protective mechanisms. We included 39 studies and evaluated them using SYRCLE's ROB tool. Subsequently, we explored the potential molecular mechanisms of thrombin-mediated effects on SBI post-ICH in terms of inflammation, iron deposition, autophagy, and angiogenesis. Furthermore, we described the effects of thrombin in endothelial cells, astrocytes, pericytes, microglia, and neurons, as well as the harmful and beneficial effects of high and low thrombin concentrations on ICH. Finally, we concluded the current research status of thrombin therapy for ICH, which will provide a basis for the future clinical application of thrombin in the treatment of ICH.
Collapse
Affiliation(s)
- Chenxi Tao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Qian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Mavridis T, Choratta T, Papadopoulou A, Sawafta A, Archontakis-Barakakis P, Laou E, Sakellakis M, Chalkias A. Protease-Activated Receptors (PARs): Biology and Therapeutic Potential in Perioperative Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01233-0. [PMID: 38326662 DOI: 10.1007/s12975-024-01233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Perioperative stroke is a devastating complication that occurs during surgery or within 30 days following the surgical procedure. Its prevalence ranges from 0.08 to 10% although it is most likely an underestimation, as sedatives and narcotics can substantially mask symptomatology and clinical presentation. Understanding the underlying pathophysiology and identifying potential therapeutic targets are of paramount importance. Protease-activated receptors (PARs), a unique family of G-protein-coupled receptors, are widely expressed throughout the human body and play essential roles in various physiological and pathological processes. This review elucidates the biology and significance of PARs, outlining their diverse functions in health and disease, and their intricate involvement in cerebrovascular (patho)physiology and neuroprotection. PARs exhibit a dual role in cerebral ischemia, which underscores their potential as therapeutic targets to mitigate the devastating effects of stroke in surgical patients.
Collapse
Affiliation(s)
- Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital, Dublin, incorporating the National Children's Hospital (AMNCH), Dublin, D24 NR0A, Ireland
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - Theodora Choratta
- Department of General Surgery, Metaxa Hospital, 18537, Piraeus, Greece
| | - Androniki Papadopoulou
- Department of Anesthesiology, G. Gennimatas General Hospital, 54635, Thessaloniki, Greece
| | - Assaf Sawafta
- Department of Cardiology, University Hospital of Larisa, 41110, Larisa, Greece
| | | | - Eleni Laou
- Department of Anesthesiology, Agia Sophia Children's Hospital, 15773, Athens, Greece
| | - Minas Sakellakis
- Department of Medicine, Jacobi Medical Center-North Central Bronx Hospital, Bronx, NY, 10467, USA
| | - Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-5158, USA.
- Outcomes Research Consortium, Cleveland, OH, 44195, USA.
| |
Collapse
|
8
|
Zhang G, Lu J, Zheng J, Mei S, Li H, Zhang X, Ping A, Gao S, Fang Y, Yu J. Spi1 regulates the microglial/macrophage inflammatory response via the PI3K/AKT/mTOR signaling pathway after intracerebral hemorrhage. Neural Regen Res 2024; 19:161-170. [PMID: 37488863 PMCID: PMC10479839 DOI: 10.4103/1673-5374.375343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 07/26/2023] Open
Abstract
Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage. The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation. However, the effect of Spi1 on intracerebral hemorrhage remains unclear. In this study, we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome. We showed that high Spi1 expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis, glycolysis, and autophagy, as well as debris clearance and sustained remyelination. Notably, microglia with higher levels of Spi1 expression were characterized by activation of pathways associated with a variety of hemorrhage-related cellular processes, such as complement activation, angiogenesis, and coagulation. In conclusion, our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage. This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shuhao Mei
- Department of Neurosurgery, Huashan Hospital of Fudan University School of Medicine, Shanghai, China
| | - Huaming Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaotao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - An Ping
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jun Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang Province, China
| |
Collapse
|
9
|
Sun XR, Yao ZM, Chen L, Huang J, Dong SY. Metabolic reprogramming regulates microglial polarization and its role in cerebral ischemia reperfusion. Fundam Clin Pharmacol 2023; 37:1065-1078. [PMID: 37339781 DOI: 10.1111/fcp.12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/12/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
The brain is quite sensitive to changes in energy supply because of its high energetic demand. Even small changes in energy metabolism may be the basis of impaired brain function, leading to the occurrence and development of cerebral ischemia/reperfusion (I/R) injury. Abundant evidence supports that metabolic defects of brain energy during the post-reperfusion period, especially low glucose oxidative metabolism and elevated glycolysis levels, which play a crucial role in cerebral I/R pathophysiology. Whereas research on brain energy metabolism dysfunction under the background of cerebral I/R mainly focuses on neurons, the research on the complexity of microglia energy metabolism in cerebral I/R is just emerging. As resident immune cells of the central nervous system, microglia activate rapidly and then transform into an M1 or M2 phenotype to correspond to changes in brain homeostasis during cerebral I/R injury. M1 microglia release proinflammatory factors to promote neuroinflammation, while M2 microglia play a neuroprotective role by secreting anti-inflammatory factors. The abnormal brain microenvironment promotes the metabolic reprogramming of microglia, which further affects the polarization state of microglia and disrupts the dynamic equilibrium of M1/M2, resulting in the aggravation of cerebral I/R injury. Increasing evidence suggests that metabolic reprogramming is a key driver of microglial inflammation. For example, M1 microglia preferentially produce energy through glycolysis, while M2 microglia provide energy primarily through oxidative phosphorylation. In this review, we highlight the emerging significance of regulating microglial energy metabolism in cerebral I/R injury.
Collapse
Affiliation(s)
- Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| |
Collapse
|
10
|
Hua W, Ma S, Pang Y, Liu Q, Wang Y, Liu Z, Zhao N, Ren N, Jin S, Wang B, Song Y, Qi J. Intracerebral Hemorrhage-Induced Brain Injury: the Role of Lysosomal-Associated Transmembrane Protein 5. Mol Neurobiol 2023; 60:7060-7079. [PMID: 37525083 DOI: 10.1007/s12035-023-03484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Intracerebral hemorrhage (ICH) is a lethal stroke with high mortality or disability. However, effective therapy for ICH damage is generally lacking. Previous investigations have suggested that lysosomal protein transmembrane 5 (LAPTM5) is involved in various pathological processes, including autophagy, apoptosis, and inflammation. In this study, we aimed to identify the expression and functions of LAPTM5 in collagenase-induced ICH mouse models and hemoglobin-induced cell models. We found that LAPTM5 was highly expressed in brain tissues around the hematoma, and double immunostaining studies showed that LAPTM5 was co-expressed with microglia cells, neurons, and astrocytes. Following ICH, the mice presented increased brain edema, blood-brain barrier permeability, and neurological deficits, while pathological symptoms were alleviated after the LAPTM5 knockdown. Adeno-associated virus 9-mediated downregulation of LAPTM5 also improves ICH-induced secondary cerebral damage, including neuronal degeneration, the polarization of M1-like microglia, and inflammatory cascades. Furthermore, LAPTM5 promoted activation of the nuclear factor kappa-B (NF-κB) pathway in response to neuroinflammation. Further investigations indicated that brain injury improved by LAPTM5 knockdown was further exacerbated after the overexpression of receptor-interacting protein kinase 1 (RIP1), which is revealed to trigger the NF-κB pathway. In vitro experiments demonstrated that LAPTM5 silencing inhibited hemoglobin-induced cell function and confirmed regulation between RIP1 and LAPTM5. In conclusion, the present study indicates that LAPTM5 may act as a positive regulator in the context of ICH by modulating the RIP1/NF-κB pathway. Thus, it may be a candidate gene for further study of molecular or therapeutic targets.
Collapse
Affiliation(s)
- Wei Hua
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shuainan Ma
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuxin Pang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yueying Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhiyi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Nan Zhao
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Naixin Ren
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Sinan Jin
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Benshuai Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuejia Song
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
11
|
Tang L, Wang L, Jin F, Hao Y, Zhao T, Zheng W, He Z. Inflammatory regulation by restraining M2 microglial polarization: Neurodestructive effects of Kallikrein-related peptidase 8 activation in intracerebral hemorrhage. Int Immunopharmacol 2023; 124:110855. [PMID: 37678029 DOI: 10.1016/j.intimp.2023.110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Intracerebral hemorrhage (ICH) is a cerebrovascular disease. Kallikrein-related peptidase 8 (KLK8) is a serine peptidase, while its role in ICH remains unclarified. Western blot (WB) showed that KLK8 was upregulated in rat perihematomal tissues 24 h following autologous blood injection. KLK8 overexpression aggravated behavioral deficits and increased water content and Fluoro-Jade B (FJB)-positive neuron numbers in brain tissue of rats. Immunofluorescence (IF) assay showed that overexpressed-KLK8 promoted Iba-1 and iNOS expression in perihematomal tissue of rats. Overexpressed-KLK8 increased COX-2, iNOS, and Arg-1 expression and the content of IL-6, IL-1β, and TNF-α in perihematomal tissue of rats, confirmed by WB and ELISA. IF staining confirmed the expression of CCR5 was co-expressed with Iba-1, and the WB results shown increased CCR5 expression and decreased p-PKA and p-CREB expression in perihematomal tissue. Maraviroc (MVC, CCR5 inhibitor) administration rescued KLK8-induced behavioral deficits and brain injury (decreased water content and FJB-positive neuron numbers) in rats. Additionally, MVC suppressed p-PKA and p-CREB expression and the content of IL-6, IL-1β, and TNF-α in perihematomal tissue, induced by overexpressed-KLK8. Co-IP confirmed the binding of CCR5 and CCL14 in HMC3 cells. Transwell assay shown that KLK8 plus CCL4 promoted the chemotactic activity of cells, which was rescued by MVC. The biological function of KLK8/CCL14/CCR5 axis in ICH injury was also proved by MVC administration in HMC3 cells. Overall, our work revealed that KLK8 overexpression aggravated ICH process and involved in microglial activation. KLK8 might activate CCL14 thereby turning on downstream CCR5/PKA/CREB pathway, providing a theoretical basis for future therapy.
