1
|
Klein B, Ciesielska A, Losada PM, Sato A, Shah-Morales S, Ford JB, Higashikubo B, Tager D, Urry A, Bombosch J, Chang WC, Andrews-Zwilling Y, Nejadnik B, Warraich Z, Paz JT. Modified human mesenchymal stromal/stem cells restore cortical excitability after focal ischemic stroke in rats. Mol Ther 2024:S1525-0016(24)00807-4. [PMID: 39668560 DOI: 10.1016/j.ymthe.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/18/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024] Open
Abstract
Allogeneic modified bone marrow-derived human mesenchymal stromal/stem cells (hMSC-SB623 cells) are in clinical development for the treatment of chronic motor deficits after traumatic brain injury and cerebral ischemic stroke. However, their exact mechanisms of action remain unclear. Here, we investigated the effects of this cell therapy on cortical network excitability, brain tissue, and peripheral blood at a chronic stage after ischemic stroke in a rat model. One month after focal cortical ischemic stroke, hMSC-SB623 cells or the vehicle solution were injected into the peri-stroke cortex. Starting one week after treatment, cortical excitability was assessed ex vivo. hMSC-SB623 cell transplants reduced stroke-induced cortical hyperexcitability, restoring cortical excitability to control levels. The histology of brain tissue revealed an increase of factors relevant to neuroregeneration, and synaptic and cellular plasticity. Whole-blood RNA sequencing and serum protein analyses showed that intra-cortical hMSC-SB623 cell transplantation reversed effects of stroke on peripheral blood factors known to be involved in stroke pathophysiology. Our findings demonstrate that intra-cortical transplants of hMSC-SB623 cells correct stroke-induced circuit disruptions even at the chronic stage, suggesting broad usefulness as a therapeutic for neurological conditions with network hyperexcitability. Additionally, the transplanted cells exert far-reaching immunomodulatory effects whose therapeutic impact remains to be explored.
Collapse
Affiliation(s)
| | - Agnieszka Ciesielska
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA; University of California, San Francisco, Department of Neurology, and the Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA
| | | | | | | | - Jeremy B Ford
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | | - Dale Tager
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Alexander Urry
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | | | | | | | | | | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA; University of California, San Francisco, Department of Neurology, and the Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA; University of California, San Francisco, Neurosciences Graduate Program, San Francisco, CA, USA.
| |
Collapse
|
2
|
Zhu HJ, Sun YY, Du Y, Zhou SY, Qu Y, Pang SY, Zhu S, Yang Y, Guo ZN. Albumin-seeking near-infrared-II probe evaluating blood-brain barrier disruption in stroke. J Nanobiotechnology 2024; 22:742. [PMID: 39609666 PMCID: PMC11606037 DOI: 10.1186/s12951-024-02973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/03/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) disruption after stroke is closely associated with brain tissue edema and neuronal injury, which requires accurate assessment. However, there is a lack of appropriate BBB imaging modality in vivo. As albumin in the blood could cross the damaged BBB into brain tissue after stroke, it serves as a biomarker for BBB disruption. Therefore, we aimed to develop an albumin-seeking near-infrared (NIR) probe to assess BBB disruption in stroke. RESULTS We proposed a chemoselective strategy for seeking albumin with NIR dyes and identified an optimal probe to evaluate BBB disruption in stroke. The probe combined a NIR fluorescent dye with inherent albumin-targeting moieties and exhibited high affinity and selectivity for binding to albumin. Using a mouse stroke model, the probe displayed a high-resolution visualization of the location and extent of BBB disruption in vivo and correlated well with BBB leakage measured by Evans blue ex vivo. A dual-channel NIR-II imaging was successfully used to simultaneously assess BBB disruption and cerebral perfusion after stroke. Furthermore, we applied this method to dynamically evaluate the BBB disruption process and reperfusion of thrombolytic therapy in a stroke model in real time, which showed excellent application value. CONCLUSIONS We developed an albumin-seeking NIR probe that accurately evaluated BBB disruption in a safe, non-invasive and real-time manner in various stroke models, and has a great potential guiding stroke treatment in a real-time manner.
Collapse
Affiliation(s)
- Hong-Jing Zhu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Ying-Ying Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Yijing Du
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Shu-Yan Pang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P.R. China.
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China.
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China.
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China.
| |
Collapse
|
3
|
Luo L, Hu Q, Yan R, Gao X, Zhang D, Yan Y, Liu Q, Mao S. Alpha‑Asarone Ameliorates Neuronal Injury After Ischemic Stroke and Hemorrhagic Transformation by Attenuating Blood-Brain Barrier Destruction, Promoting Neurogenesis, and Inhibiting Neuroinflammation. Mol Neurobiol 2024:10.1007/s12035-024-04596-5. [PMID: 39531192 DOI: 10.1007/s12035-024-04596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Recombinant tissue-type plasminogen activator (rt-PA), the primary drug for acute ischemic stroke (IS), has a narrow therapeutic window and carries a potential risk of hemorrhagic transformation (HT). Without rt-PA administration, patients may suffer permanent cerebral ischemia. Alpha-asarone (ASA), a natural compound derived from Acorus tatarinowii Schott, exhibits diverse neuropharmacological effects. This study aims to investigate whether ASA could improve outcomes in IS and be used to mitigate HT induced by rt-PA. We employed models of permanent middle cerebral artery occlusion (pMCAO) and photothrombotic cortical injury (PCI) to investigate both the therapeutic efficacy and underlying mechanisms of ASA during the acute and recovery periods following IS, respectively. Additionally, Sprague-Dawley rats were subjected to rt-PA treatment at 6-h post-PCI to mimic HT (rt-PA-HT). Our results revealed three key findings: (1) ASA demonstrated therapeutic effects in the acute phase of pMCAO rats by alleviating blood-brain barrier damage through inhibition of glial cell-mediated neuroinflammation; (2) administration of ASA 24 h after stroke ameliorated the neurological damage during the recovery phase in PCI mice by promoting neurogenesis via activation of the BDNF/ERK/CREB signaling pathway; (3) ASA attenuated rt-PA-HT injury by modulating the NLRP3/Caspase1/IL-1β and IL-18 pathways. Overall, our findings suggest that ASA mitigates neuronal injury following IS and HT, positioning it as a promising candidate for treating these conditions.
Collapse
Affiliation(s)
- Lijun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qinrui Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruijie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yi Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Li M, Miao L, Xu X, Liu Y, Wang Y, Yang F. Hypoxia-Responsive Biomimetic Nanobubbles for Oxygen Delivery Promote Synergistic Ischemic Stroke Protection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52036-52046. [PMID: 39315539 DOI: 10.1021/acsami.4c11009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Effective, precise, and controllable oxygen delivery is crucial for regulating the oxygenation balance of brain tissue at the early stages of acute ischemic stroke (AIS) because the absence of oxygen may result in a series of highly interconnected vascular-neural pathological events, including oxidative stress, inflammation, and neuroapoptosis. In this study, platelet membrane-reassembled oxygen nanobubbles (PONBs) were constructed for oxygen delivery to protect AIS. Benefiting from the preserved natural targeting ability of platelet membranes, oxygen can be controlled release into the hypoxia lesion at the preperfusion stage due to vascular injury targeting and oxygen sustained diffusion capability after PONBs administration. Furthermore, synergizing with bioactive components carried by platelet membranes, PONBs can inhibit post-AIS vascular occlusion and maintain blood-brain barrier integrity, thereby facilitating enhanced oxygen delivery of PONBs, establishing a positive feedback loop between oxygen delivery and AIS protection. Additionally, the accumulation of PONBs enhances the ultrasound imaging contrast, enabling precise localization and dynamic monitoring of AIS lesions. Thus, PONBs represent a promising strategy for the diagnosis and treatment of AIS.
Collapse
Affiliation(s)
- Mingxi Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Lijun Miao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Xuan Xu
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210009, P. R. China
| | - Yang Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yakun Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Fang Yang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
5
|
Ulger O, Eş I, Proctor CM, Algin O. Stroke studies in large animals: Prospects of mitochondrial transplantation and enhancing efficiency using hydrogels and nanoparticle-assisted delivery. Ageing Res Rev 2024; 100:102469. [PMID: 39191353 DOI: 10.1016/j.arr.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
One of the most frequent reasons for mortality and disability today is acute ischemic stroke, which occurs by an abrupt disruption of cerebral circulation. The intricate damage mechanism involves several factors, such as inflammatory response, disturbance of ion balance, loss of energy production, excessive reactive oxygen species and glutamate release, and finally, neuronal death. Stroke research is now carried out using several experimental models and potential therapeutics. Furthermore, studies are being conducted to address the shortcomings of clinical care. A great deal of research is being done on novel pharmacological drugs, mitochondria targeting compounds, and different approaches including brain cooling and new technologies. Still, there are many unanswered questions about disease modeling and treatment strategies. Before these new approaches may be used in therapeutic settings, they must first be tested on large animals, as most of them have been done on rodents. However, there are several limitations to large animal stroke models used for research. In this review, the damage mechanisms in acute ischemic stroke and experimental acute ischemic stroke models are addressed. The current treatment approaches and promising experimental methods such as mitochondrial transplantation, hydrogel-based interventions, and strategies like mitochondria encapsulation and chemical modification, are also examined in this work.
Collapse
Affiliation(s)
- Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara 06010, Turkiye; Gulhane Training and Research Hospital, University of Health Sciences, Ankara 06010, Turkiye.
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Oktay Algin
- Interventional MR Clinical R&D Institute, Ankara University, Ankara 06100, Turkiye; Department of Radiology, Medical Faculty, Ankara University, Ankara 06100, Turkiye; National MR Research Center (UMRAM), Bilkent University, Ankara 06800, Turkiye
| |
Collapse
|
6
|
Kalyuzhnaya YN, Logvinov AK, Pashkevich SG, Golubova NV, Seryogina ES, Potapova EV, Dremin VV, Dunaev AV, Demyanenko SV. An Alternative Photothrombotic Model of Transient Ischemic Attack. Transl Stroke Res 2024:10.1007/s12975-024-01285-2. [PMID: 39069596 DOI: 10.1007/s12975-024-01285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Animal models mimicking human transient ischemic attack (TIA) and cerebral microinfarcts are essential tools for studying their pathogenetic mechanisms and finding methods of their treatment. Despite its advantages, the model of single arteriole photothrombosis requires complex experimental equipment and highly invasive surgery, which may affect the results of further studies. Hence, to achieve high translational potential, we focused on developing a TIA model based on photothrombosis of arterioles to combine good reproducibility and low invasiveness. For the first time, noninvasive laser speckle contrast imaging (LSCI) was used to monitor blood flow in cerebral arterioles and reperfusion was achieved. We demonstrate that irradiation of mouse cerebral cortical arterioles using a 532-nm laser with a 1-mm-wide beam at 2.4 or 3.7 mW for 55 or 40 s, respectively, after 15 mg/kg intravenous Rose Bengal administration, induces similar ischemia-reperfusion lesions resulting in microinfarct formation. The model can be used to study the pathogenesis of spontaneously developing cerebral microinfarcts in neurodegeneration. Reducing the exposure times by 10 s while maintaining the same other parameters caused photothrombosis of the arteriole with reperfusion in less than 1 h. This mode of photodynamic exposure caused cellular and subcellular level ischemic changes in neurons and promoted the activation of astrocytes and microglia in the first day after irradiation, but not later, without the formation of microinfarcts. This mode of photodynamic exposure most accurately reproduced human TIA, characterized by the absence of microinfarcts.
Collapse
Affiliation(s)
- Y N Kalyuzhnaya
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki Ave, Rostov-On-Don, 344090, Russia
| | - A K Logvinov
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki Ave, Rostov-On-Don, 344090, Russia
| | - S G Pashkevich
- State Scientific Institution "Institute of Physiology, of the National Academy of Sciences of Belarus", Akademicheskaya Str., 28, 220072, Minsk, Belarus
| | - N V Golubova
- Research and Development Center of Biomedical Photonics, Orel State University, 95 Komsomolskaya St, Orel, 302026, Russia
| | - E S Seryogina
- Research and Development Center of Biomedical Photonics, Orel State University, 95 Komsomolskaya St, Orel, 302026, Russia
| | - E V Potapova
- Research and Development Center of Biomedical Photonics, Orel State University, 95 Komsomolskaya St, Orel, 302026, Russia
| | - V V Dremin
- Research and Development Center of Biomedical Photonics, Orel State University, 95 Komsomolskaya St, Orel, 302026, Russia
| | - A V Dunaev
- Research and Development Center of Biomedical Photonics, Orel State University, 95 Komsomolskaya St, Orel, 302026, Russia
| | - S V Demyanenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki Ave, Rostov-On-Don, 344090, Russia.
| |
Collapse
|
7
|
Zhu X, Yi Z, Li R, Wang C, Zhu W, Ma M, Lu J, Li P. Constructing a Transient Ischemia Attack Model Utilizing Flexible Spatial Targeting Photothrombosis with Real-Time Blood Flow Imaging Feedback. Int J Mol Sci 2024; 25:7557. [PMID: 39062800 PMCID: PMC11277306 DOI: 10.3390/ijms25147557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Transient ischemic attack (TIA) is an early warning sign of stroke and death, necessitating suitable animal models due to the associated clinical diagnostic challenges. In this study, we developed a TIA model using flexible spatially targeted photothrombosis combined with real-time blood flow imaging feedback. By modulating the excitation light using wavefront technology, we precisely created a square light spot (50 × 250 µm), targeted at the distal middle cerebral artery (dMCA). The use of laser speckle contrast imaging (LSCI) provided real-time feedback on the ischemia, while the excitation light was ceased upon reaching complete occlusion. Our results demonstrated that the photothrombus formed in the dMCA and spontaneously recanalized within 10 min (416.8 ± 96.4 s), with no sensorimotor deficits or infarction 24 h post-TIA. During the acute phase, ischemic spreading depression occurred in the ipsilateral dorsal cortex, leading to more severe ischemia and collateral circulation establishment synchronized with the onset of dMCA narrowing. Post-reperfusion, the thrombi were primarily in the sensorimotor and visual cortex, disappearing within 24 h. The blood flow changes in the dMCA were more indicative of cortical ischemic conditions than diameter changes. Our method successfully establishes a photochemical TIA model based on the dMCA, allowing for the dynamic observation and control of thrombus formation and recanalization and enabling real-time monitoring of the impacts on cerebral blood flow during the acute phase of TIA.
Collapse
Affiliation(s)
- Xuan Zhu
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Z.Y.); (R.L.); (W.Z.); (M.M.); (J.L.)
| | - Zichao Yi
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Z.Y.); (R.L.); (W.Z.); (M.M.); (J.L.)
| | - Ruolan Li
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Z.Y.); (R.L.); (W.Z.); (M.M.); (J.L.)
| | - Chen Wang
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Z.Y.); (R.L.); (W.Z.); (M.M.); (J.L.)
| | - Wenting Zhu
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Z.Y.); (R.L.); (W.Z.); (M.M.); (J.L.)
| | - Minghui Ma
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Z.Y.); (R.L.); (W.Z.); (M.M.); (J.L.)
| | - Jinling Lu
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Z.Y.); (R.L.); (W.Z.); (M.M.); (J.L.)
| | - Pengcheng Li
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Z.Y.); (R.L.); (W.Z.); (M.M.); (J.L.)
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Science, HUST-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Reserch Institute (JITRI), Suzhou 215100, China
| |
Collapse
|
8
|
Liu KT, Wang PW, Hsieh HY, Pan HC, Chin HJ, Lin CW, Huang YJ, Liao YC, Tsai YC, Liu SR, Su IC, Song YF, Yin GC, Wu KC, Chuang EY, Fan YJR, Yu J. Site-specific thrombus formation: advancements in photothrombosis-on-a-chip technology. LAB ON A CHIP 2024; 24:3422-3433. [PMID: 38860416 DOI: 10.1039/d4lc00216d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Thrombosis, characterized by blood clot formation within vessels, poses a significant medical challenge. Despite extensive research, the development of effective thrombosis therapies is hindered by substantial costs, lengthy development times, and high failure rates in medication commercialization. Conventional pre-clinical models often oversimplify cardiovascular disease, leading to a disparity between experimental results and human physiological responses. In response, we have engineered a photothrombosis-on-a-chip system. This microfluidic model integrates human endothelium, human whole blood, and blood flow dynamics and employs the photothrombotic method. It enables precise, site-specific thrombus induction through controlled laser irradiation, effectively mimicking both normal and thrombotic physiological conditions on a single chip. Additionally, the system allows for the fine-tuning of thrombus occlusion levels via laser parameter adjustments, offering a flexible thrombus model with varying degrees of obstruction. Additionally, the formation and progression of thrombosis noted on the chip closely resemble the thrombotic conditions observed in mice in previous studies. In the experiments, we perfused recalcified whole blood with Rose Bengal into an endothelialized microchannel and initiated photothrombosis using green laser irradiation. Various imaging methods verified the model's ability to precisely control thrombus formation and occlusion levels. The effectiveness of clinical drugs, including heparin and rt-PA, was assessed, confirming the chip's potential in drug screening applications. In summary, the photothrombosis-on-a-chip system significantly advances human thrombosis modeling. Its precise control over thrombus formation, flexibility in the thrombus severity levels, and capability to simulate dual physiological states on a single platform make it an invaluable tool for targeted drug testing, furthering the development of organ-on-a-chip drug screening techniques.
Collapse
Affiliation(s)
- Kuan-Ting Liu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Pai-Wen Wang
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Yun Hsieh
- Department of Biochemical and Molecular Medical Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Han-Chi Pan
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115021, Taiwan
| | - Hsian-Jean Chin
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115021, Taiwan
| | - Che-Wei Lin
- School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Jen Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Yung-Chieh Liao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Ya-Chun Tsai
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
| | - Shang-Ru Liu
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
| | - I-Chang Su
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Neurosurgery, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, 23561, Taiwan
| | - Yen-Fang Song
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Gung-Chian Yin
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Kuang-Chong Wu
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
| | - Er-Yuan Chuang
- School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Jui Ray Fan
- School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
9
|
Li Y, Fan F, Liu Q. Cytisine-N-methylene-(5,7,4 '-trihydroxy)- isoflavone ameliorates ischemic stroke-induced brain injury in mouse by regulating the oxidative stress and BDNF-Trkb/Akt pathway. Eur J Pharmacol 2024; 974:176512. [PMID: 38493912 DOI: 10.1016/j.ejphar.2024.176512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND A novel compound Cytisine-N-methylene-(5,7,4'-trihydroxy)- isoflavone (LY01) found in the Sophora alopecuroides L is a neuroprotective agent. However, the effect and potential mechanism of LY01 treatment for ischemic stroke (IS) have not been fully elucidated. AIM OF THE STUDY The aim of this study is to demonstrate whether LY01 can rescue ischemic stroke-induced brain injury and oxygen-glucose deprivation/reperfusion (OGD/R). RESULTS Our results show that intragastric administration of LY01 improves ischemic stroke behaviors in mice, as demonstrated by neurological score, infarct volume, cerebral water content, rotarod test for activity. Compared with the model group, the ginkgo biloba extract (EGb) and LY01 reversed the neurological score, infarct volume, cerebral water content, rotarod test in model mice. Further analysis showed that the LY01 rescued oxidative stress in the model mice, which was reflected in the increased levels of catalase, superoxide dismutase, total antioxidant capacity and decreased levels of malondialdehyde in the serum of the model mice. Moreover, the expression of the brain-derived neurotrophic factor brain-derived neurotrophic factor (BDNF), phosphorylated protein kinase B (p-Akt), Bax, Bcl-2, (p)-tropomysin related kinase B (p-Trkb) was restored and the expression of Bax, glial fibrillary acidic protein (GFAP) in the brains of the model mice was inhibited through LY01 treatment. In the polymerase chain reaction (PCR) data, after giving LY01, the expression in the brains of model mice was that, IL-10 increased and IL-1β, Bax, Bcl-2 decreased. Furthermore, the results indicated that LY01 improved cell viability, reactive oxygen species content, and mitochondrial membrane potential dissipation induced by OGD/R in primary culture of rat cortical neurons. Bax and caspase-3 activity was upregulated compared to the before after treatment with LY01. CONCLUSIONS Our study suggests that LY01 reversed ischemic stroke by reducing oxidative stress and activating the BDNF-TrkB/Akt pathway and exerted a neuroprotective action against OGD/R injury via attenuation, a novel approach was suggested to treat ischemic stroke. Our observations justify the traditional use of LY01 for a treatment of IS in nervous system.
Collapse
Affiliation(s)
- Yongbiao Li
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, 100081, Beijing, China
| | - Fangcheng Fan
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, 100081, Beijing, China
| | - Qingshan Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, 100081, Beijing, China.
| |
Collapse
|
10
|
Mbs GBY, Wasek B, Bottiglieri T, Malysheva O, Caudill MA, Jadavji NM. Dietary vitamin B12 deficiency impairs motor function and changes neuronal survival and choline metabolism after ischemic stroke in middle-aged male and female mice. Nutr Neurosci 2024; 27:300-309. [PMID: 36932327 DOI: 10.1080/1028415x.2023.2188639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Nutrition is a modifiable risk factor for ischemic stroke. As people age their ability to absorb some nutrients decreases, a primary example is vitamin B12. Older individuals with a vitamin B12 deficiency are at a higher risk for ischemic stroke and have worse stroke outcome. However, the mechanisms through which these occur remain unknown. The aim of the study was to investigate the role of vitamin B12 deficiency in ischemic stroke outcome and mechanistic changes in a mouse model. Ten-month-old male and female mice were put on control or vitamin B12 deficient diets for 4 weeks prior to and after ischemic stroke to the sensorimotor cortex. Motor function was measured, and tissues were collected to assess potential mechanisms. All deficient mice had increased levels of total homocysteine in plasma and liver tissues. After ischemic stroke, deficient mice had impaired motor function compared to control mice. There was no difference between groups in ischemic damage volume. However, within the ischemic damage region, there was an increase in total apoptosis of male deficient mice compared to controls. Furthermore, there was an increase in neuronal survival in ischemic brain tissue of the vitamin B12 deficient mice compared to controls. Additionally, there were changes in choline metabolites in ischemic brain tissue because of a vitamin B12 deficiency. The data presented in this study confirms that a vitamin B12 deficiency worsens stroke outcome in male and female mice. The mechanisms driving this change may be a result of neuronal survival and compensation in choline metabolism within the damaged brain tissue.