Collapse
Affiliation(s)
- Ling Tang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Liyuan Wang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Feng Jin
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yuehan Hao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Tianming Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Wenxu Zheng
- Geriatric Department of Dalian Friendship Hospital, Dalian, Liaoning, PR China.
| | - Zhiyi He
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
12
|
Lu W, Chen Z, Wen J. The role of RhoA/ROCK pathway in the ischemic stroke-induced neuroinflammation. Biomed Pharmacother 2023; 165:115141. [PMID: 37437375 DOI: 10.1016/j.biopha.2023.115141] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
It is widely known that ischemic stroke is the prominent cause of death and disability. To date, neuroinflammation following ischemic stroke represents a complex event, which is an essential process and affects the prognosis of both experimental stroke animals and stroke patients. Intense neuroinflammation occurring during the acute phase of stroke contributes to neuronal injury, BBB breakdown, and worse neurological outcomes. Inhibition of neuroinflammation may be a promising target in the development of new therapeutic strategies. RhoA is a small GTPase protein that activates a downstream effector, ROCK. The up-regulation of RhoA/ROCK pathway possesses important roles in promoting the neuroinflammation and mediating brain injury. In addition, nuclear factor-kappa B (NF-κB) is another vital regulator of ischemic stroke-induced neuroinflammation through regulating the functions of microglial cells and astrocytes. After stroke onset, the microglial cells and astrocytes are activated and undergo the morphological and functional changes, thereby deeply participate in a complicated neuroinflammation cascade. In this review, we focused on the relationship among RhoA/ROCK pathway, NF-κB and glial cells in the neuroinflammation following ischemic stroke to reveal new strategies for preventing the intense neuroinflammation.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Zhiwu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
13
|
Le C, Hu X, Tong L, Ye X, Zhang J, Yan J, Sherchan P, Zhang JH, Gao F, Tang J. Inhibition of LAR attenuates neuroinflammation through RhoA/IRS-1/Akt signaling pathway after intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 2023; 43:869-881. [PMID: 36802818 PMCID: PMC10196755 DOI: 10.1177/0271678x231159352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/03/2023] [Accepted: 01/28/2023] [Indexed: 02/23/2023]
Abstract
Leukocyte common antigen-related phosphatase (LAR) is widely expressed in the central nervous system and is known to regulate a variety of processes including cell growth, differentiation, and inflammation. However, little is currently known about LAR signaling mediated neuroinflammation after intracerebral hemorrhage (ICH). The objective of this study was to investigate the role of LAR in ICH using autologous blood injection-induced ICH mouse model. Expression of endogenous proteins, brain edema and neurological function after ICH were evaluated. Extracellular LAR peptide (ELP), an inhibitor of LAR, was administered to ICH mice and outcomes were evaluated. LAR activating-CRISPR or IRS inhibitor NT-157 was administered to elucidate the mechanism. The results showed that expressions of LAR, its endogenous agonist chondroitin sulfate proteoglycans (CSPGs) including neurocan and brevican, and downstream factor RhoA increased after ICH. Administration of ELP reduced brain edema, improved neurological function, and decreased microglia activation after ICH. ELP decreased RhoA and phosphorylated serine-IRS1, increased phosphorylated tyrosine-IRS1 and p-Akt, and attenuated neuroinflammation after ICH, which was reversed by LAR activating-CRISPR or NT-157. In conclusion, this study demonstrated that LAR contributed to neuroinflammation after ICH via RhoA/IRS-1 pathway, and ELP may be a potential therapeutic strategy to attenuate LAR mediated neuroinflammation after ICH.
Collapse
Affiliation(s)
- Chensheng Le
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurology, Ningbo
Medical Center Lihuili Hospital, Ningbo, China
| | - Xin Hu
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, West
China Hospital, Sichuan University, Chengdu, China
| | - Lusha Tong
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Xianghua Ye
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
| | - Junyi Zhang
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jun Yan
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, Guangxi
Medical University Cancer Hospital, Nanning, China
| | - Prativa Sherchan
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Feng Gao
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
| | - Jiping Tang
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
14
|
Yang Y, Ye Y, Fan K, Luo J, Yang Y, Ma Y. MiR-124 Reduced Neuroinflammation after Traumatic Brain Injury by Inhibiting TRAF6. Neuroimmunomodulation 2023; 30:55-68. [PMID: 36858024 DOI: 10.1159/000528502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/16/2022] [Indexed: 03/03/2023] Open
Abstract
INTRODUCTION Neuroinflammation contributes to secondary injury after traumatic brain injury (TBI), which has been mainly mediated by the microglia. MiR-124 was reported to play an important role in the polarization of microglia by targeting TLR4 signaling pathway. However, the role and mechanism of miR-124 in neuroinflammation mediated by microglia after TBI is unclear. To clarify this, we performed this research. METHODS The expression of miR-124 was first measured by RT-PCR in the injured brain at 1/3/7 days post-TBI. Then, miR-124 mimics or inhibitors administration was used to interfere the expression of miR-124 at 24 h post-TBI. Subsequently, the microglia polarization markers were detected by RT-PCR, the expression of inflammatory cytokines was detected by ELISA, the expression of TLR4/MyD88/IRAK1/TRAF6/NF-κB was measured by WB, and the neurological deficit was evaluated by NSS and MWM test. At last, in vitro experiments were performed to explore the exact target molecule of miR-124 on TLR4 signaling pathway. RESULTS Animal research indicated that the expression of miR-124 was downregulated after TBI. Upregulation of miR-124 promoted the M2 polarization of microglia and inhibited the activity of TLR4 pathway, as well as reduced neuroinflammation and neurological deficit after TBI. In vitro experiments indicated that miR-124 promoted the M2 polarization of microglia and reduced neuroinflammation by inhibiting TRAF6. CONCLUSION This study demonstrated that upregulation of miR-124 promoted the M2 polarization of microglia and reduced neuroinflammation after TBI by inhibiting TRAF6.
Collapse
Affiliation(s)
- Yongxiang Yang
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Yuqin Ye
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
- Department of Neurosurgery, NO. 921 Hospital of PLA Joint Support Force (Second Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Kexia Fan
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China
| | - Jianing Luo
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China
| | - Yongjian Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Yuan Ma
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
15
|
Wang J, Teng F, Liu S, Pan X, Yang B, Wu W. lncRNA SND1-IT1 delivered via intracerebral hemorrhage-derived exosomes affect the growth of human microglia by regulating the miR-124-3p/MTF1 axis. J Cell Physiol 2023; 238:366-378. [PMID: 36548450 DOI: 10.1002/jcp.30930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/31/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
In this study, we investigated the effects of long noncoding RNA (lncRNA) SND1-IT1 on human microglia (HMC3 cells) delivered by intracerebral hemorrhage (ICH)-derived exosomes (ICH-exos) as well as a competitive endogenous RNA (ceRNA) network. Exosomes obtained from ICH plasma were characterized by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and western blot. RNA sequencing was performed to study the lncRNA transcriptome from ICH-exos and the healthy control-derived exosomes (HC-exos) and differentially expressed lncRNAs (DE-lncRNAs) were identified. HMC3 cells were treated with ICH-exos or transfected with pcDNA3.1-SND1-IT1, and then cell viability and apoptosis were measured. The ceRNA network (lncRNA SND1-IT1/miR-124-3p/messenger RNA MTF1) was chosen for further investigation. NTA, TEM, and western blot showed that exosomes were successfully separated and could be absorbed by HMC3 cells. The expression of lncRNA SND1-IT1 in ICH-exos was significantly higher than that of HC-exos (p < 0.05). In addition, lncRNA SND1-IT1 overexpression and ICH-exos significantly inhibited cell viability and enhanced apoptosis. A total of 162 DE-lncRNAs were identified by sequencing, and a ceRNA network was constructed. The dual-luciferase reporter gene indicated that lncRNA SND1-IT1, miR-124-3p, and MTF1 interacted with each other. Cell experiments showed that lncRNA SND1-IT1 affected the growth of HMC3 cells through miR-124-3p/MTF1. In conclusion, ICH-exos delivered lncRNA SND1-IT1 to HMC3 cells, and exosomal lncRNA SND1-IT1 can regulate cell viability and apoptosis to influence HMC3 cell growth via the SND1-IT1/miR-124-3p/MTF1 axis.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fei Teng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Chongqing University Cancer Hospital, Chongqing, China
| | - Shuhan Liu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoqiang Pan
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Wu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Ohashi SN, DeLong JH, Kozberg MG, Mazur-Hart DJ, van Veluw SJ, Alkayed NJ, Sansing LH. Role of Inflammatory Processes in Hemorrhagic Stroke. Stroke 2023; 54:605-619. [PMID: 36601948 DOI: 10.1161/strokeaha.122.037155] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hemorrhagic stroke is the deadliest form of stroke and includes the subtypes of intracerebral hemorrhage and subarachnoid hemorrhage. A common cause of hemorrhagic stroke in older individuals is cerebral amyloid angiopathy. Intracerebral hemorrhage and subarachnoid hemorrhage both lead to the rapid collection of blood in the central nervous system and generate inflammatory immune responses that involve both brain resident and infiltrating immune cells. These responses are complex and can contribute to both tissue recovery and tissue injury. Despite the interconnectedness of these major subtypes of hemorrhagic stroke, few reviews have discussed them collectively. The present review provides an update on inflammatory processes that occur in response to intracerebral hemorrhage and subarachnoid hemorrhage, and the role of inflammation in the pathophysiology of cerebral amyloid angiopathy-related hemorrhage. The goal is to highlight inflammatory processes that underlie disease pathology and recovery. We aim to discuss recent advances in our understanding of these conditions and identify gaps in knowledge with the potential to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Sarah N Ohashi
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| | - Jonathan H DeLong
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| | - Mariel G Kozberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital/ Harvard Medical School, Boston (M.G.K., S.J.v.V.)