Collapse
Affiliation(s)
- Gyllian B Yahn Mbs
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Olga Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Nafisa M Jadavji
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
- College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
- Department of Neuroscience, Carleton University, Ottawa, Canada
| |
Collapse
|
11
|
Liu Y, Gong P, Qi G, Tang H, Gui R, Qi C, Qin S. Dynamic Changes in Neuroglial Reaction and Tissue Repair after Photothrombotic Stroke in Neonatal Mouse. Brain Sci 2024; 14:152. [PMID: 38391727 PMCID: PMC10886454 DOI: 10.3390/brainsci14020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Perinatal and neonatal ischemic stroke is a significant cause of cognitive and behavioral impairments. Further research is needed to support models of neonatal ischemic stroke and advance our understanding of the mechanisms of infarction formation following such strokes. We used two different levels of photothrombotic stroke (PTS) models to assess stroke outcomes in neonatal mice. We measured brain damage, dynamic changes in glial cells, and neuronal expression at various time points within two weeks following ischemic injury. Our results from 2,3,5-Triphenyltetrazolium chloride (TTC) staining and immunofluorescence staining showed that in the severe group, a dense border of astrocytes and microglia was observed within 3 days post infarct. This ultimately resulted in the formation of a permanent cortical cavity, accompanied by neuronal loss in the surrounding tissues. In the mild group, a relatively sparse arrangement of glial borders was observed 7 days post infarct. This was accompanied by intact cortical tissue and the restoration of viability in the brain tissue beyond the glial boundary. Additionally, neonatal ischemic injury leads to the altered expression of key molecules such as Aldh1L1 and Olig2 in immature astrocytes. In conclusion, we demonstrated the dynamic changes in glial cells and neuronal expression following different degrees of ischemic injury in a mouse model of PTS. These findings provide new insights for studying the cellular and molecular mechanisms underlying neuroprotection and neural regeneration after neonatal ischemic injury.
Collapse
Affiliation(s)
- Yitong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Pifang Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Guibo Qi
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Han Tang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Runshan Gui
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Congcong Qi
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Zhou K, Tan Y, Zhang G, Li J, Xing S, Chen X, Wen J, Li G, Fan Y, Zeng J, Zhang J. Loss of SARM1 ameliorates secondary thalamic neurodegeneration after cerebral infarction. J Cereb Blood Flow Metab 2024; 44:224-238. [PMID: 37898107 PMCID: PMC10993876 DOI: 10.1177/0271678x231210694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 08/07/2023] [Accepted: 10/07/2023] [Indexed: 10/30/2023]
Abstract
Ischemic stroke causes secondary neurodegeneration in the thalamus ipsilateral to the infarction site and impedes neurological recovery. Axonal degeneration of thalamocortical fibers and autophagy overactivation are involved in thalamic neurodegeneration after ischemic stroke. However, the molecular mechanisms underlying thalamic neurodegeneration remain unclear. Sterile /Armadillo/Toll-Interleukin receptor homology domain protein (SARM1) can induce Wallerian degeneration. Herein, we aimed to investigate the role of SARM1 in thalamic neurodegeneration and autophagy activation after photothrombotic infarction. Neurological deficits measured using modified neurological severity scores and adhesive-removal test were ameliorated in Sarm1-/- mice after photothrombotic infarction. Compared with wild-type mice, Sarm1-/- mice exhibited unaltered infarct volume; however, there were markedly reduced neuronal death and gliosis in the ipsilateral thalamus. In parallel, autophagy activation was attenuated in the thalamus of Sarm1-/- mice after cerebral infarction. Thalamic Sarm1 re-expression in Sarm1-/- mice increased thalamic neurodegeneration and promoted autophagy activation. Auotophagic inhibitor 3-methyladenine partially alleviated thalamic damage induced by SARM1. Moreover, autophagic initiation through rapamycin treatment aggravated post-stroke neuronal death and gliosis in Sarm1-/- mice. Taken together, SARM1 contributes to secondary thalamic neurodegeneration after cerebral infarction, at least partly through autophagy inhibition. SARM1 deficiency is a potential therapeutic strategy for secondary thalamic neurodegeneration and functional deficits after stroke.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Yan Tan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Guofen Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Jingjing Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Shihui Xing
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Xinran Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Jiali Wen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yuhua Fan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Jian Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| |
Collapse
|
13
|
Matur AV, Candelario-Jalil E, Paul S, Karamyan VT, Lee JD, Pennypacker K, Fraser JF. Translating Animal Models of Ischemic Stroke to the Human Condition. Transl Stroke Res 2023; 14:842-853. [PMID: 36125734 DOI: 10.1007/s12975-022-01082-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Ischemic stroke is a leading cause of death and disability. However, very few neuroprotective agents have shown promise for treatment of ischemic stroke in clinical trials, despite showing efficacy in many successful preclinical studies. This may be attributed, at least in part, to the incongruency between experimental animal stroke models used in preclinical studies and the manifestation of ischemic stroke in humans. Most often the human population selected for clinical trials are more diverse than the experimental model used in a preclinical study. For successful translation, it is critical to develop clinical trial designs that match the experimental animal model used in the preclinical study. This review aims to provide a comprehensive summary of commonly used animal models with clear correlates between rodent models used to study ischemic stroke and the clinical stroke pathologies with which they most closely align. By improving the correlation between preclinical studies and clinical trials, new neuroprotective agents and stroke therapies may be more accurately and efficiently identified.
Collapse
Affiliation(s)
- Abhijith V Matur
- Department of Radiology, University of Kentucky, Lexington, KY, USA.
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Surojit Paul
- Department of Neurology and Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Vardan T Karamyan
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Jessica D Lee
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Keith Pennypacker
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
| | - Justin F Fraser
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
- Department of Neurological Surgery, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
14
|
Wu Y, Huang X, Tan Z, Zang J, Peng M, He N, Zhang T, Mai H, Xu A, Lu D. FUS-mediated HypEVs: Neuroprotective effects against ischemic stroke. Bioact Mater 2023; 29:196-213. [PMID: 37621770 PMCID: PMC10444975 DOI: 10.1016/j.bioactmat.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 06/02/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Few studies have investigated the properties and protein composition of small extracellular vesicles (sEVs) derived from neurons under hypoxic conditions. Presently, the extent of the involvement of these plentiful sEVs in the onset and progression of ischemic stroke remains an unresolved question. Our study systematically identified the characteristics of sEVs derived from neurons under hypoxic conditions (HypEVs) by physical characterization, sEV absorption, proteomics and transcriptomics analysis. The effects of HypEVs on neurites, cell survival, and neuron structure were assessed in vitro and in vivo by neural complexity tests, magnetic resonance imaging (MRI), Golgi staining, and Western blotting of synaptic plasticity-related proteins and apoptotic proteins. Knockdown of Fused in Sarcoma (FUS) small interfering RNA (siRNA) was used to validate FUS-mediated HypEV neuroprotection and mitochondrial mRNA release. Hypoxia promoted the secretion of sEVs, and HypEVs were more easily taken up and utilized by recipient cells. The MRI results illustrated that the cerebral infarction volume was reduced by 45% with the application of HypEVs, in comparison to the non- HypEV treatment group. Mechanistically, the FUS protein is necessary for the uptake and neuroprotection of HypEVs against ischemic stroke as well as carrying a large amount of mitochondrial mRNA in HypEVs. However, FUS knockdown attenuated the neuroprotective rescue capabilities of HypEVs. Our comprehensive dataset clearly illustrates that FUS-mediated HypEVs deliver exceptional neuroprotective effects against ischemic stroke, primarily through the maintenance of neurite integrity and the reduction of mitochondria-associated apoptosis.
Collapse
Affiliation(s)
- Yousheng Wu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoxiong Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Neurology and Stroke Center, The Central Hospital of Shaoyang, Hunan, China
| | - Zefeng Tan
- Department of Neurology, The First People's Hospital of Foshan, Guangdong, China
| | - Jiankun Zang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Min Peng
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Niu He
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tao Zhang
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongcheng Mai
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Munich Medical Research School (MMRS), Ludwig-Maximilians University Munich, Munich, Germany
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Kalyuzhnaya Y, Khaitin A, Demyanenko S. Modeling transient ischemic attack via photothrombosis. Biophys Rev 2023; 15:1279-1286. [PMID: 37974996 PMCID: PMC10643708 DOI: 10.1007/s12551-023-01121-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/18/2023] [Indexed: 11/19/2023] Open
Abstract
The health significance of transient ischemic attacks (TIAs) is largely underestimated. Often, TIAs are not given significant importance, and in vain, because TIAs are a predictor of the development of serious cardiovascular diseases and even death. Because of this, and because of the difficulty in diagnosing the disease, TIAs and related microinfarcts are poorly investigated. Photothrombotic models of stroke and TIA allow reproducing the occlusion of small brain vessels, even single ones. When dosing the concentration of photosensitizer, intensity and irradiation time, it is possible to achieve occlusion of well-defined small vessels with high reproducibility, and with the help of modern methods of blood flow assessment it is possible to achieve spontaneous restoration of blood flow without vessel rupture. In this review, we discuss the features of microinfarcts and the contemporary experimental approaches used to model TIA and microinfarcts, with an emphasis on models using the principle of photothrombosis of brain vessels. We review modern techniques for in vivo detection of blood flow in small brain vessels, as well as biomarkers of microinfarcts.
Collapse
Affiliation(s)
- Y.N. Kalyuzhnaya
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
| | - A.M. Khaitin
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
| | - S.V. Demyanenko
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
| |
Collapse
|
16
|
Pawletko K, Jędrzejowska-Szypułka H, Bogus K, Pascale A, Fahmideh F, Marchesi N, Grajoszek A, Gendosz de Carrillo D, Barski JJ. After Ischemic Stroke, Minocycline Promotes a Protective Response in Neurons via the RNA-Binding Protein HuR, with a Positive Impact on Motor Performance. Int J Mol Sci 2023; 24:ijms24119446. [PMID: 37298395 DOI: 10.3390/ijms24119446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Ischemic stroke is the most common cause of adult disability and one of the leading causes of death worldwide, with a serious socio-economic impact. In the present work, we used a new thromboembolic model, recently developed in our lab, to induce focal cerebral ischemic (FCI) stroke in rats without reperfusion. We analyzed selected proteins implicated in the inflammatory response (such as the RNA-binding protein HuR, TNFα, and HSP70) via immunohistochemistry and western blotting techniques. The main goal of the study was to evaluate the beneficial effects of a single administration of minocycline at a low dose (1 mg/kg intravenously administered 10 min after FCI) on the neurons localized in the penumbra area after an ischemic stroke. Furthermore, given the importance of understanding the crosstalk between molecular parameters and motor functions following FCI, motor tests were also performed, such as the Horizontal Runway Elevated test, CatWalk™ XT, and Grip Strength test. Our results indicate that a single administration of a low dose of minocycline increased the viability of neurons and reduced the neurodegeneration caused by ischemia, resulting in a significant reduction in the infarct volume. At the molecular level, minocycline resulted in a reduction in TNFα content coupled with an increase in the levels of both HSP70 and HuR proteins in the penumbra area. Considering that both HSP70 and TNF-α transcripts are targeted by HuR, the obtained results suggest that, following FCI, this RNA-binding protein promotes a protective response by shifting its binding towards HSP70 instead of TNF-α. Most importantly, motor tests showed that reduced inflammation in the brain damaged area after minocycline treatment directly translated into a better motor performance, which is a fundamental outcome when searching for new therapeutic options for clinical practice.