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown (M.G.K., S.J.v.V.)
| | - David J Mazur-Hart
- Department of Neurological Surgery (D.J.M.-H.), Oregon Health and Science University (OHSU), Portland
| | - Susanne J van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital/ Harvard Medical School, Boston (M.G.K., S.J.v.V.)
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown (M.G.K., S.J.v.V.)
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine and Knight Cardiovascular Institute (N.J.A.), Oregon Health and Science University (OHSU), Portland
| | - Lauren H Sansing
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| |
Collapse
|
17
|
Almarghalani DA, Shah ZA. Progress on siRNA-based gene therapy targeting secondary injury after intracerebral hemorrhage. Gene Ther 2023; 30:1-7. [PMID: 34754099 PMCID: PMC10927018 DOI: 10.1038/s41434-021-00304-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Intracerebral hemorrhage (ICH) is a life-threatening condition with a high mortality rate. For survivors, quality of life is determined by primary and secondary phases of injury. The prospects for injury repair and recovery after ICH are highly dependent on the extent of secondary injury. Currently, no effective treatments are available to prevent secondary injury or its long-term effects. One promising strategy that has recently garnered attention is gene therapy, in particular, small interfering RNAs (siRNA), which silence specific genes responsible for destructive effects after hemorrhage. Gene therapy as a potential treatment for ICH is being actively researched in animal studies. However, there are many barriers to the systemic delivery of siRNA-based therapy, as the use of naked siRNA has limitations. Recently, the Food and Drug Administration approved two siRNA-based therapies, and several are undergoing Phase 3 clinical trials. In this review, we describe the advancements in siRNA-based gene therapy for ICH and also summarize its advantages and disadvantages.
Collapse
Affiliation(s)
- Daniyah A Almarghalani
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, 43614, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
18
|
Yang G, Fan X, Mazhar M, Guo W, Zou Y, Dechsupa N, Wang L. Neuroinflammation of microglia polarization in intracerebral hemorrhage and its potential targets for intervention. Front Mol Neurosci 2022; 15:1013706. [PMID: 36304999 PMCID: PMC9592761 DOI: 10.3389/fnmol.2022.1013706] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and play a key role in neurological diseases, including intracerebral hemorrhage (ICH). Microglia are activated to acquire either pro-inflammatory or anti-inflammatory phenotypes. After the onset of ICH, pro-inflammatory mediators produced by microglia at the early stages serve as a crucial character in neuroinflammation. Conversely, switching the microglial shift to an anti-inflammatory phenotype could alleviate inflammatory response and incite recovery. This review will elucidate the dynamic profiles of microglia phenotypes and their available shift following ICH. This study can facilitate an understanding of the self-regulatory functions of the immune system involving the shift of microglia phenotypes in ICH. Moreover, suggestions for future preclinical and clinical research and potential intervention strategies are discussed.
Collapse
Affiliation(s)
- Guoqiang Yang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Acupuncture and Rehabilitation Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Wubin Guo
- Department of General Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yuanxia Zou
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Li Wang Nathupakorn Dechsupa
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Li Wang Nathupakorn Dechsupa
| |
Collapse
|
19
|
Abstract
Intracerebral hemorrhage (ICH) is a severe clinical emergency caused by bleeding into brain parenchyma. Currently, there are no effective treatments to improve ICH outcomes. Developing new therapies for ICH relies on a thorough understanding of ICH pathophysiology and good in vitro models that enable mechanistic research. In this review, we summarized widely used in vitro ICH models and compared their advantages and disadvantages. Next, key questions that need to be answered in future research are discussed. We aim to provide a quick reference/summary of widely used in vitro ICH models and stimulate the development of new ICH models.
Collapse
Affiliation(s)
- Bilal Syed
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Abhijit Nirwane
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| |
Collapse
|
20
|
Wei J, Dai S, Pu C, Luo P, Yang Y, Jiang X, Li X, Lin W, Fei Z. Protective role of TLR9-induced macrophage/microglia phagocytosis after experimental intracerebral hemorrhage in mice. CNS Neurosci Ther 2022; 28:1800-1813. [PMID: 35876247 PMCID: PMC9532915 DOI: 10.1111/cns.13919] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Intracerebral hemorrhage (ICH) causes devastating morbidity and mortality, and studies have shown that the toxic components of hematomas play key roles in brain damage after ICH. Recent studies have found that TLR9 participates in regulating the phagocytosis of peripheral macrophages. The current study examined the role of TLR9 in macrophage/microglial (M/M) function after ICH. METHODS RAW264.7 (macrophage), BV2 (microglia), and HT22# (neurons) cell lines were transfected with lentivirus for TLR9 overexpression. Whole blood from C57BL/6 or EGFPTg/+ mice was infused for phagocytosis and injury experiments, and brusatol was used for the experiments. Intraperitoneal injection of the TLR9 agonist ODN1826 or control ODN2138 was performed on days 1, 3, 5, 7, and 28 after ICH to study the effects of TLR9 in mice. In addition, clodronate was coinjected in M/M elimination experiments. The brains were collected for histological and protein experiments at different time points after ICH induction. Cellular and histological methods were used to measure hematoma/iron residual, M/Ms variation, neural injury, and brain tissue loss. Behavioral tests were performed premodeling and on days 1, 3, 7, and 28 post-ICH. RESULTS Overexpression of TLR9 facilitated M/M phagocytosis and protected neurons from blood-derived hazards in vitro. Furthermore, ODN1826 boosted M/M activation and phagocytic function, facilitated hematoma/iron resolution, reduced brain injury, and improved neurological function recovery in ICH mice, which were abolished by clodronate injection. The experimental results indicated that the Nrf2/CD204 pathway participated in TLR9-induced M/M phagocytosis after ICH. CONCLUSION Our study suggests a protective role for TLR9-enhanced M/M phagocytosis via the Nrf2/CD204 pathway after ICH. Our findings may serve as potential targets for ICH treatment.
Collapse
Affiliation(s)
- Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Health Service, Fourth Military Medical University, Xi'an, China
| | - Shuhui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Pu
- Department of Health Service, Fourth Military Medical University, Xi'an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuefan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Lin
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Wendimu MY, Hooks SB. Microglia Phenotypes in Aging and Neurodegenerative Diseases. Cells 2022; 11:2091. [PMID: 35805174 PMCID: PMC9266143 DOI: 10.3390/cells11132091] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation is a hallmark of many neurodegenerative diseases (NDs) and plays a fundamental role in mediating the onset and progression of disease. Microglia, which function as first-line immune guardians of the central nervous system (CNS), are the central drivers of neuroinflammation. Numerous human postmortem studies and in vivo imaging analyses have shown chronically activated microglia in patients with various acute and chronic neuropathological diseases. While microglial activation is a common feature of many NDs, the exact role of microglia in various pathological states is complex and often contradictory. However, there is a consensus that microglia play a biphasic role in pathological conditions, with detrimental and protective phenotypes, and the overall response of microglia and the activation of different phenotypes depends on the nature and duration of the inflammatory insult, as well as the stage of disease development. This review provides a comprehensive overview of current research on the various microglia phenotypes and inflammatory responses in health, aging, and NDs, with a special emphasis on the heterogeneous phenotypic response of microglia in acute and chronic diseases such as hemorrhagic stroke (HS), Alzheimer's disease (AD), and Parkinson's disease (PD). The primary focus is translational research in preclinical animal models and bulk/single-cell transcriptome studies in human postmortem samples. Additionally, this review covers key microglial receptors and signaling pathways that are potential therapeutic targets to regulate microglial inflammatory responses during aging and in NDs. Additionally, age-, sex-, and species-specific microglial differences will be briefly reviewed.
Collapse
Affiliation(s)
| | - Shelley B. Hooks
- Hooks Lab, Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
22
|
Tamakoshi K, Maeda M, Murohashi N, Saito A. Effect of exercise from a very early stage after intracerebral hemorrhage on microglial and macrophage reactivity states in rats. Neuroreport 2022; 33:304-311. [PMID: 35594443 DOI: 10.1097/wnr.0000000000001782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study investigated the effects of exercise, starting very early after intracerebral hemorrhage (ICH), on microglia and macrophages in a rat model. Collagenase solution was injected into the left striatum to induce ICH. METHODS Rats were randomly assigned to receive placebo surgery without exercise (sham surgery), ICH without exercise (ICH), or ICH with very early exercise (ICH + VET). The ICH + VET group was subjected to treadmill running 6 h, 24 h, and days 2-6 after ICH. Motor function assessment was performed using the ladder test and rotarod test 3 h, 25 h, and 7 days after ICH. Postexercise brain tissue was collected on day 8 after surgery to investigate the lesion volume. Very early exercise temporarily worsened motor dysfunction. The protein expression levels of the macrophage and microglial markers CD80, CD163, and TMEM119 were analyzed 6 h, 24 h, and 8 days after ICH. Protein analysis of NeuN, GFAP, and PSD95 was also performed on day 8 after ICH. RESULTS There was no significant difference in lesion volume between the ICH and ICH + VET groups on day 8 after ICH. Exercise from very early stage prevented elevated CD163 protein expression. CONCLUSION Very early exercise may inhibit the activation of anti-inflammatory-associated macrophages/microglia.
Collapse
Affiliation(s)
- Keigo Tamakoshi
- Department of Physical Therapy, Niigata University of Health and Welfare
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare
| | | | - Nae Murohashi
- Niigata Seiro Hospital, Rehabilitation, Seiro, Japan
| | - Ami Saito
- Department of Physical Therapy, Niigata University of Health and Welfare
| |
Collapse
|
23
|
Watson N, Bonsack F, Sukumari-Ramesh S. Intracerebral Hemorrhage: The Effects of Aging on Brain Injury. Front Aging Neurosci 2022; 14:859067. [PMID: 35547620 PMCID: PMC9082316 DOI: 10.3389/fnagi.2022.859067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating subtype of stroke with high rates of mortality and morbidity. ICH patients often suffer devastating and debilitating neurological impairments, from which the majority of victims are unable to fully recover to functional independence. Unfortunately, there is no established medical therapy for ICH, which is partly attributed to the lack of understanding of the complex pathology of the disorder. Despite advanced age being a major risk factor of ICH, most preclinical studies on ICH employed young animal subjects. Due to this discrepancy, the molecular level changes in the aging brain after ICH are largely unknown, limiting the translation of preclinical studies into potential human treatments. The purpose of this review is to highlight the effects of advanced age on ICH- induced brain injury and recovery and to draw attention to current knowledge gaps, which warrant further investigation.
Collapse
|
24
|
Chrishtop V, Nikonorova V, Gutsalova A, Rumyantseva T, Dukhinova M, Salmina А. Systematic comparison of basic animal models of cerebral hypoperfusion. Tissue Cell 2022; 75:101715. [DOI: 10.1016/j.tice.2021.101715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
|
25
|
Zhao JF, Ren T, Li XY, Guo TL, Liu CH, Wang X. Research Progress on the Role of Microglia Membrane Proteins or Receptors in Neuroinflammation and Degeneration. Front Cell Neurosci 2022; 16:831977. [PMID: 35281298 PMCID: PMC8913711 DOI: 10.3389/fncel.2022.831977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 01/01/2023] Open
Abstract
Microglia are intrinsic immune cells of the central nervous system and play a dual role (pro-inflammatory and anti-inflammatory) in the homeostasis of the nervous system. Neuroinflammation mediated by microglia serves as an important stage of ischemic hypoxic brain injury, cerebral hemorrhage disease, neurodegeneration and neurotumor of the nervous system and is present through the whole course of these diseases. Microglial membrane protein or receptor is the basis of mediating microglia to play the inflammatory role and they have been found to be upregulated by recognizing associated ligands or sensing changes in the nervous system microenvironment. They can then allosterically activate the downstream signal transduction and produce a series of complex cascade reactions that can activate microglia, promote microglia chemotactic migration and stimulate the release of proinflammatory factor such as TNF-α, IL-β to effectively damage the nervous system and cause apoptosis of neurons. In this paper, several representative membrane proteins or receptors present on the surface of microglia are systematically reviewed and information about their structures, functions and specific roles in one or more neurological diseases. And on this basis, some prospects for the treatment of novel coronavirus neurological complications are presented.
Collapse
Affiliation(s)
- Jun-Feng Zhao
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
| | - Tong Ren
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
| | - Xiang-Yu Li
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
| | - Tian-Lin Guo
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
| | - Chun-Hui Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
- Chun-Hui Liu,
| | - Xun Wang
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Xun Wang,
| |
Collapse
|
26
|
Yao X, Song Y, Wang Z, Bai S, Yu H, Wang Y, Guan Y. Proteinase-activated receptor-1 antagonist attenuates brain injury via regulation of FGL2 and TLR4 after intracerebral hemorrhage in mice. Neuroscience 2022; 490:193-205. [PMID: 35182700 DOI: 10.1016/j.neuroscience.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022]
Abstract
Proteinase-activated receptor-1 (PAR1) antagonist plays a protective effect in brain injury. We investigated the potential function and mechanisms of PAR1 antagonist in ICH-induced brain injury. Results showed that PAR1 antagonist protected against neurobehavior deficits, brain edema and BBB integrity in ICH mice via activating JNK/ERK/p38 MAPK signaling pathway at 24h after ICH. In addition, ICH resulted in the increase of FGL2 and TLR4 expression over time, and phosphorylated JNK, ERK and p38 MAPK expression. Suppression of FGL2 and TLR4 alleviated brain injury and decreased the expression of p-JNK, p-ERK, p-p38 MAPK and p-IKKα at 24 h after ICH; while overexpression of them showed the opposite result. Moreover, the protective effect of PAR1 antagonist on ICH-induced brain injury was blocked by FGL2 or TLR4 overexpression, and the levels of p-JNK, p-ERK and p-p38 MAPK were inhibited. Furthermore, PAR1 antagonist combined with TLR4 antagonist markedly alleviated brain injury after ICH at 72h. Overall, PAR1 antagonist protected against short-term brain injury, and the effect of PAR1 antagonist on ICH-induced brain injury was mediated by FGL2 or TLR4.
Collapse
Affiliation(s)
- Xiaoying Yao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yaying Song
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ze Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuwei Bai
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haojun Yu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yishu Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
27
|
Wu L, Zhan Q, Liu P, Zheng H, Liu M, Min J, Xie L, Wu W. LncRNA TCONS_00145741 Knockdown Prevents Thrombin-Induced M1 Differentiation of Microglia in Intracerebral Hemorrhage by Enhancing the Interaction Between DUSP6 and JNK. Front Cell Dev Biol 2022; 9:684842. [PMID: 35127692 PMCID: PMC8809462 DOI: 10.3389/fcell.2021.684842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The differentiation of microglia from M1 to M2 exerts a pivotal role in the aggression of intracerebral hemorrhage (ICH), and long non-coding RNAs (lncRNAs) are associated with the differentiation of microglia. However, the underlying mechanism had not been fully clarified. Methods: The expression profile of lncRNAs in thrombin-induced primary microglia was analyzed by RNA sequencing. Under thrombin treatment, the effect of lncRNA TCONS_00145741 on the differentiation of microglia was determined by immunofluorescence staining, quantitative real-time PCR, and Western blot. The potential mechanism and related signaling pathways of TCONS_00145741 in the M1 and M2 differentiation of microglia in ICH were assessed by Gene Ontology analysis, flow cytometry, RNA pull-down, RNA Immunoprecipitation, and RNA fluorescence in situ hybridization followed by immunofluorescence analysis. Results: LncRNA TCONS_00145741 expression was elevated in the thrombin-induced primary microglia, and the interference with TCONS_00145741 restrained the M1 differentiation of microglia and facilitated the M2 differentiation under thrombin treatment. The interference with TCONS_00145741 restrained the activation of the JNK pathway in microglia under thrombin treatment and repressed the JNK phosphorylation levels by enhancing the interaction between DUSP6 and JNK. In vivo experiments further illustrated that the interference with TCONS_00145741 alleviated ICH. Conclusion: LncRNA TCONS_00145741 knockdown prevented thrombin-induced M1 differentiation of microglia in ICH by enhancing the interaction between DUSP6 and JNK. This study might provide a promising target for the clinical treatment of ICH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Wu
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Institute of Neuroscience, Nanchang University, Nanchang, China
| |
Collapse
|
28
|
Wei Y, Song X, Gao Y, Gao Y, Li Y, Gu L. Iron toxicity in intracerebral hemorrhage: Physiopathological and therapeutic implications. Brain Res Bull 2021; 178:144-154. [PMID: 34838852 DOI: 10.1016/j.brainresbull.2021.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023]
Abstract
Intracerebral hemorrhage (ICH)-induced brain injury is a continuous pathological process that involves the deterioration of neurological functions, such as sensory, cognitive or motor functions. Cytotoxic byproducts of red blood cell lysis, especially free iron, appear to be a significant pathophysiologic mechanism leading to ICH-induced injury. Free iron has a crucial role in secondary brain injury after ICH. Chelating iron may attenuate iron-induced neurotoxicity and may be developed as a therapeutic candidate for ICH treatment. In this review, we focused on the potential role of iron toxicity in ICH-induced injury and iron chelation therapy in the management of ICH. It will hopefully advance our understanding of the pathogenesis of ICH and lead to new approaches for treatment.
Collapse
Affiliation(s)
- Yufei Wei
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Xiaoxiao Song
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Ying Gao
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100010, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100010, China
| | - Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100010, China
| | - Lian Gu
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China.
| |
Collapse
|
29
|
Bi R, Fang Z, You M, He Q, Hu B. Microglia Phenotype and Intracerebral Hemorrhage: A Balance of Yin and Yang. Front Cell Neurosci 2021; 15:765205. [PMID: 34720885 PMCID: PMC8549831 DOI: 10.3389/fncel.2021.765205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) features extremely high rates of morbidity and mortality, with no specific and effective therapy. And local inflammation caused by the over-activated immune cells seriously damages the recovery of neurological function after ICH. Fortunately, immune intervention to microglia has provided new methods and ideas for ICH treatment. Microglia, as the resident immune cells in the brain, play vital roles in both tissue damage and repair processes after ICH. The perihematomal activated microglia not only arouse acute inflammatory responses, oxidative stress, excitotoxicity, and cytotoxicity to cause neuron death, but also show another phenotype that inhibit inflammation, clear hematoma and promote tissue regeneration. The proportion of microglia phenotypes determines the progression of brain tissue damage or repair after ICH. Therefore, microglia may be a promising and imperative therapeutic target for ICH. In this review, we discuss the dual functions of microglia in the brain after an ICH from immunological perspective, elaborate on the activation mechanism of perihematomal microglia, and summarize related therapeutic drugs researches.