Collapse
Affiliation(s)
- Katarzyna Pawletko
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| | - Halina Jędrzejowska-Szypułka
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Foroogh Fahmideh
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Aniela Grajoszek
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| | - Daria Gendosz de Carrillo
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Jarosław Jerzy Barski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| |
Collapse
|
17
|
Choi SG, Shin J, Lee KY, Park H, Kim SI, Yi YY, Kim DW, Song HJ, Shin HJ. PINK1 siRNA-loaded poly(lactic-co-glycolic acid) nanoparticles provide neuroprotection in a mouse model of photothrombosis-induced ischemic stroke. Glia 2023; 71:1294-1310. [PMID: 36655313 DOI: 10.1002/glia.24339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023]
Abstract
PTEN-induced kinase 1 (PINK1) is a well-known critical marker in the pathway for mitophagy regulation as well as mitochondrial dysfunction. Evidence suggests that mitochondrial dynamics and mitophagy flux play an important role in the development of brain damage from stroke pathogenesis. In this study, we propose a treatment strategy using nanoparticles that can control PINK1. We used a murine photothrombotic ischemic stroke (PTS) model in which clogging of blood vessels is induced with Rose Bengal (RB) to cause brain damage. We targeted PINK1 with poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles loaded with PINK1 siRNA (PINK1 NPs). After characterizing siRNA loading in the nanoparticles, we assessed the efficacy of PINK1 NPs in mice with PTS using immunohistochemistry, 1% 2,3,5-triphenyltetrazolium chloride staining, measurement of motor dysfunction, and Western blot. PINK1 was highly expressed in microglia 24 h after PTS induction. PINK1 siRNA treatment increased phagocytic activity, migration, and expression of an anti-inflammatory state in microglia. In addition, the PLGA nanoparticles were selectively taken up by microglia and specifically regulated PINK1 expression in those cells. Treatment with PINK1 NPs prior to stroke induction reduced expression of mitophagy-inducing factors, infarct volume, and motor dysfunction in mice with photothrombotic ischemia. Experiments with PINK1-knockout mice and microglia depletion with PLX3397 confirmed a decrease in stroke-induced infarct volume and behavioral dysfunction. Application of nanoparticles for PINK1 inhibition attenuates RB-induced photothrombotic ischemic injury by inhibiting microglia responses, suggesting that a nanomedical approach targeting the PINK1 pathway may provide a therapeutic avenue for stroke treatment.
Collapse
Affiliation(s)
- Seung Gyu Choi
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Juhee Shin
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Ka Young Lee
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyewon Park
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Song I Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Yoon Young Yi
- Department of Pediatrics, College of Medicine, Hallym University and Gangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Hee-Jung Song
- Department of Neurology, Chungnam National University Sejong Hospital and College of Medicine, Republic of Korea
| | - Hyo Jung Shin
- Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
18
|
Bernstock JD, Willis CM, Garcia-Segura ME, Gaude E, Anni D, Lee YJ, Thomas LW, Casey A, Vicario N, Leonardi T, Nicaise AM, Gessler FA, Izzy S, Buffelli MR, Seidlitz J, Srinivasan S, Murphy MP, Ashcroft M, Cambiaghi M, Hallenbeck JM, Peruzzotti-Jametti L. Integrative transcriptomic and metabolic analyses of the mammalian hibernating brain identifies a key role for succinate dehydrogenase in ischemic tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534718. [PMID: 37205496 PMCID: PMC10187245 DOI: 10.1101/2023.03.29.534718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ischemic stroke results in a loss of tissue homeostasis and integrity, the underlying pathobiology of which stems primarily from the depletion of cellular energy stores and perturbation of available metabolites 1 . Hibernation in thirteen-lined ground squirrels (TLGS), Ictidomys tridecemlineatus , provides a natural model of ischemic tolerance as these mammals undergo prolonged periods of critically low cerebral blood flow without evidence of central nervous system (CNS) damage 2 . Studying the complex interplay of genes and metabolites that unfolds during hibernation may provide novel insights into key regulators of cellular homeostasis during brain ischemia. Herein, we interrogated the molecular profiles of TLGS brains at different time points within the hibernation cycle via RNA sequencing coupled with untargeted metabolomics. We demonstrate that hibernation in TLGS leads to major changes in the expression of genes involved in oxidative phosphorylation and this is correlated with an accumulation of the tricarboxylic acid (TCA) cycle intermediates citrate, cis-aconitate, and α-ketoglutarate-αKG. Integration of the gene expression and metabolomics datasets led to the identification of succinate dehydrogenase (SDH) as the critical enzyme during hibernation, uncovering a break in the TCA cycle at that level. Accordingly, the SDH inhibitor dimethyl malonate (DMM) was able to rescue the effects of hypoxia on human neuronal cells in vitro and in mice subjected to permanent ischemic stroke in vivo . Our findings indicate that studying the regulation of the controlled metabolic depression that occurs in hibernating mammals may lead to novel therapeutic approaches capable of increasing ischemic tolerance in the CNS.
Collapse
|
19
|
Sun L, Wang Z, Chen L, Sun X, Yang Z, Gu W. A novel dehydroabietic acid-based multifunctional fluorescent probe for the detection and bioimaging of Cu 2+/Zn 2+/ClO . Analyst 2023; 148:1867-1876. [PMID: 36942689 DOI: 10.1039/d3an00001j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
A multifunctional dehydroabietic acid-based fluorescent probe (CPS) was designed and synthesized by introducing the 2,6-bis(1H-benzo[d]imidazol-2-yl)phenol fluorophore. The probe CPS could selectively recognize Cu2+, Zn2+ and ClO- ions from other analytes, and it showed fluorescence quenching behavior toward Cu2+ and a ratiometric response to Zn2+ and ClO- by changing from green fluorescence to blue and cyan, respectively. The detection limits toward Cu2+, Zn2+ and ClO- ions were 3.8 nM, 0.253 μM and 0.452 μM, respectively. In addition, CPS presented many fascinating merits, such as high selectivity, a short response time (15-20 s), a wide pH range (3-10) and high photostability. The sensing mechanisms of CPS were verified by 1H-NMR, ESI-MS, FT-IR and Job's plot methods. Meanwhile, CPS exhibited satisfactory detection performance in water samples. More importantly, the probe could be applied as a promising tool for visual bioimaging of three ions in living cells and zebrafishes.
Collapse
Affiliation(s)
- Lu Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Zhonglong Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Linlin Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Xuebao Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Zihui Yang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| |
Collapse
|
20
|
Zhang Y, Shen L, Xie J, Li L, Xi W, Li B, Bai Y, Yao H, Zhang S, Han B. Pushen capsule treatment promotes functional recovery after ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154664. [PMID: 36682301 DOI: 10.1016/j.phymed.2023.154664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND As a leading cause of long-term disability, ischemic stroke urgently needs further research and drug development. Pushen capsule (Pushen) has been commonly applied in clinical treatment for relieving headaches, dizziness, and numbness. However, the effects of Pushen on ischemic stroke have not been revealed yet. PURPOSE To assess the efficiency of Pushen in ischemic stroke and identify its potential therapeutic targets and active ingredients for treating ischemic stroke. STUDY DESIGN AND METHODS Behavioural experiments, Triphenyltetrazolium chloride (TTC) staining, Magnetic resonance imaging (MRI), and immunofluorescence staining were performed to examine the efficiency of Pushen in stroke model mice. The potential mechanism and active ingredients of Pushen were assessed by transcriptome, 16S rDNA sequencing, metabonomics, and network pharmacology. Finally, the targets were validated by RT-PCR, chromatin immunoprecipitation (ChIP), ELISA, and molecular docking methods. RESULTS Pushen had several effects on stroke model mice, including reducing the infarct volume, improving the blood‒brain barrier (BBB), and promoting functional restoration. Furthermore, the network pharmacology, LC-MS/MS, and molecular docking results revealed that tricin, quercetin, luteolin, kaempferol, and physcion were identified as the key active ingredients in Pushen that treated ischemic stroke. Mechanistically, these key ingredients could bind with the transcription factor c-Myc and thereby regulate the expression of Adora2a, Drd2, and Ppp1r1b, which are enriched in the cAMP signaling pathway. Additionally, Pushen improved the gut microbiota dysbiosis and reduced inosine levels in feces and serum, thereby reducing Adora2a expression in the brain. CONCLUSIONS Our study confirmed that Pushen was effective for treating ischemic stroke and has promising clinical applications.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jian Xie
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lu Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Wen Xi
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Bin Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Shenyang Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
21
|
Brezgunova AA, Andrianova NV, Popkov VA, Tkachev SY, Manskikh VN, Pevzner IB, Zorova LD, Timashev PS, Silachev DN, Zorov DB, Plotnikov EY. New experimental model of kidney injury: Photothrombosis-induced kidney ischemia. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166622. [PMID: 36526237 DOI: 10.1016/j.bbadis.2022.166622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a frequent pathology with a high mortality rate after even a single AKI episode and a great risk of chronic kidney disease (CKD) development. To get insight into mechanisms of the AKI pathogenesis, there is a need to develop diverse experimental models of the disease. Photothrombosis is a widely used method for inducing ischemia in the brain. In this study, for the first time, we described photothrombosis-induced kidney ischemia as an appropriate model of AKI and obtained comprehensive characteristics of the photothrombotic lesion using micro-computed tomography (micro-CT) and histological techniques. In the ischemic area, we observed destruction of tubules, the loss of brush border and nuclei, connective tissue fibers disorganization, leukocyte infiltration, and hyaline casts formation. In kidney tissue and urine, we revealed increased levels in markers of proliferation and injury. The explicit long-term consequence of photothrombosis-induced kidney ischemia was renal fibrosis. Thus, we establish a new low invasive experimental model of AKI, which provides a reproducible local ischemic injury lesion. We propose our model of photothrombosis-induced kidney ischemia as a useful approach for investigating AKI pathogenesis, studying the mechanisms of kidney regeneration, and development of therapy against AKI and CKD.
Collapse
Affiliation(s)
- Anna A Brezgunova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nadezda V Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vasily A Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Sergey Y Tkachev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Vasily N Manskikh
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Irina B Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Ljubava D Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Denis N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Dmitry B Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia.
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia.
| |
Collapse
|
22
|
Kosugi A, Saga Y, Kudo M, Koizumi M, Umeda T, Seki K. Time course of recovery of different motor functions following a reproducible cortical infarction in non-human primates. Front Neurol 2023; 14:1094774. [PMID: 36846141 PMCID: PMC9947718 DOI: 10.3389/fneur.2023.1094774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
A major challenge in human stroke research is interpatient variability in the extent of sensorimotor deficits and determining the time course of recovery following stroke. Although the relationship between the extent of the lesion and the degree of sensorimotor deficits is well established, the factors determining the speed of recovery remain uncertain. To test these experimentally, we created a cortical lesion over the motor cortex using a reproducible approach in four common marmosets, and characterized the time course of recovery by systematically applying several behavioral tests before and up to 8 weeks after creation of the lesion. Evaluation of in-cage behavior and reach-to-grasp movement revealed consistent motor impairments across the animals. In particular, performance in reaching and grasping movements continued to deteriorate until 4 weeks after creation of the lesion. We also found consistent time courses of recovery across animals for in-cage and grasping movements. For example, in all animals, the score for in-cage behaviors showed full recovery at 3 weeks after creation of the lesion, and the performance of grasping movement partially recovered from 4 to 8 weeks. In addition, we observed longer time courses of recovery for reaching movement, which may rely more on cortically initiated control in this species. These results suggest that different recovery speeds for each movement could be influenced by what extent the cortical control is required to properly execute each movement.
Collapse
Affiliation(s)
- Akito Kosugi
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yosuke Saga
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Moeko Kudo
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masashi Koizumi
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tatsuya Umeda
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan,Department of Integrated Neuroanatomy and Neuroimaging, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan,*Correspondence: Kazuhiko Seki ✉
| |
Collapse
|
23
|
Alamri FF, Karamyan ST, Karamyan VT. A Low-Budget Photothrombotic Rodent Stroke Model. Methods Mol Biol 2023; 2616:21-28. [PMID: 36715924 DOI: 10.1007/978-1-0716-2926-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A number of animal stroke models have been developed and used over the years to study the pathological mechanisms of this disorder and develop new therapies. Among them, the photothrombotic model of ischemic stroke has been central in various studies focusing on understanding of the basic biology of neural repair, identification and validation of key molecular targets involved in post-stroke recovery, and preclinical testing of various therapeutic approaches. To facilitate uniformity among various experimental groups using this expert-recommended mouse model of choice for stroke recovery studies, in this chapter we describe in detail a low-budget technique to induce photothrombosis in the mouse primary motor cortex. Additionally, we provide tips for conducting this procedure in other cerebral cortical regions of the mouse brain and in rats.
Collapse
Affiliation(s)
- Faisal F Alamri
- College of Sciences and Health Profession, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Serob T Karamyan
- Department of Pharmacology, Faculty of Pharmacy, Yerevan State Medical University, Yerevan, Armenia
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA.
| |
Collapse
|
24
|
Britsch DRS, Syeara N, Stowe AM, Karamyan VT. Rodent Stroke Models to Study Functional Recovery and Neural Repair. Methods Mol Biol 2023; 2616:3-12. [PMID: 36715922 DOI: 10.1007/978-1-0716-2926-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rodent ischemic stroke models are essential research tools for studying this highly prevalent disease and represent a critical element in the translational pipeline for development of new therapies. The majority of ischemic stroke models have been developed to study the acute phase of the disease and neuroprotective strategies, but a subset of models is better suited for studying stroke recovery. Each model therefore has characteristics that lend itself to certain types of investigations and outcome measures, and it is important to consider both explicit and implicit details when designing experiments that utilize each model. The following chapter briefly summarizes the known aspects of the main rodent stroke models with emphasis on their clinical relevance and suitability for studying recovery and neural repair following stroke.
Collapse
Affiliation(s)
- Daimen R S Britsch
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA
| | - Nausheen Syeara
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Ann M Stowe
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA.
| |
Collapse
|
25
|
Shibuya N, Itokazu T, Ueda T, Yamashita T. Intravital Imaging Reveals the Ameliorating Effect of Colchicine in a Photothrombotic Stroke Model via Inhibition of Neutrophil Recruitment. Transl Stroke Res 2023; 14:100-110. [PMID: 35441983 DOI: 10.1007/s12975-022-01022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 01/31/2023]
Abstract
Although post-stroke neutrophil recruitment is known to be deleterious to neural tissues in the peri-infarct area, the precise behavior of recruited neutrophils remains elusive. In this study, potential therapeutic agents for modifying neutrophil behavior in the peri-infarct area were explored through intravital imaging of an experimental stroke mouse model. By applying in vivo 2-photon imaging to study a tightly controlled photothrombotic stroke mouse model, we established a highly sensitive and reproducible method for investigating the temporal dynamics of ischemic brain lesions. Taking advantage of this system, we revealed that neutrophil depletion by a neutrophil-specific antibody ameliorated the expansion of the infarct area, confirming the deleterious effect of neutrophils in the peri-infarct cortex. To identify neutrophil-targeted therapeutic approaches, we screened various agents and found that colchicine and an anti-P-selectin antibody were the most effective in inhibiting neutrophil attachment to the vessel wall in the early phase (6 h post-infarction). Interestingly, further investigation in the later phase (16 h post-infarction) revealed that colchicine potently inhibited neutrophil infiltration into the peri-infarct cortex; however, the anti-P-selectin antibody did not. Subsequent analysis revealed that the effect of the anti-P-selectin antibody against neutrophil attachment to the vessel wall was transient and thus insufficient for mitigating neutrophil infiltration. Finally, we revealed that colchicine treatment effectively ameliorated infarct expansion. In conclusion, we have established an intravital strategy to directly investigate pathophysiology in the ischemic border zone, and found that colchicine administration in the acute phase of ischemic stroke is a potential novel therapeutic strategy.
Collapse
Affiliation(s)
- Nao Shibuya
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Tsubasa Ueda
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.
| |
Collapse
|
26
|
Wang Y, Chen YL, Huang CM, Chen LT, Liao LD. Visible CCD Camera-Guided Photoacoustic Imaging System for Precise Navigation during Functional Rat Brain Imaging. BIOSENSORS 2023; 13:107. [PMID: 36671941 PMCID: PMC9856069 DOI: 10.3390/bios13010107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
In photoacoustic (PA) imaging, tissue absorbs specific wavelengths of light. The absorbed energy results in thermal expansion that generates ultrasound waves that are reconstructed into images. Existing commercial PA imaging systems for preclinical brain imaging are limited by imprecise positioning capabilities and inflexible user interfaces. We introduce a new visible charge-coupled device (CCD) camera-guided photoacoustic imaging (ViCPAI) system that integrates an ultrasound (US) transducer and a data acquisition platform with a CCD camera for positioning. The CCD camera accurately positions the US probe at the measurement location. The programmable MATLAB-based platform has an intuitive user interface. In vitro carbon fiber and in vivo animal experiments were performed to investigate the precise positioning and imaging capabilities of the ViCPAI system. We demonstrated real-time capturing of bilateral cerebral hemodynamic changes during (1) forelimb electrical stimulation under normal conditions, (2) forelimb stimulation after right brain focal photothrombotic ischemia (PTI) stroke, and (3) progression of KCl-induced cortical spreading depression (CSD). The ViCPAI system accurately located target areas and achieved reproducible positioning, which is crucial in animal and clinical experiments. In animal experiments, the ViCPAI system was used to investigate bilateral cerebral cortex responses to left forelimb electrical stimulation before and after stroke, showing that the CBV and SO2 in the right primary somatosensory cortex of the forelimb (S1FL) region were significantly changed by left forelimb electrical stimulation before stroke. No CBV or SO2 changes were observed in the bilateral cortex in the S1FL area in response to left forelimb electrical stimulation after stroke. While monitoring CSD progression, the ViCPAI system accurately locates the S1FL area and returns to the same position after the probe moves, demonstrating reproducible positioning and reducing positioning errors. The ViCPAI system utilizes the real-time precise positioning capability of CCD cameras to overcome various challenges in preclinical and clinical studies.
Collapse
Affiliation(s)
- Yuhling Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Yu-Lin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, No.75 Po-Ai St., Hsinchu 300, Taiwan
| | - Li-Tzong Chen
- Department of Internal Medicine, Kaohsiung Medical University Hospital and Center for Cancer Research, Kaohsiung Medical University, No.100, Tzyou 1st Road, Sanmin Dist., Kaohsiung City 80756, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| |
Collapse
|
27
|
Venkat P, Gao H, Findeis EL, Chen Z, Zacharek A, Landschoot-Ward J, Powell B, Lu M, Liu Z, Zhang Z, Chopp M. Therapeutic effects of CD133 + Exosomes on liver function after stroke in type 2 diabetic mice. Front Neurosci 2023; 17:1061485. [PMID: 36968490 PMCID: PMC10033607 DOI: 10.3389/fnins.2023.1061485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Background and purpose Non-alcoholic fatty liver disease (NAFLD) is known to adversely affect stroke recovery. However, few studies investigate how stroke elicits liver dysfunction, particularly, how stroke in type 2 diabetes mellitus (T2DM) exacerbates progression of NAFLD. In this study, we test whether exosomes harvested from human umbilical cord blood (HUCBC) derived CD133 + cells (CD133 + Exo) improves neuro-cognitive outcome as well as reduces liver dysfunction in T2DM female mice. Methods Female, adult non-DM and T2DM mice subjected to stroke presence or absence were considered. T2DM-stroke mice were randomly assigned to receive PBS or Exosome treatment group. CD133 + Exo (20 μg/200 μl PBS, i.v.) was administered once at 3 days after stroke. Evaluation of neurological (mNSS, adhesive removal test) and cognitive function [novel object recognition (NOR) test, odor test] was performed. Mice were sacrificed at 28 days after stroke and brain, liver, and serum were harvested. Results Stroke induces severe and significant short-term and long-term neurological and cognitive deficits which were worse in T2DM mice compared to non-DM mice. CD133 + Exo treatment of T2DM-stroke mice significantly improved neurological function and cognitive outcome indicated by improved discrimination index in the NOR and odor tests compared to control T2DM-stroke mice. CD133 + Exo treatment of T2DM stroke significantly increased vascular and white matter/axon remodeling in the ischemic brain compared to T2DM-stroke mice. However, there were no differences in the lesion volume between non-DM stroke, T2DM-stroke and CD133 + Exo treated T2DM-stroke mice. In T2DM mice, stroke induced earlier and higher TLR4, NLRP3, and cytokine expression (SAA, IL1β, IL6, TNFα) in the liver compared to heart and kidney, as measured by Western blot. T2DM-stroke mice exhibited worse NAFLD progression with increased liver steatosis, hepatocellular ballooning, fibrosis, serum ALT activity, and higher NAFLD Activity Score compared to T2DM mice and non-DM-stroke mice, while CD133 + Exo treatment significantly attenuated the progression of NAFLD in T2DM stroke mice. Conclusion Treatment of female T2DM-stroke mice with CD133 + Exo significantly reduces the progression of NAFLD/NASH and improves neurological and cognitive function compared to control T2DM-stroke mice.
Collapse
Affiliation(s)
- Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- *Correspondence: Poornima Venkat,
| | - Huanjia Gao
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Zhili Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Brianna Powell
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Mei Lu
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| |
Collapse
|
28
|
A Novel Improved Thromboembolism-Based Rat Stroke Model That Meets the Latest Standards in Preclinical Studies. Brain Sci 2022; 12:brainsci12121671. [PMID: 36552131 PMCID: PMC9776070 DOI: 10.3390/brainsci12121671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
The animal thromboembolic model of ischemia perfectly mimics human ischemic stroke which remains the leading cause of disability and mortality in humans. The development of new treatment strategies was therefore imperative. The purpose of this study is to improve the thromboembolic stroke model in rats in order to design experiments that use motor tests, and are in accordance with the 3R principles to prevent complications and maintain the same size of the infarct repeatedly. Tail vein dye application, a protective skull mask and a stress minimization protocol were used as additional modifications to the animal stroke model. These modifications significantly minimized the pain and stress severity of the procedures in this model. In our experimental group of Long-Evans rats, a photo-induced stroke was caused by the application of a photosensitive dye (Rose Bengal) activated with white-light irradiation, thus eliminating the need to perform a craniotomy. The animals' neurological status was evaluated using a runway elevated test. Histological examination of the brain tissue was performed at 12, 24 and 48 h, and seven days post-stroke. Tissue examination revealed necrotic foci in the cortex and the subcortical regions of the ipsilateral hemisphere in all experimental groups. Changes in the area, width and depth of the necrotic focus were observed over time. All the experimental groups showed motor disturbances after stroke survival. In the proposed model, photochemically-induced stroke caused long-term motor deficits, showed high reproducibility and low mortality rates. Consequently, the animals could participate in motor tests which are particularly suitable for assessing the efficacy of neuro-regenerative therapies, while remaining in line with the latest trends in animal experimental design.
Collapse
|
29
|
Lee KH, Jeong EH, Joa KL. Effects of Stroke Lesions and Timing of Rehabilitation on the Compensatory Movement Patterns During Stroke Recovery. Am J Phys Med Rehabil 2022; 101:1031-1037. [PMID: 35067555 DOI: 10.1097/phm.0000000000001968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The aims of this study were to distinguish between behavioral compensation and behavioral recovery and to determine the role of stroke lesions and the optimal timing of rehabilitation in true recovery. DESIGN Single pellet reaching test has been performed to analyze both quantitative and qualitative measures of forelimb function in a stroke animal model with lesions in the motor cortex, somatosensory cortex, or sensorimotor cortex. The four gestures of compensatory movement patterns that comprised a reach were head lift, limb withdrawal, pellet chasing, and phantom grasp. RESULTS Functional recovery improved in all the stroke groups after rehabilitation ( P < 0.001). However, the compensatory movement patterns of the motor cortex and somatosensory cortex stroke groups initially increased and subsequently decreased ( P = 0.0054), whereas those of the sensorimotor cortex stroke group increased and persisted ( P = 0.0063). In the sensorimotor cortex stroke group, compensatory movement patterns significantly decreased when training was initiated 5 and 14 days after stroke ( P = 0.0083, P = 0.0226, respectively), while they increased and persisted when training was initiated 1 day after stroke. CONCLUSIONS These findings suggest that true recovery by task-specific training after stroke depends, probably, on the lesion size and the timing of rehabilitation.