Collapse
Affiliation(s)
- Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Fang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Li H, Wang P, Tang L, Sun J, Zhang Y, Luo W, Luo C, Hu Z, Yang L. Distinct Polarization Dynamics of Microglia and Infiltrating Macrophages: A Novel Mechanism of Spinal Cord Ischemia/Reperfusion Injury. J Inflamm Res 2021; 14:5227-5239. [PMID: 34675600 PMCID: PMC8521441 DOI: 10.2147/jir.s335382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/02/2021] [Indexed: 12/01/2022] Open
Abstract
Purpose Recent studies indicate that microglia and monocyte-derived macrophages (MDMs) have different roles in diseases such as stroke and spinal cord injury, yet their respective polarized phenotypes and roles remain unclear in spinal cord ischemia/reperfusion injury (SCIRI). Methods We established a mouse model of SCIRI by transient aortic occlusion followed by reperfusion. Basso mouse scale (BMS) scores were used to test the locomotor functions. The histopathological changes in spinal cord were assessed by hematoxylin-eosin staining and NF-200 immunohistochemistry. Real-time PCR, immunofluorescence and flow cytometry were employed to analyze the polarized phenotypes of the microglia and infiltrating MDMs, and the resulting inflammatory responses. Furthermore, the role of infiltrating MDMs were investigated by MDMs depletion using systemic administration of clodronate-liposomes. Results SCIRI significantly impaired locomotor function of mice, accompanied with progressed necrosis, infiltration of inflammatory cells and neuron loss in the spinal cord. M1-related pro-inflammatory markers (iNOS, CD16, CD86 and TNF-α) increased dramatically in the early phase following SCIRI. In contrast, M2-related anti-inflammatory markers (CD204 and CD206) elevated at later stage. Besides, the invading MDMs were principally pro-inflammatory M1 type, transiently restricted to the first week after SCIRI. In contrast, microglia were the main source of anti-inflammatory M2 type. Furthermore, depletion of MDMs by clodronate-liposomes significantly preserved neurological functions and relieved neuronal damage caused by SCIRI. Conclusion These findings suggested distinct polarized status of resident microglia and MDMs following SCIRI. Inhibition of the invading MDMs may represent a novel approach for SCIRI treatment.
Collapse
Affiliation(s)
- Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People's Republic of China
| | - Pengfei Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People's Republic of China
| | - Lin Tang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People's Republic of China
| | - Jingjing Sun
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People's Republic of China
| | - Yanling Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People's Republic of China
| | - Wei Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People's Republic of China
| | - Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People's Republic of China
| | - Zhaolan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People's Republic of China
| | - Lin Yang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People's Republic of China
| |
Collapse
|
31
|
Tanaka K, Toyoda K. Clinical Strategies Against Early Hematoma Expansion Following Intracerebral Hemorrhage. Front Neurosci 2021; 15:677744. [PMID: 34526875 PMCID: PMC8435629 DOI: 10.3389/fnins.2021.677744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/05/2021] [Indexed: 02/01/2023] Open
Abstract
Hematoma volume is the strongest predictor of morbidity and mortality after intracerebral hemorrhage. Protection against early hematoma growth is therefore the mainstay of therapeutic intervention for acute intracerebral hemorrhage, but the current armamentarium is restricted to early blood pressure lowering and emergent reversal for anticoagulant agents. Although intensive lowering of systolic blood pressure to <140 mmHg appears likely to prevent hematoma growth, two recent randomized trials, INTERACT-2 and ATACH-2, demonstrated non-significant trends of reduced hematoma enlargement by intensive blood pressure control, with only a small magnitude of benefit or no benefit for clinical outcomes. While oral anticoagulants can be immediately reversed by prothrombin complex concentrate, or the newly developed idarucizumab for direct thrombin inhibitor or andexanet for factor Xa inhibitors, the situation regarding reversal of antiplatelet agents is not yet quite as advanced. However, considering at most the approximately 10% rate of anticoagulant use among patients with intracerebral hemorrhage, what is most essential for patients with intracerebral hemorrhage in general is early hemostatic therapy. Tranexamic acid may safely reduce hematoma expansion, but its hemostatic effect was insufficient to be translated into improved functional outcomes in the TICH-2 randomized trial with 2,325 participants. In this context, recombinant activated factor VII (rFVIIa) is a candidate to be added to the armory against hematoma enlargement. The FAST, a phase 3 trial that compared doses of 80 and 20 μg/kg rFVIIa with placebo in 841 patients within 4 h after the stroke onset, showed a significant reduction in hematoma growth with rFVIIa treatment, but demonstrated no significant difference in the proportion of patients with severe disability or death. However, a post hoc analysis of the FAST trial suggested a benefit of rFVIIa in a target subgroup of younger patients without extensive bleeding at baseline when treated earlier after stroke onset. The FASTEST trial is now being prepared to determine this potential benefit of rFVIIa, reflecting the pressing need to develop therapeutic strategies against hematoma enlargement, a powerful but modifiable prognostic factor in patients with intracerebral hemorrhage.
Collapse
Affiliation(s)
- Kanta Tanaka
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kazunori Toyoda
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
32
|
Li D, Zhao Y, Bai P, Li Y, Wan S, Zhu X, Liu M. Baihui (DU20)-penetrating-Qubin (GB7) acupuncture regulates microglia polarization through miR-34a-5p/Klf4 signaling in intracerebral hemorrhage rats. Exp Anim 2021; 70:469-478. [PMID: 34108361 PMCID: PMC8614016 DOI: 10.1538/expanim.21-0034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most devastating subtype of stroke with high morbidity and mortality. The previous study has confirmed the therapeutic effect of Baihui (DU20)-penetrating-Qubin (GB7) acupuncture on ICH, while the related mechanism is left to be revealed. The aim of this study was to investigate the relevant mechanisms. ICH rat models were established utilizing the autologous blood injection method and the beneficial effect was found after DU20-penetrating-GB7 acupuncture along with decreased miR-34a-5p levels in the perihemorrhagic penumbra. Inversely, upregulating miR-34a-5p expression inhibited microglia M2 polarization while accelerated M1 polarization through targeting Krüppel-like factor 4 (Klf4), and thereby diminished the protective effect of DU20-penetrating-GB7 acupuncture on ICH. The results suggested the therapeutic effect of DU20-penetrating-GB7 acupuncture on ICH might be attributed to its modulation on microglia polarization through miR-34a-5p/Klf4 signaling.
Collapse
Affiliation(s)
- Dan Li
- Department of Acupuncture, Beijing University of Chinese Medicine Third Affiliated Hospital
| | - Yonghou Zhao
- Department of Psychiatry, Heilongjiang Mental Hospital
| | - Peng Bai
- Department of Acupuncture, Beijing University of Chinese Medicine Third Affiliated Hospital
| | - Yan Li
- Department of Otolaryngology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine
| | - Siqi Wan
- School of Traditionnal Chinese Internal Medicine, Dongzhimen Hosptial, Beijing University of Chinese Medicine
| | - Xi Zhu
- School of Acupuncture and Massage, Beijing University of Chinese Medicine
| | - Mengyu Liu
- Department of Acupuncture, Beijing University of Chinese Medicine Third Affiliated Hospital
| |
Collapse
|
33
|
Wei M, Li C, Yan Z, Hu Z, Dong L, Zhang J, Wang X, Li Y, Zhang H. Activated Microglia Exosomes Mediated miR-383-3p Promotes Neuronal Necroptosis Through Inhibiting ATF4 Expression in Intracerebral Hemorrhage. Neurochem Res 2021; 46:1337-1349. [PMID: 33594583 DOI: 10.1007/s11064-021-03268-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Intracerebral hemorrhage (ICH) is the second largest type of stroke, with high mortality and morbidity, and most patients have severe sequelae. Brain injury induced by ICH includes primary damage and secondary damage, and the secondary brain injury is the main reason of neurological impairment. The hallmark of secondary brain injury is cell death. Necroptosis is a type of the cell death and plays vital roles in various neurological diseases, but the roles of necroptosis in ICH are still not fully known. Microglia cell is the type of immune cell, plays protective roles in nerve damage and modulates the activity of neurons through secreting exosomes. Exosome-contained miRNAs are also involved in the regulating neuronal activity. However, the roles and the mechanisms of microglia-secreted exosomes miRNAs in ICH neurons necroptosis need to further explore. In this study, ICH model was construct in rats and cells. Injury of cells in brain was detected by PI staining. Necroptosis in rats and cells was detected by western blot and flow cytometry. The expression of miR-383-3p was detected by RT-qPCR. The roles of activated microglia-secreted exosomes and exosome-contained miR-383-3p were detected through co-culturing medium or exosomes with neurons. The target gene of miR-383-3p was determined by luciferase assay and the expression of target gene was detected by western blot. Rescue experiments were used to confirm the mechanism of miR-383-3p in neurons necroptosis. The miR-383-3p role was verified in vivo through injecting miR-383-3p mimic into ICH rats. Here, we found that the necroptosis of neurons was increased in ICH rats through detecting the expression of RIP1 and RIP3 and PI staining. Microglia that activated by ICH promote neurons necroptosis through secreting exosomes and transferring miR-383-3p into neurons. In mechanism, miR-383-3p negatively regulated the expression of ATF4 and then promoted the necroptosis of neurons. Overall, our results provide a novel molecular basis to neurons necroptosis in ICH and may provide a new strategy to retard the secondary brain injury of ICH.
Collapse
Affiliation(s)
- Min Wei
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Chen Li
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Zhengcun Yan
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Zhengwei Hu
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Lun Dong
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Jun Zhang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Xingdong Wang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Yuping Li
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China.
| |
Collapse
|
34
|
Dong LD, Ma YM, Xu J, Guo YZ, Yang L, Guo FY, Wang MX, Jing L, Zhang JZ. Effect of hyperglycemia on microglial polarization after cerebral ischemia-reperfusion injury in rats. Life Sci 2021; 279:119660. [PMID: 34052292 DOI: 10.1016/j.lfs.2021.119660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023]
Abstract
Hyperglycemia has been shown to aggravate ischemic brain damage, in which the inflammatory reaction induced by hyperglycemia is involved in the worsening of cerebral ischemia-reperfusion injury. However, the role of microglial polarization in hyperglycemia-aggravating cerebral ischemia-reperfusion injury remains unknown. The present study investigated whether diabetic hyperglycemia inhibited or activated microglia, as well as microglial subtypes 1 and 2. Rats were used to establish the diabetic hyperglycemia and middle cerebral artery occlusion (MCAO) model. The markers CD11b, CD16, CD32, CD86, CD206, and Arg1 were used to show M1 or M2 microglia. The results revealed increased neurological deficits, infarct volume, and neural apoptosis in rats with hyperglycemia subjected to MCAO for 30 min and reperfused at 1, 3, and 7 days compared with the normoglycemic rats. Microglia and astrocyte activation and proliferation were inhibited in hyperglycemic rats. Furthermore, M1 microglia polarization was promoted, while that of M2 microglia was inhibited in hyperglycemic rats. These findings suggested that the polarization of M1 and M2 microglia is activated and inhibited, respectively, in hyperglycemic rats and may be involved in the aggravated brain damage caused by ischemia-reperfusion in diabetic hyperglycemia.
Collapse
Affiliation(s)
- Ling-di Dong
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China; Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yan-Mei Ma
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Jie Xu
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Yong-Zhen Guo
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Lan Yang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Feng-Ying Guo
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Min-Xing Wang
- School of Clinical Medical Science, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Li Jing
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China.
| | - Jian-Zhong Zhang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
35
|
Stokum JA, Cannarsa GJ, Wessell AP, Shea P, Wenger N, Simard JM. When the Blood Hits Your Brain: The Neurotoxicity of Extravasated Blood. Int J Mol Sci 2021; 22:5132. [PMID: 34066240 PMCID: PMC8151992 DOI: 10.3390/ijms22105132] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Hemorrhage in the central nervous system (CNS), including intracerebral hemorrhage (ICH), intraventricular hemorrhage (IVH), and aneurysmal subarachnoid hemorrhage (aSAH), remains highly morbid. Trials of medical management for these conditions over recent decades have been largely unsuccessful in improving outcome and reducing mortality. Beyond its role in creating mass effect, the presence of extravasated blood in patients with CNS hemorrhage is generally overlooked. Since trials of surgical intervention to remove CNS hemorrhage have been generally unsuccessful, the potent neurotoxicity of blood is generally viewed as a basic scientific curiosity rather than a clinically meaningful factor. In this review, we evaluate the direct role of blood as a neurotoxin and its subsequent clinical relevance. We first describe the molecular mechanisms of blood neurotoxicity. We then evaluate the clinical literature that directly relates to the evacuation of CNS hemorrhage. We posit that the efficacy of clot removal is a critical factor in outcome following surgical intervention. Future interventions for CNS hemorrhage should be guided by the principle that blood is exquisitely toxic to the brain.
Collapse
Affiliation(s)
- Jesse A. Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Gregory J. Cannarsa
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Aaron P. Wessell
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Phelan Shea
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Nicole Wenger
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
- Departments of Pathology and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
36
|
Liu J, Liu L, Wang X, Jiang R, Bai Q, Wang G. Microglia: A Double-Edged Sword in Intracerebral Hemorrhage From Basic Mechanisms to Clinical Research. Front Immunol 2021; 12:675660. [PMID: 34025674 PMCID: PMC8135095 DOI: 10.3389/fimmu.2021.675660] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS). It is well established that microglia are activated and polarized to acquire different inflammatory phenotypes, either pro-inflammatory or anti-inflammatory phenotypes, which act as a critical component in the neuroinflammation following intracerebral hemorrhage (ICH). Microglia produce pro-inflammatory mediators at the early stages after ICH onset, anti-inflammatory microglia with neuroprotective effects appear to be suppressed. Previous research found that driving microglia towards an anti-inflammatory phenotype could restrict inflammation and engulf cellular debris. The principal objective of this review is to analyze the phenotypes and dynamic profiles of microglia as well as their shift in functional response following ICH. The results may further the understanding of the body's self-regulatory functions involving microglia following ICH. On this basis, suggestions for future clinical development and research are provided.
Collapse
Affiliation(s)
- Jiachen Liu
- Xiangya Medical College of Central South University, Changsha, China
| | - Lirong Liu
- Department of Neurology, Shanxi Medical University, Taiyuan, China
| | - Xiaoyu Wang
- Xiangya Medical College of Central South University, Changsha, China
| | - Rundong Jiang
- Xiangya Medical College of Central South University, Changsha, China
| | - Qinqin Bai
- Department of Neurology, Shanxi Medical University, Taiyuan, China
| | - Gaiqing Wang
- Department of Neurology, Sanya Central Hospital (Hainan Third People's Hospital), Sanya, China
| |
Collapse
|
37
|
Yang H, Ni W, Wei P, Li S, Gao X, Su J, Jiang H, Lei Y, Zhou L, Gu Y. HDAC inhibition reduces white matter injury after intracerebral hemorrhage. J Cereb Blood Flow Metab 2021; 41:958-974. [PMID: 32703113 PMCID: PMC8054714 DOI: 10.1177/0271678x20942613] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibition of histone deacetylases (HDACs) has been shown to reduce inflammation and white matter damage after various forms of brain injury via modulation of microglia/macrophage polarization. Previously we showed that the HDAC inhibitor scriptaid could attenuate white matter injury (WMI) after ICH. To access whether modulation of microglia/macrophage polarization might underlie this protection, we investigated the modulatory role of HDAC2 in microglia/macrophage polarization in response to WMI induced by intracerebral hemorrhage (ICH) and in primary microglia and oligodendrocyte co-cultures. HDAC2 activity was inhibited via conditional knockout of the Hdac2 gene in microglia or via administration of scriptaid. Conditional knockout of the Hdac2 gene in microglia and HDAC inhibition with scriptaid both improved neurological functional recovery and reduced WMI after ICH. Additionally, HDAC inhibition shifted microglia/macrophage polarization toward the M2 phenotype and reduced proinflammatory cytokine secretion after ICH in vivo. In vitro, a transwell co-culture model of microglia and oligodendrocytes also demonstrated that the HDAC inhibitor protected oligodendrocytes by modulating microglia polarization and mitigating neuroinflammation. Moreover, we found that scriptaid decreased the expression of pJAK2 and pSTAT1 in cultured microglia when stimulated with hemoglobin. Thus, HDAC inhibition ameliorated ICH-mediated neuroinflammation and WMI by modulating microglia/macrophage polarization.
Collapse
Affiliation(s)
- Heng Yang
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Wei Ni
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Pengju Wei
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, China
| | - Sicheng Li
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, China
| | - Xinjie Gao
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Jiabin Su
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Hanqiang Jiang
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Yu Lei
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Liangfu Zhou
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Yuxiang Gu
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| |
Collapse
|
38
|
Lian L, Zhang Y, Liu L, Yang L, Cai Y, Zhang J, Xu S. Neuroinflammation in Ischemic Stroke: Focus on MicroRNA-mediated Polarization of Microglia. Front Mol Neurosci 2021; 13:612439. [PMID: 33488360 PMCID: PMC7817943 DOI: 10.3389/fnmol.2020.612439] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke is one of the most common causes of death and disability worldwide. Neuroinflammation is a major pathological event involved in the process of ischemic injury and repair. In particular, microglia play a dual role in neuroinflammation. During the acute phase of stroke onset, M2 microglia are the dominant phenotype and exert protective effects on neuronal cells, whereas permanent M1 microglia contribute to prolonged inflammation and are detrimental to brain tissue. Emerging evidence indicates that microRNAs (miRNAs) may have regulatory effects on microglia-associated inflammation. Thus, we briefly reviewed the dynamic response of microglia after a stroke and assessed how specific miRNAs affect the behavior of reactive microglia. We concluded that miRNAs may be useful novel therapeutic targets to improve stroke outcomes and modulate neuroinflammation.
Collapse
Affiliation(s)
- Lu Lian
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Liu
- Binhai New Area Hospital of TCM. Tian Jin, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liji Yang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yichen Cai
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| |
Collapse
|
39
|
ET AR silencing ameliorated neurovascular injury after SAH in rats through ERK/KLF4-mediated phenotypic transformation of smooth muscle cells. Exp Neurol 2021; 337:113596. [PMID: 33417892 DOI: 10.1016/j.expneurol.2021.113596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 12/29/2022]
Abstract
Subarachnoid haemorrhage (SAH) is a devastating cerebrovascular disease which has a high morbidity and mortality. The phenotypic transformation of smooth muscle cells (SMCs) lead to neurovascular injury after SAH. However, the underlying mechanism remains unclear. In the present study, we aimed to investigate the potential role of ET-1/ETAR on the phenotypic transformation of SMCs after SAH. The models of SAH were established in vivo and vitro. We observed ET-1 secretion by endothelial cells was increased, and the phenotypic transformation of SMCs was aggravated after SAH. Knocking down ETAR inhibited the phenotypic transformation of SMCs, decreased the migration ability of SMCs in vitro. Moreover, Knocking down ETAR ameliorated cerebral ischaemia and alleviated dysfunction of neurological function in vivo. In addition, Exogenous ET-1 increased the migration ability of SMCs and aggravated the phenotypic transformation of SMCs in vitro, which were partly reversed by the antagonist of Erk1/2 - SCH772984. Taken together, our results demonstrated that endothelial ET-1 aggravated the phenotypic transformation of SMCs after SAH. Knocking down ETAR inhibited the phenotypic transformation of SMCs through ERK/KLF4 thus ameliorating neurovascular injury after SAH. We also revealed that ET-1/ETAR is a potential therapeutic target after SAH.
Collapse
|
40
|
Zhong DY, Li HY, Li L, Ma RM, Jiang CT, Li DX, Deng YH. Effect of Tongqiao Huoxue Decoction Combined with Western Medicine on Ischemic Stroke: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8877998. [PMID: 33381213 PMCID: PMC7758136 DOI: 10.1155/2020/8877998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 01/31/2023]
Abstract
OBJECTIVE We conducted a systematic review and meta-analysis to systematically evaluate the curative effect of Tongqiao Huoxue Decoction (TQHXD) combined with Western medicine treatment (WMT) on Ischemic Stroke (IS). METHODS Randomized controlled trials (RCTs) of TQHXD in the treatment of IS by computer retrieval of PubMed, Embase, Web of Science, Chinese Biomedical Literature Service System, CNKI, Wanfang Database, and Weipu Database. The retrieval time was taken from the establishment of the database to July 30, 2020. Two researchers, respectively, conducted a strict evaluation of the quality of the literature and extracted the data which were then entered in the RevMan5.3 software for meta-analysis. RESULTS 40 articles were listed, which involved 3260 patients. Meta-analysis results show that TQHXD combined with WMT can significantly reduce patients' NIHSS score, serum hypersensitivity C-reactive protein (hs-CRP), plasma viscosity, serum fibrinogen, serum total cholesterol, and serum triglycerides and improve patients' ADL-Barthel scoring and treatment efficiency. However, there is no evidence that TQHXD combined with the WMT group can significantly decrease the incidence of adverse events. CONCLUSION The therapeutic effect of TQHXD combined with the WMT group was significantly better than that of the WMT alone group. For the treatment of patients with IS, TQHXD combined with WMT is worthy of application and promotion.