Collapse
Affiliation(s)
- Kyoung-Hee Lee
- From the Department of Occupational Therapy, Baekseok University, Cheonan, Chungnam, South Korea (K-hL); Department of Occupational Therapy, College of Healthcare Sciences, Far East University, South Korea (E-HJ); and Department of Physical Medicine and Rehabilitation, Inha University Hospital, Incheon, South Korea (K-LJ)
| | | | | |
Collapse
|
30
|
Zhou HY, Huai YP, Jin X, Yan P, Tang XJ, Wang JY, Shi N, Niu M, Meng ZX, Wang X. An enriched environment reduces hippocampal inflammatory response and improves cognitive function in a mouse model of stroke. Neural Regen Res 2022; 17:2497-2503. [PMID: 35535902 PMCID: PMC9120675 DOI: 10.4103/1673-5374.338999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
An enriched environment is used as a behavioral intervention therapy that applies sensory, motor, and social stimulation, and has been used in basic and clinical research of various neurological diseases. In this study, we established mouse models of photothrombotic stroke and, 24 hours later, raised them in a standard, enriched, or isolated environment for 4 weeks. Compared with the mice raised in a standard environment, the cognitive function of mice raised in an enriched environment was better and the pathological damage in the hippocampal CA1 region was remarkably alleviated. Furthermore, protein expression levels of tumor necrosis factor receptor-associated factor 6, nuclear factor κB p65, interleukin-6, and tumor necrosis factor α, and the mRNA expression level of tumor necrosis factor receptor-associated factor 6 were greatly lower, while the expression level of miR-146a-5p was higher. Compared with the mice raised in a standard environment, changes in these indices in mice raised in an isolated environment were opposite to mice raised in an enriched environment. These findings suggest that different living environments affect the hippocampal inflammatory response and cognitive function in a mouse model of stroke. An enriched environment can improve cognitive function following stroke through up-regulation of miR-146a-5p expression and a reduction in the inflammatory response.
Collapse
Affiliation(s)
- Hong-Yu Zhou
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| | - Ya-Ping Huai
- Department of Rehabilitation Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong Province, China
| | - Xing Jin
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| | - Ping Yan
- School of Nursing, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xiao-Jia Tang
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| | - Jun-Ya Wang
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| | - Nan Shi
- School of Nursing, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Meng Niu
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhao-Xiang Meng
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| | - Xin Wang
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College, Yangzhou University), Yangzhou, Jiangsu Province, China
| |
Collapse
|
31
|
Kim E, Van Reet J, Kim HC, Kowsari K, Yoo SS. High Incidence of Intracerebral Hemorrhaging Associated with the Application of Low-Intensity Focused Ultrasound Following Acute Cerebrovascular Injury by Intracortical Injection. Pharmaceutics 2022; 14:2120. [PMID: 36297554 PMCID: PMC9609794 DOI: 10.3390/pharmaceutics14102120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
Low-intensity transcranial focused ultrasound (FUS) has gained momentum as a non-/minimally-invasive modality that facilitates the delivery of various pharmaceutical agents to the brain. With the additional ability to modulate regional brain tissue excitability, FUS is anticipated to confer potential neurotherapeutic applications whereby a deeper insight of its safety is warranted. We investigated the effects of FUS applied to the rat brain (Sprague-Dawley) shortly after an intracortical injection of fluorescent interstitial solutes, a widely used convection-enhanced delivery technique that directly (i.e., bypassing the blood-brain-barrier (BBB)) introduces drugs or interstitial tracers to the brain parenchyma. Texas Red ovalbumin (OA) and fluorescein isothiocyanate-dextran (FITC-d) were used as the interstitial tracers. Rats that did not receive sonication showed an expected interstitial distribution of OA and FITC-d around the injection site, with a wider volume distribution of OA (21.8 ± 4.0 µL) compared to that of FITC-d (7.8 ± 2.7 µL). Remarkably, nearly half of the rats exposed to the FUS developed intracerebral hemorrhaging (ICH), with a significantly higher volume of bleeding compared to a minor red blood cell extravasation from the animals that were not exposed to sonication. This finding suggests that the local cerebrovascular injury inflicted by the micro-injection was further exacerbated by the application of sonication, particularly during the acute stage of injury. Smaller tracer volume distributions and weaker fluorescent intensities, compared to the unsonicated animals, were observed for the sonicated rats that did not manifest hemorrhaging, which may indicate an enhanced degree of clearance of the injected tracers. Our results call for careful safety precautions when ultrasound sonication is desired among groups under elevated risks associated with a weakened or damaged vascular integrity.
Collapse
Affiliation(s)
- Evgenii Kim
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| | - Jared Van Reet
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| | - Hyun-Chul Kim
- Department of Artificial Intelligence, Kyungpook National University, Daegu 37224, Korea
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| |
Collapse
|
32
|
Hirohata T, Kitano T, Saeki C, Baba K, Yoshida F, Kurihara T, Harada K, Saito S, Mochizuki H, Shimodozono M. Quantitative behavioral evaluation of a non-human primate stroke model using a new monitoring system. Front Neurosci 2022; 16:964928. [PMID: 36117634 PMCID: PMC9475201 DOI: 10.3389/fnins.2022.964928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Recently, the common marmoset (Callithrix jacchus) has attracted significant interest as a non-human primate stroke model. Functional impairment in non-human primate stroke models should be evaluated quantitatively and successively after stroke, but conventional observational assessments of behavior cannot fully fit this purpose. In this paper, we report a behavioral analysis using MarmoDetector, a three-dimensional motion analysis, in an ischemic stroke model using photosensitive dye, along with an observational behavioral assessment and imaging examination. Methods Ischemic stroke was induced in the left hemisphere of three marmosets. Cerebral infarction was induced by intravenous injection of rose bengal and irradiation with green light. The following day, the success of the procedure was confirmed by magnetic resonance imaging (MRI). The distance traveled, speed, activity time, and jumps/climbs were observed for 28 days after stroke using MarmoDetector. We also assessed the marmosets’ specific movements and postural abnormalities using conventional neurological scores. Results Magnetic resonance imaging diffusion-weighted and T2-weighted images showed hyperintense signals, indicating cerebral infarction in all three marmosets. MarmoDetector data showed that the both indices immediately after stroke onset and gradually improved over weeks. Neurological scores were the worst immediately after stroke and did not recover to pre-infarction levels during the observation period (28 days). A significant correlation was observed between MarmoDetector data and conventional neurological scores. Conclusion In this study, we showed that MarmoDetector can quantitatively evaluate behavioral changes in the acute to subacute phases stroke models. This technique can be practical for research on the pathophysiology of ischemic stroke and for the development of new therapeutic methods.
Collapse
Affiliation(s)
- Toshikazu Hirohata
- Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takaya Kitano
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chizu Saeki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kousuke Baba
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
- Academic Research Division, Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
- *Correspondence: Kousuke Baba,
| | - Fumiaki Yoshida
- Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
- Fumiaki Yoshida,
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Takashi Kurihara,
| | - Katsuhiro Harada
- Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shigeyoshi Saito
- Division of Health Sciences, Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Megumi Shimodozono
- Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
33
|
DeLong JH, Ohashi SN, O'Connor KC, Sansing LH. Inflammatory Responses After Ischemic Stroke. Semin Immunopathol 2022; 44:625-648. [PMID: 35767089 DOI: 10.1007/s00281-022-00943-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
Abstract
Ischemic stroke generates an immune response that contributes to neuronal loss as well as tissue repair. This is a complex process involving a range of cell types and effector molecules and impacts tissues outside of the CNS. Recent reviews address specific aspects of this response, but several years have passed and important advances have been made since a high-level review has summarized the overall state of the field. The present review examines the initiation of the inflammatory response after ischemic stroke, the complex impacts of leukocytes on patient outcome, and the potential of basic science discoveries to impact the development of therapeutics. The information summarized here is derived from broad PubMed searches and aims to reflect recent research advances in an unbiased manner. We highlight valuable recent discoveries and identify gaps in knowledge that have the potential to advance our understanding of this disease and therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Jonathan Howard DeLong
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah Naomi Ohashi
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin Charles O'Connor
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Hachmann Sansing
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
34
|
Hu Z, Li D, Zhong X, Li Y, Xuan A, Yu T, Zhu J, Zhu D. In vivo tissue optical clearing assisted through-skull targeted photothrombotic ischemic stroke model in mice. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:065001. [PMID: 35676747 PMCID: PMC9174889 DOI: 10.1117/1.jbo.27.6.065001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Photothrombotic stroke is an important and widely used model for ischemic stroke research. However, the significant scattering of the skull during the procedure limits the light's ability to penetrate and focus on its target. Targeted photothrombosis uses surgery-based skull windows to obtain optical access to the brain, but it renders the brain's environment unnatural even before a stroke is established. AIM To establish a targeted, controllable ischemic stroke model in mice through an intact skull. APPROACH The in vivo skull optical clearing technique provides a craniotomy-free "optical window" that allows light to penetrate. Alongside the local photodynamic effect, we have established targeted photothrombosis without skull removal, effectively controlling the degree of thrombotic occlusion by changing the light dose. RESULTS Ex vivo and in vivo results demonstrated that skull optical clearing treatment significantly enhanced light's ability to penetrate the skull and focus on its target, contributing to thrombotic occlusion. The skull optical clearing window was also used for continuous blood flow mapping, and the relationship between light dose and injury degree was evaluated over 14 days of monitoring. Per our findings, increasing the light dose was accompanied by more severe infarction, indicating that the model was easily controllable. CONCLUSIONS Herein, a targeted, controllable ischemic stroke model was established by combinedly running an in vivo skull optical clearing technique and a photothrombotic procedure, avoiding unnecessary damage or environmental changes to the brain caused by surgery on the skull. Our established model should offer significant value to research on ischemic stroke.