Collapse
Affiliation(s)
- Da-yuan Zhong
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao-yue Li
- Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Provincial Brain Hospital, Changsha 410208, China
| | - Lan Li
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ruo-meng Ma
- Hunan University of Chinese Medicine, Changsha 410208, China
| | | | - Ding-xiang Li
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yi-hui Deng
- Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
41
|
Wang M, Ye X, Hu J, Zhao Q, Lv B, Ma W, Wang W, Yin H, Hao Q, Zhou C, Zhang T, Wu W, Wang Y, Zhou M, Zhang CH, Cui G. NOD1/RIP2 signalling enhances the microglia-driven inflammatory response and undergoes crosstalk with inflammatory cytokines to exacerbate brain damage following intracerebral haemorrhage in mice. J Neuroinflammation 2020; 17:364. [PMID: 33261639 PMCID: PMC7708246 DOI: 10.1186/s12974-020-02015-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Secondary brain damage caused by the innate immune response and subsequent proinflammatory factor production is a major factor contributing to the high mortality of intracerebral haemorrhage (ICH). Nucleotide-binding oligomerization domain 1 (NOD1)/receptor-interacting protein 2 (RIP2) signalling has been reported to participate in the innate immune response and inflammatory response. Therefore, we investigated the role of NOD1/RIP2 signalling in mice with collagenase-induced ICH and in cultured primary microglia challenged with hemin. METHODS Adult male C57BL/6 mice were subjected to collagenase for induction of ICH model in vivo. Cultured primary microglia and BV2 microglial cells (microglial cell line) challenged with hemin aimed to simulate the ICH model in vitro. We first defined the expression of NOD1 and RIP2 in vivo and in vitro using an ICH model by western blotting. The effect of NOD1/RIP2 signalling on ICH-induced brain injury volume, neurological deficits, brain oedema, and microglial activation were assessed following intraventricular injection of either ML130 (a NOD1 inhibitor) or GSK583 (a RIP2 inhibitor). In addition, levels of JNK/P38 MAPK, IκBα, and inflammatory factors, including tumour necrosis factor-α (TNF-α), interleukin (IL)-1β, and inducible nitric oxide synthase (iNOS) expression, were analysed in ICH-challenged brain and hemin-exposed cultured primary microglia by western blotting. Finally, we investigated whether the inflammatory factors could undergo crosstalk with NOD1 and RIP2. RESULTS The levels of NOD1 and its adaptor RIP2 were significantly elevated in the brains of mice in response to ICH and in cultured primary microglia, BV2 cells challenged with hemin. Administration of either a NOD1 or RIP2 inhibitor in mice with ICH prevented microglial activation and neuroinflammation, followed by alleviation of ICH-induced brain damage. Interestingly, the inflammatory factors interleukin (IL)-1β and tumour necrosis factor-α (TNF-α), which were enhanced by NOD1/RIP2 signalling, were found to contribute to the NOD1 and RIP2 upregulation in our study. CONCLUSION NOD1/RIP2 signalling played an important role in the regulation of the inflammatory response during ICH. In addition, a vicious feedback cycle was observed between NOD1/RIP2 and IL-1β/TNF-α, which could to some extent result in sustained brain damage during ICH. Hence, our study highlights NOD1/RIP2 signalling as a potential therapeutic target to protect the brain against secondary brain damage during ICH.
Collapse
Affiliation(s)
- Miao Wang
- Department of Neurology, Xuzhou first People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 269 University Road, Tongshan District, Xuzhou, Jiangsu, China.,Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Xinchun Ye
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Jinxia Hu
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Qiuchen Zhao
- Department of Neurology, Mass General Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Bingchen Lv
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Weijing Ma
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Weiwei Wang
- Department of Rehabilitation Medicine, Linyi Cancer Hospital, Linyi, Shandong, China
| | - Hanhan Yin
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Qi Hao
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Zhou
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Tao Zhang
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Weifeng Wu
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Yan Wang
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Mingyue Zhou
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Cong-Hui Zhang
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Guiyun Cui
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China.
| |
Collapse
|
42
|
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol 2020; 18:1187-1212. [PMID: 32484111 PMCID: PMC7770643 DOI: 10.2174/1570159x18666200528143301] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is one of the leading causes of mortality and morbidity worldwide. The blood-brain barrier (BBB) is a characteristic structure of microvessel within the brain. Under normal physiological conditions, the BBB plays a role in the prevention of harmful substances entering into the brain parenchyma within the central nervous system. However, stroke stimuli induce the breakdown of BBB leading to the influx of cytotoxic substances, vasogenic brain edema, and hemorrhagic transformation. Therefore, BBB disruption is a major complication, which needs to be addressed in order to improve clinical outcomes in stroke. In this review, we first discuss the structure and function of the BBB. Next, we discuss the progress of the techniques utilized to study BBB breakdown in in-vitro and in-vivo studies, along with biomarkers and imaging techniques in clinical settings. Lastly, we highlight the mechanisms of stroke-induced neuroinflammation and apoptotic process of endothelial cells causing BBB breakdown, and the potential therapeutic targets to protect BBB integrity after stroke. Secondary products arising from stroke-induced tissue damage provide transformation of myeloid cells such as microglia and macrophages to pro-inflammatory phenotype followed by further BBB disruption via neuroinflammation and apoptosis of endothelial cells. In contrast, these myeloid cells are also polarized to anti-inflammatory phenotype, repairing compromised BBB. Therefore, therapeutic strategies to induce anti-inflammatory phenotypes of the myeloid cells may protect BBB in order to improve clinical outcomes of stroke patients.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA , Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| |
Collapse
|
43
|
Dasari R, Bonsack F, Sukumari-Ramesh S. Brain injury and repair after intracerebral hemorrhage: The role of microglia and brain-infiltrating macrophages. Neurochem Int 2020; 142:104923. [PMID: 33248206 DOI: 10.1016/j.neuint.2020.104923] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) is a major public health problem characterized by cerebral bleeding. Despite recent advances in preclinical studies, there is no effective treatment for ICH making it the deadliest subtype of stroke. The lack of effective treatment options partly attributes to the complexity as well as poorly defined pathophysiology of ICH. The emerging evidence indicates the potential of targeting secondary brain damage and hematoma resolution for improving neurological outcomes after ICH. Herein, we provide an overview of our understanding of the functional roles of activated microglia and brain-infiltrating monocyte-derived macrophages in brain injury and repair after ICH. The clinical and preclinical aspects that we discuss in this manuscript are related to ICH that occurs in adults, but not in infants. Also, we attempt to identify the knowledge gap in the field for future functional studies given the potential of targeting microglia and brain-infiltrating macrophages for therapeutic intervention after ICH.
Collapse
Affiliation(s)
- Rajaneekar Dasari
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Frederick Bonsack
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
44
|
Cai Y, Liu W, Lian L, Xu Y, Bai X, Xu S, Zhang J. Stroke treatment: Is exosome therapy superior to stem cell therapy? Biochimie 2020; 179:190-204. [PMID: 33010339 DOI: 10.1016/j.biochi.2020.09.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Stroke is one of the most common causes of disability and death, and currently, ideal clinical treatment is lacking. Stem cell transplantation is a widely-used treatment approach for stroke. When compared with other types of stem cells, bone marrow mesenchymal stem cells (BMSCs) have been widely studied because of their many advantages. The paracrine effect is the primary mechanism for stem cells to play their role, and exosomes play an essential role in the paracrine effect. When compared with cell therapy, cell-free exosome therapy can prevent many risks and difficulties, and therefore, represents a promising and novel approach for treatment. In this study, we reviewed the research progress in the application of BMSCs-derived exosomes (BMSCs-exos) and BMSCs in the treatment of stroke. In addition, the advantages and disadvantages of cell therapy and cell-free exosome therapy were described, and the possible factors that hinder the introduction of these two treatments into the clinic were analyzed. Furthermore, we reviewed the current optimization methods of cell therapy and cell-free exosome therapy. Taken together, we hypothesize that cell-free exosome therapy will have excellent research prospects in the future, and therefore, it is worth further exploring. There are still some issues that need to be further addressed. For example, differences between the in vivo microenvironment and in vitro culture conditions will affect the paracrine effect of stem cells. Most importantly, we believe that more preclinical and clinical design studies are required to compare the efficacy of stem cells and exosomes.
Collapse
Affiliation(s)
- Yichen Cai
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Wanying Liu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lu Lian
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yingzhi Xu
- Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Xiaodan Bai
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China.