Collapse
Affiliation(s)
- Zhengwu Hu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Hubei, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Hubei, Wuhan, China
- Optics Valley Laboratory, Hubei, China
| | - Dongyu Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Hubei, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Hubei, Wuhan, China
- Optics Valley Laboratory, Hubei, China
| | - Xiang Zhong
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Hubei, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Hubei, Wuhan, China
- Optics Valley Laboratory, Hubei, China
| | - Yusha Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Hubei, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Hubei, Wuhan, China
- Optics Valley Laboratory, Hubei, China
| | - Ang Xuan
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Hubei, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Hubei, Wuhan, China
- Optics Valley Laboratory, Hubei, China
| | - Tingting Yu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Hubei, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Hubei, Wuhan, China
- Optics Valley Laboratory, Hubei, China
| | - Jingtan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Hubei, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Hubei, Wuhan, China
- Optics Valley Laboratory, Hubei, China
| | - Dan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Hubei, Wuhan, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Hubei, Wuhan, China
- Optics Valley Laboratory, Hubei, China
| |
Collapse
|
35
|
Optimising the photothrombotic model of stroke in the C57BI/6 and FVB/N strains of mouse. Sci Rep 2022; 12:7598. [PMID: 35534531 PMCID: PMC9085761 DOI: 10.1038/s41598-022-11793-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
The photothrombotic stroke model relies on the interaction between photosensitive-dye and light for clot formation. Interestingly, the relationship between the length of light exposure and stroke-outcome has never been examined. This model has yet to be established in the FVB/N strain, even though stroke-outcomes are strain-specific. Therefore, this study aimed to examine the effect of different lengths of light exposure in two strains of mice on photothrombotic stroke. Male FVB/N and C57Bl/6 mice were subjected to stroke using 15, 18, or 20-min light exposure. Mice underwent functional testing for up to 7 days. Infarct volume was assessed with thionin staining, and cellular responses to injury analysed via immunofluorescence at 7-days post-stroke. Blood brain barrier (BBB) breakdown was assessed using Evans blue dye at 4.5-h post-stroke. Increasing light exposure from 15 to 20-min increased infarct volume but not functional deficit. Interestingly, there were strain-specific differences in functional outcomes, with FVB/N mice having less deficit on the hanging wire test than C57BI/6 after 15-min of light exposure. The opposite was seen in the adhesive removal test. There was no difference in the number of neurons, astrocytes, microglia, macrophages, and T cells between the strains, despite FVB/N mice demonstrating greater BBB breakdown and an enlarged spleen post-stroke. Increasing light exposure systematically increases infarct volume but does not worsen functional outcomes. FVB/N and C57Bl/6 mice exhibit subtle differences in functional outcomes post stroke, which highlights the need to choose tests which are appropriate for the mouse strain being used.
Collapse
|
36
|
Repetitive transcranial magnetic stimulation (rTMS) for multiple neurological conditions in rodent animal models: A systematic review. Neurochem Int 2022; 157:105356. [DOI: 10.1016/j.neuint.2022.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/09/2022]
|
37
|
Eid M, Dzreyan V, Demyanenko S. Sirtuins 1 and 2 in the Acute Period After Photothrombotic Stroke: Expression, Localization and Involvement in Apoptosis. Front Physiol 2022; 13:782684. [PMID: 35574497 PMCID: PMC9092253 DOI: 10.3389/fphys.2022.782684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sirtuins (SIRTs) are NAD+- dependent histone deacetylases. They are involved in a variety of biological pathways and are thought to be a promising target for treating several human disorders. Although evidence is piling up to support the neuroprotective role of SIRTs in ischemic stroke, the role of different sirtuin isoforms needs further investigation. We studied the effects of photothrombotic stroke (PTS) on the expression and localization of sirtuins SIRT1 and SIRT2 in neurons and astrocytes of the penumbra and tested the activity of their selective and non-selective inhibitors. SIRT1 levels significantly decreased in the penumbra cells nuclei and increased in their cytoplasm. This indicated a redistribution of SIRT1 from the nucleus to the cytoplasm after PTS. The expression and intracellular distribution of SIRT1 were also observed in astrocytes. Photothrombotic stroke caused a sharp increase in SIRT2 levels in the cytoplasmic fraction of the penumbra neurons. SIRT2 was not expressed in the penumbra astrocytes. SIRT1 and SIRT2 did not co-localize with TUNEL-positive apoptotic cells. Mice were injected with EX-527, a selective SIRT1 inhibitor; SirReal2, selective SIRT2 inhibitor or salermide, a nonspecific inhibitor of SIRT1 and SIRT2. These inhibitors did not demonstrate any change in the infarction volume or the apoptotic index, compared to the control samples. The studies presented indicate the involvement of these sirtuins in the response of brain cells to ischemia in the first 24 h, but the alterations in their expression and change in the localization of SIRT1 are not related to the regulation of penumbra cell apoptosis in the acute period after PTS.
Collapse
Affiliation(s)
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | | |
Collapse
|
38
|
Early Application of Ipsilateral Cathodal-tDCS in a Mouse Model of Brain Ischemia Results in Functional Improvement and Perilesional Microglia Modulation. Biomolecules 2022; 12:biom12040588. [PMID: 35454177 PMCID: PMC9027610 DOI: 10.3390/biom12040588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Early stroke therapeutic approaches rely on limited options, further characterized by a narrow therapeutic time window. In this context, the application of transcranial direct current stimulation (tDCS) in the acute phases after brain ischemia is emerging as a promising non-invasive tool. Despite the wide clinical application of tDCS, the cellular mechanisms underlying its positive effects are still poorly understood. Here, we explored the effects of cathodal tDCS (C-tDCS) 6 h after focal forelimb M1 ischemia in Cx3CR1GFP/+ mice. C-tDCS improved motor functionality of the affected forelimb, as assessed by the cylinder and foot-fault tests at 48 h, though not changing the ischemic volume. In parallel, histological analysis showed that motor recovery is associated with decreased microglial cell density in the area surrounding the ischemic core, while astrocytes were not affected. Deeper analysis of microglia morphology within the perilesional area revealed a shift toward a more ramified healthier state, with increased processes’ complexity and a less phagocytic anti-inflammatory activity. Taken together, our findings suggest a positive role for early C-tDCS after ischemia, which is able to modulate microglia phenotype and morphology in parallel to motor recovery.
Collapse
|
39
|
Growth Hormone Increases BDNF and mTOR Expression in Specific Brain Regions after Photothrombotic Stroke in Mice. Neural Plast 2022; 2022:9983042. [PMID: 35465399 PMCID: PMC9033347 DOI: 10.1155/2022/9983042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Aims We have shown that growth hormone (GH) treatment poststroke increases neuroplasticity in peri-infarct areas and the hippocampus, improving motor and cognitive outcomes. We aimed to explore the mechanisms of GH treatment by investigating how GH modulates pathways known to induce neuroplasticity, focusing on association between brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) in the peri-infarct area, hippocampus, and thalamus. Methods Recombinant human growth hormone (r-hGH) or saline was delivered (0.25 μl/hr, 0.04 mg/day) to mice for 28 days, commencing 48 hours after photothrombotic stroke. Protein levels of pro-BDNF, total-mTOR, phosphorylated-mTOR, total-p70S6K, and phosporylated-p70S6K within the peri-infarct area, hippocampus, and thalamus were evaluated by western blotting at 30 days poststroke. Results r-hGH treatment significantly increased pro-BDNF in peri-infarct area, hippocampus, and thalamus (p < 0.01). r-hGH treatment significantly increased expression levels of total-mTOR in the peri-infarct area and thalamus (p < 0.05). r-hGH treatment significantly increased expression of total-p70S6K in the hippocampus (p < 0.05). Conclusion r-hGH increases pro-BDNF within the peri-infarct area and regions that are known to experience secondary neurodegeneration after stroke. Upregulation of total-mTOR protein expression in the peri-infarct and thalamus suggests that this might be a pathway that is involved in the neurorestorative effects previously reported in these animals and warrants further investigation. These findings suggest region-specific mechanisms of action of GH treatment and provide further understanding for how GH treatment promotes neurorestorative effects after stroke.
Collapse
|
40
|
Du S, Jin F, Li J, Ma X, Wang H, Qian S. Design, synthesis and biological evaluation of indoline derivatives as multifunctional agents for the treatment of ischemic stroke. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Seyedaghamiri F, Hosseini L, Kazmi S, Mahmoudi J, Shanehbandi D, Ebrahimi-Kalan A, Rahbarghazi R, Sadigh-Eteghad S, Farhoudi M. Varenicline improves cognitive impairment in a mouse model of mPFC ischemia: The possible roles of inflammation, apoptosis, and synaptic factors. Brain Res Bull 2022; 181:36-45. [DOI: 10.1016/j.brainresbull.2022.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
|
42
|
Bi R, Chen S, Chen S, Peng Q, Jin H, Hu B. The role of leukocytes in acute ischemic stroke-related thrombosis: a notable but neglected topic. Cell Mol Life Sci 2021; 78:6251-6264. [PMID: 34398251 PMCID: PMC11072166 DOI: 10.1007/s00018-021-03897-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/15/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022]
Abstract
Ischemic stroke is one of the most serious diseases today, and only a minority of patients are provided with effective clinical treatment. Importantly, leukocytes have gradually been discovered to play vital roles in stroke thrombosis, including promoting the activation of thrombin and the adhesion and aggregation of platelets. However, they have not received enough attention in the field of acute ischemic stroke. It is possible that we could not only prevent stroke-related thrombosis by inhibiting leukocyte activation, but also target leukocyte components to dissolve thrombi in the cerebral artery. In this review, we expound the mechanisms by which leukocytes are activated and participate in the formation of stroke thrombus, then describe the histopathology of leukocytes in thrombi of stroke patients and the influence of leukocyte composition on vascular recanalization effects and patient prognosis. Finally, we discuss the relevant antithrombotic strategies targeting leukocytes.
Collapse
Affiliation(s)
- Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shengcai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shaolin Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Qiwei Peng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
43
|
Zhang Z, Wang S, Du L, Xu L, Lin Y, Liu K, Zou Y, Bin Li, Ye Q, Mao Y, Chen W, Zhou G, Sun H, Huang H, Li R, Li G, Li L, Wang Q, Long Q, Huang H, Geng X, Liu Y, Liu C, Li B, Zhou Z, Li J, Wang J. A pilot behavioural and neuroimaging investigation on photothrombotic stroke models in rhesus monkeys. J Neurosci Methods 2021; 362:109291. [PMID: 34293407 DOI: 10.1016/j.jneumeth.2021.109291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Ischemic stroke leads to a long-term disability in humans and no efficient clinical therapy exists to date. The middle cerebral artery occlusion (MCAO) model in non-human primates has shown to be of value for translational stroke research. New method In the current study, a photothrombotic (PT) stroke model was established in rhesus monkeys with either a proximal or distal segment of middle cerebral artery (MCA) thrombosis. This study is the first that compares the two approaches of PT stroke in monkeys using behavioral and physiological measurements and MRI scans. RESULTS The experiment found that infarct occurred in the MCA target regions, with all monkeys having impaired behavior reflected by deficits in neurologic function, and motor and cognition in object retrieval detour (ORD) task. The monkeys with distal MCA thrombosis developed with sequential photo-irritations of the Sylvian fissure zone, adjacent central anterior gyrus and central posterior gyrus, had similar impairments with respect to behavior and showed a tendency of a small edema volume with proximal MCA thrombosis at days 4 and 7 post PT stroke. COMPARISON WITH EXISTING METHODS The distal MCA thrombosis developed with sequential photo-irritations might provide a consistent and well-tolerated focal ischemia in rhesus monkeys, compared with other PT stroke models which usually were singly conducted on the animal's motor cortex and had a temporal effect. CONCLUSIONS The sequentially photo-irritated PT stroke model is a promising ischemic stroke model in rhesus monkey for studying human stroke pathology and physiology and for new therapies development.