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China.
| |
Collapse
|
45
|
Ye F, Garton HJL, Hua Y, Keep RF, Xi G. The Role of Thrombin in Brain Injury After Hemorrhagic and Ischemic Stroke. Transl Stroke Res 2020; 12:496-511. [PMID: 32989665 DOI: 10.1007/s12975-020-00855-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Thrombin is increased in the brain after hemorrhagic and ischemic stroke primarily due to the prothrombin entry from blood either with a hemorrhage or following blood-brain barrier disruption. Increasing evidence indicates that thrombin and its receptors (protease-activated receptors (PARs)) play a major role in brain pathology following ischemic and hemorrhagic stroke (including intracerebral, intraventricular, and subarachnoid hemorrhage). Thrombin and PARs affect brain injury via multiple mechanisms that can be detrimental or protective. The cleavage of prothrombin into thrombin is the key step of hemostasis and thrombosis which takes place in every stroke and subsequent brain injury. The extravascular effects and direct cellular interactions of thrombin are mediated by PARs (PAR-1, PAR-3, and PAR-4) and their downstream signaling in multiple brain cell types. Such effects include inducing blood-brain-barrier disruption, brain edema, neuroinflammation, and neuronal death, although low thrombin concentrations can promote cell survival. Also, thrombin directly links the coagulation system to the immune system by activating interleukin-1α. Such effects of thrombin can result in both short-term brain injury and long-term functional deficits, making extravascular thrombin an understudied therapeutic target for stroke. This review examines the role of thrombin and PARs in brain injury following hemorrhagic and ischemic stroke and the potential treatment strategies which are complicated by their role in both hemostasis and brain.
Collapse
Affiliation(s)
- Fenghui Ye
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Hugh J L Garton
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
46
|
Wogonin Accelerates Hematoma Clearance and Improves Neurological Outcome via the PPAR-γ Pathway After Intracerebral Hemorrhage. Transl Stroke Res 2020; 12:660-675. [PMID: 32918259 DOI: 10.1007/s12975-020-00842-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Intracerebral hemorrhage (ICH) is a cerebrovascular disease with high mortality and morbidity for which effective treatments are currently lacking. Wogonin is a major flavonoid compound isolated from Scutellaria radix. Accumulating evidence suggests that wogonin plays a crucial role in anti-inflammatory and anti-oxidative stress. Treatment of microglia with nuclear receptor agonists augments the expression of phagocytosis-related genes. However, the neuroprotective effects of wogonin in ICH remain obscure. In this study, we elucidated an innovative mechanism by which wogonin acts to enhance phagocytosis in a murine model of ICH. Wogonin promoted hematoma clearance and improved neurological recovery after ICH by upregulating the expression of Axl, MerTK, CD36, and LAMP2 in perihematomal microglia and BV2 cells. Treatment of a murine model of ICH with wogonin stimulated microglial phagocytosis in vitro. Further, we demonstrated that wogonin dramatically attenuated inflammatory and oxidative stress responses in a murine model of ICH by reducing the expression of pro-inflammatory cytokines and pro-oxidant enzymes such as TNF-α, IL-1β, and inducible nitric oxide synthase (iNOS) after ICH. The effects of wogonin were abolished by administration of the PPAR-γ inhibitor GW9662. In conclusion, our data suggest that wogonin facilitates hematoma clearance and neurobehavioral recovery by targeting PPAR-γ.
Collapse
|
47
|
Tang R, Huang Z, Chu H. Phenotype change of polarized microglia after intracerebral hemorrhage: Advances in research. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
48
|
Liang T, Ma C, Wang T, Deng R, Ding J, Wang W, Xu Z, Li X, Li H, Sun Q, Shen H, Wang Z, Chen G. Galectin-9 Promotes Neuronal Restoration via Binding TLR-4 in a Rat Intracerebral Hemorrhage Model. Neuromolecular Med 2020; 23:267-284. [PMID: 32865657 DOI: 10.1007/s12017-020-08611-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease with high rates of mortality and morbidity. Galactose lectin-9 (Gal-9) belongs to the family of β-galactoside-binding lectins, which has been shown to play a vital role in immune tolerance and inflammation. However, the function of Gal-9 in ICH has not been fully studied in details. Several experiments were carried out to explore the role of Gal-9 in the late period of ICH. Primarily, ICH models were established in male adult Sprague Dawley (SD) rats. Next, the relative protein levels of Gal-9 at different time points after ICH were examined and the result showed that the level of Gal-9 increased and peaked at the 7th day after ICH. Then we found that when the content of Gal-9 increased, both the number of M2-type microglia and the corresponding anti-inflammatory factors also increased. Through co-immunoprecipitation (CO-IP) analysis, it was found that Gal-9 combines with Toll-like receptor-4 (TLR-4) during the period of the recovery after ICH. TUNEL staining and Fluoro-Jade B staining (FJB) proved that the amount of cell death decreased with the increase of Gal-9 content. Additionally, several behavioral experiments also demonstrated that when the level of Gal-9 increased, the motor, sensory, learning, and memory abilities of the rats recovered better compared to the ICH group. In short, this study illustrated that Gal-9 takes a crucial role after ICH. Enhancing Gal-9 could alleviate brain injury and promote the recovery of ICH-induced injury, so that Gal-9 may exploit a new pathway for clinical treatment of ICH.
Collapse
Affiliation(s)
- Tianyu Liang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Cheng Ma
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Tianyi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Ruming Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Jiasheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Wenjie Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhongmou Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| |
Collapse
|
49
|
Duan S, Wang F, Cao J, Wang C. Exosomes Derived from MicroRNA-146a-5p-Enriched Bone Marrow Mesenchymal Stem Cells Alleviate Intracerebral Hemorrhage by Inhibiting Neuronal Apoptosis and Microglial M1 Polarization. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3143-3158. [PMID: 32821084 PMCID: PMC7425091 DOI: 10.2147/dddt.s255828] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 12/31/2022]
Abstract
Introduction Intracerebral hemorrhage (ICH) is a devastating type of stroke with high mortality, and the effective therapies for ICH remain to be explored. Exosomes (Exos) have been found to play important roles in cell communication by transferring molecules, including microRNAs (miRNAs/miRs). MiRNAs are critical regulators of genes involved in many various biological processes and have been demonstrated to aggravate or alleviate brain damages induced by ICH. The aim of the present study was to investigate the effect of Exos derived from miR-146a-5p-enriched bone marrow mesenchymal stem cells (BMSCs-miR-146a-5p-Exos) on experimental ICH. Methods ICH was induced in adult male Sprague-Dawley rats by an intrastriatal injection of collagenase type IV. At 24 h after surgery, Exos were administrated. For detecting apoptotic cells, TUNEL staining was performed using an in situ Cell Death Detection Kit. Fluoro-Jade B staining was performed to detect degenerating neurons. Immunofluorescence assay was performed to detect the expression of myeloperoxidase (MPO) and OX-42. The binding of miR-146a-5p and its target genes was confirmed by luciferase reporter assay. Results At 24 h after surgery, BMSCs-miR-146a-5p-Exos administration significantly improved neurological function, reduced apoptotic and degenerative neurons, and inhibited inflammatory response. Furthermore, miR-146a-5p-enriched Exos obviously inhibited the M1 polarization of microglia after ICH in rats, accompanied by the reduced expression of pro-inflammatory mediators releasing by M1 microglia including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and monocyte chemoattractant protein-1 (MCP-1). Finally, we observed that miR-146a-5p directly targeted interleukin-1 receptor-associated kinase1 (IRAK1) and nuclear factor of activated T cells 5 (NFAT5), which contributed to the inflammation response and the polarization of M1 microglia/macrophages. Conclusion We demonstrated that miR-146a-5p-riched BMSCs-Exos could offer neuroprotection and functional improvements after ICH through reducing neuronal apoptosis, and inflammation associated with the inhibition of microglial M1 polarization by downregulating the expression of IRAK1 and NFAT5.
Collapse
Affiliation(s)
- Shurong Duan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Fei Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Jingwei Cao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Chunyan Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| |
Collapse
|
50
|
Li J, Wang H, Du C, Jin X, Geng Y, Han B, Ma Q, Li Q, Wang Q, Guo Y, Wang M, Yan B. hUC-MSCs ameliorated CUMS-induced depression by modulating complement C3 signaling-mediated microglial polarization during astrocyte-microglia crosstalk. Brain Res Bull 2020; 163:109-119. [PMID: 32681971 DOI: 10.1016/j.brainresbull.2020.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) has been shown to be related to immune inflammation and the complement system. Previous studies have suggested that human umbilical cord mesenchymal stem cells (hUC-MSCs) play an important role in inflammatory diseases. METHODS hUC-MSCs were administered into chronic unpredictable mild stress model (CUMS) mice through the tail vein once a week for 4 weeks. After the administration of hUC-MSCs, the depression-like and anxiety-like phenotypes, neuronal histopathology, synaptic-related protein expression and inflammatory index of the mice were assessed. Microglial M1/M2 polarization and the expression of C3a in astrocytes and C3aR in microglia was detected by immunofluorescence co-localization. Then, CUMS mice were injected with a C3aR antagonist, and the expression of C3a and C3aR and microglial polarization were observed. RESULTS Based on the sucrose preference and tail suspension tests, hUC-MSCs ameliorated the depression-like behaviors of CUMS mice. Additionally, the anxiety-like behaviors of CUMS mice in the open-field and plus-maze tests were improved after the administration of hUC-MSCs. hUC-MSCs altered microglia polarization by alleviating complement C3a-C3aR signaling activation, which decreased pro-inflammatory factor levels and increased anti-inflammatory factor levels, alleviating neuronal damage and synaptic deficits. CONCLUSION hUC-MSCs have therapeutic effects on anxiety-like and depressive-like phenotypes caused by CUMS. They can alter the polarization of microglia by inhibiting C3a-C3aR signaling to reduce neuroinflammation.
Collapse
Affiliation(s)
- Jing Li
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, Hebei 050017, China
| | - Hualong Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, Hebei 050017, China
| | - Chongbo Du
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, Hebei 050017, China
| | - Xiaojing Jin
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, Hebei 050017, China
| | - Yuan Geng
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, Hebei 050017, China
| | - Bing Han
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, Hebei 050017, China
| | - Qinying Ma
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, Hebei 050017, China
| | - Quanhai Li
- Cell Therapy Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050031, China; Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Qian Wang
- Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yidi Guo
- Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Mingwei Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, Hebei 050017, China.
| | - Baoyong Yan
- Cell Therapy Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050031, China.
| |
Collapse
|