Collapse
Affiliation(s)
- Zhiting Zhang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Institutes of Physical Science and Information Technology,Anhui University, Hefei, China
| | - Shuguo Wang
- First Affiliation Hospital of Kunming Medical University, Kunming, China
| | - Lingli Du
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ling Xu
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yu Lin
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Kezhong Liu
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Institutes of Physical Science and Information Technology,Anhui University, Hefei, China
| | - Yanghong Zou
- First Affiliation Hospital of Kunming Medical University, Kunming, China
| | - Bin Li
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Qingqing Ye
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yu Mao
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; School of Chinese Materia Medica, Yunnan University of Chinese Medicine. Kunming, Yunnan, China
| | - Wenxiong Chen
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Guangping Zhou
- First Affiliation Hospital of Kunming Medical University, Kunming, China
| | - Huaying Sun
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine. Kunming, Yunnan, China
| | - Hui Huang
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rui Li
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Gui Li
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lihong Li
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qiong Wang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qingwei Long
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hongdi Huang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xin Geng
- First Affiliation Hospital of Kunming Medical University, Kunming, China
| | - Yi Liu
- First Affiliation Hospital of Kunming Medical University, Kunming, China
| | - Cirong Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Shanghai, China
| | - Bing Li
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Zhu Zhou
- First Affiliation Hospital of Kunming Medical University, Kunming, China.
| | - Jinghui Li
- First Affiliation Hospital of Kunming Medical University, Kunming, China.
| | - Jianhong Wang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
44
|
Jeon MT, Kim KS, Kim ES, Lee S, Kim J, Hoe HS, Kim DG. Emerging pathogenic role of peripheral blood factors following BBB disruption in neurodegenerative disease. Ageing Res Rev 2021; 68:101333. [PMID: 33774194 DOI: 10.1016/j.arr.2021.101333] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
The responses of central nervous system (CNS) cells such as neurons and glia in neurodegenerative diseases (NDs) suggest that regulation of neuronal and glial functions could be a strategy for ND prevention and/or treatment. However, attempts to develop such therapeutics for NDs have been hindered by the challenge of blood-brain barrier (BBB) permeability and continued constitutive neuronal loss. These limitations indicate the need for additional perspectives for the prevention/treatment of NDs. In particular, the disruption of the blood-brain barrier (BBB) that accompanies NDs allows brain infiltration by peripheral factors, which may stimulate innate immune responses involved in the progression of neurodegeneration. The accumulation of blood factors like thrombin, fibrinogen, c-reactive protein (CRP) and complement components in the brain has been observed in NDs and may activate the innate immune system in the CNS. Thus, strengthening the integrity of the BBB may enhance its protective role to attenuate ND progression and functional loss. In this review, we describe the innate immune system in the CNS and the contribution of blood factors to the role of the CNS immune system in neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Min-Tae Jeon
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Kyu-Sung Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Eun Seon Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Suji Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Jieun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea.
| | - Do-Geun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea.
| |
Collapse
|
45
|
Chen W, Xie L, Yu F, Li Y, Chen C, Xie W, Huang T, Zhang Y, Zhang S, Li P. Zebrafish as a Model for In-Depth Mechanistic Study for Stroke. Transl Stroke Res 2021; 12:695-710. [PMID: 34050491 DOI: 10.1007/s12975-021-00907-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Stroke is one of the world's leading causes of death and disability, posing enormous burden to the society. However, the pathogenesis and mechanisms that underlie brain injury and brain repair remain largely unknown. There's an unmet need of in-depth mechanistic research in this field. Zebrafish (Danio rerio) is a powerful tool in brain science research mainly due to its small size and transparent body, high genome synteny with human, and similar nervous system structures. It can be used to establish both hemorrhagic and ischemic stroke models easily and effectively through different ways. After the establishment of stroke model, research methods including behavioral test, in vivo imaging, and drug screening are available to explore mechanisms that underlie the brain injury and brain repair after stroke. This review focuses on the advantages and the feasibility of zebrafish stroke model, and will also introduce the key methods available for stroke studies in zebrafish, which may drive future mechanistic studies in the pursuit of discovering novel therapeutic targets for stroke patients.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Lv Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Fang Yu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yan Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Wanqing Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Tingting Huang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Song Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
46
|
A murine photothrombotic stroke model with an increased fibrin content and improved responses to tPA-lytic treatment. Blood Adv 2021; 4:1222-1231. [PMID: 32227212 DOI: 10.1182/bloodadvances.2019000782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/24/2020] [Indexed: 01/27/2023] Open
Abstract
The Rose Bengal (RB) dye-based photothrombotic stroke (PTS) model has many methodological advantages including consistent location and size of infarct, low mortality, and relatively simple surgical procedures. However, the standard PTS has the caveat of poor responses to tissue-type plasminogen activator (tPA)-mediated lytic treatment, likely as a result of the platelet-rich, fibrin-poor content of the blood clots. Here we tested whether the admixture of thrombin (80 U/kg) and RB dye (50 mg/kg) in the proximal middle cerebral artery (MCA)-targeted PTS will modify the clot composition and elevate the responsiveness to tPA-lytic treatment (Alteplase, 10 mg/kg). Indeed, intravital imaging, immunostaining, and immunoblot analyses showed less-compacted platelet aggregates with a higher fibrin content in the modified thrombin (T) plus RB photothrombotic stroke (T+RB-PTS) model compared with the standard RB-PTS-induced clots. Both RB-PTS and T+RB-PTS showed steady recovery of cerebral blood flow (CBF) in the ischemic border from 1 day after infarction, but without recanalization of the proximal MCA branch. Intravital imaging showed high potency of restoring the blood flow by tPA after single vessel-targeted T+RB-PTS. Further, although intravenous tPA failed to restore CBF or attenuate infarction in RB-PTS, it conferred 25% recovery of CBF and 55% reduction of the infarct size in T+RB-PTS (P < .05) if tPA was administered within 2 hours postphotoactivation. These results suggest that T+RB-PTS produces mixed platelet:fibrin clots closer to the clinical thrombus composition and enhanced the sensitivity to tPA-lytic treatment. As such, the modified photothrombosis may be a useful tool to develop more effective thrombolytic therapies of cerebral ischemia.
Collapse
|
47
|
Trotman-Lucas M, Gibson CL. A review of experimental models of focal cerebral ischemia focusing on the middle cerebral artery occlusion model. F1000Res 2021; 10:242. [PMID: 34046164 PMCID: PMC8127011 DOI: 10.12688/f1000research.51752.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Cerebral ischemic stroke is a leading cause of death and disability, but current pharmacological therapies are limited in their utility and effectiveness.
In vitro and
in vivo models of ischemic stroke have been developed which allow us to further elucidate the pathophysiological mechanisms of injury and investigate potential drug targets.
In vitro models permit mechanistic investigation of the biochemical and molecular mechanisms of injury but are reductionist and do not mimic the complexity of clinical stroke.
In vivo models of ischemic stroke directly replicate the reduction in blood flow and the resulting impact on nervous tissue. The most frequently used
in vivo model of ischemic stroke is the intraluminal suture middle cerebral artery occlusion (iMCAO) model, which has been fundamental in revealing various aspects of stroke pathology. However, the iMCAO model produces lesion volumes with large standard deviations even though rigid surgical and data collection protocols are followed. There is a need to refine the MCAO model to reduce variability in the standard outcome measure of lesion volume. The typical approach to produce vessel occlusion is to induce an obstruction at the origin of the middle cerebral artery and reperfusion is reliant on the Circle of Willis (CoW). However, in rodents the CoW is anatomically highly variable which could account for variations in lesion volume. Thus, we developed a refined approach whereby reliance on the CoW for reperfusion was removed. This approach improved reperfusion to the ischemic hemisphere, reduced variability in lesion volume by 30%, and reduced group sizes required to determine an effective treatment response by almost 40%. This refinement involves a methodological adaptation of the original surgical approach which we have shared with the scientific community via publication of a visualised methods article and providing hands-on training to other experimental stroke researchers.
Collapse
Affiliation(s)
| | - Claire L Gibson
- School of Psychology, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
48
|
Bärmann J, Walter HL, Pikhovych A, Endepols H, Fink GR, Rueger MA, Schroeter M. An analysis of the CatWalk XT and a composite score to assess neurofunctional deficits after photothrombosis in mice. Neurosci Lett 2021; 751:135811. [PMID: 33727129 DOI: 10.1016/j.neulet.2021.135811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to evaluate CatWalk's capability for assessing the functional outcome after photothrombotic stroke affecting the motor cortex of mice. Mice were tested up to 21 days after photothrombosis or sham surgery using CatWalk, and a composite score assessing functional deficits (neuroscore). The neuroscore demonstrated deficits of the contralateral forelimb for more than two weeks after stroke. There were no asymmetric or coordinative dysfunctions of limbs detected by CatWalk. However, CatWalk data revealed impairment of locomotion speed and its depending parameters for one-week after stroke in strong correlation to the neuroscore. Data suggest that the composite neuroscore allows to more sensitively and precisely specify and quantify photothrombosis-induced hemisyndromes than CatWalk.
Collapse
Affiliation(s)
- J Bärmann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Kerpener Str. 62, 50937, Cologne, Germany
| | - H L Walter
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Kerpener Str. 62, 50937, Cologne, Germany
| | - A Pikhovych
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Kerpener Str. 62, 50937, Cologne, Germany
| | - H Endepols
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Kerpener Str. 62, 50937, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937, Cologne, Germany; Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - G R Fink
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Kerpener Str. 62, 50937, Cologne, Germany; Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Spatial Cognition (INM-3), Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - M A Rueger
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Kerpener Str. 62, 50937, Cologne, Germany; Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Spatial Cognition (INM-3), Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - M Schroeter
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
49
|
Rolfes L, Riek-Burchardt M, Pawlitzki M, Minnerup J, Bock S, Schmidt M, Meuth SG, Gunzer M, Neumann J. Neutrophil granulocytes promote flow stagnation due to dynamic capillary stalls following experimental stroke. Brain Behav Immun 2021; 93:322-330. [PMID: 33486002 DOI: 10.1016/j.bbi.2021.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/01/2022] Open
Abstract
Flow stagnation of peri-ischemic capillaries due to dynamic leukocyte stalls has been described to be a contributor to ongoing penumbral injury in transient brain ischemia, but has not been investigated in permanent experimental stroke so far. Moreover, it is discussed that obstructing neutrophils are involved in this process; however, their contribution has not yet been proven. Here, we characterize the dynamics of neutrophil granulocytes in two models of permanent stroke (photothrombosis and permanent middle cerebral artery occlusion) using intravital two-photon fluorescence microscopy. Different to previous studies on LysM-eGFP+ cells we additionally apply a transgenic mouse model with tdTomato-expressing neutrophils to avoid interference from additional immune cell subsets. We identify repetitively occurring capillary stalls of varying duration promoted by neutrophils in both models of permanent cerebral ischemia, validating the suitability of our new transgenic mouse model in determining neutrophil occlusion formation in vivo. Flow cytometric analysis of peripheral blood (PB) and brain tissue from mice subjected to photothrombosis reveal an increase in the total proportion of neutrophils, with selective upregulation of endothelial adherence markers in the PB. In conclusion, the dynamic microcirculatory stall phenomenon that is described after transient ischemia followed by reperfusion also occurs after permanent small- or large-vessel stroke and is clearly attributable to neutrophils.
Collapse
Affiliation(s)
- Leoni Rolfes
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany.
| | | | - Marc Pawlitzki
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.
| | - Jens Minnerup
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany.
| | - Stefanie Bock
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany.
| | - Mariella Schmidt
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany.
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany; Department of Neurology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany.
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Germany.
| | - Jens Neumann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
50
|
Demyanenko SV, Uzdensky A. LIM kinase inhibitor T56-LIMKi protects mouse brain from photothrombotic stroke. Brain Inj 2021; 35:490-500. [PMID: 33523710 DOI: 10.1080/02699052.2021.1879397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Primary Objective: In an ischemic stroke, the damage spreads from the infarction core to surrounding tissues. The present work was aimed at the search of effective neuroprotectors that restrict injury propagation. Research Design: We studied possible protective effects of inhibitors of protein kinases LIMK2 (T56-LIMKi), DYRK1A (harmine), and tryptophan hydroxylase (4-chlorophenylalanine) on infarction size and morphology of peri-infarct area after photothrombotic stroke (a model of ischemic stroke) in mouse brain. Methods and Procedures: Photothrombotic stroke was induced by laser irradiation of mouse cortex after administration of photosensitizer Bengal Rose, which does not penetrate cells and remains in blood vessels. Under light exposure, it induces vessel occlusion. Infarct volume and histological changes in the cerebral cortex were evaluated 3, 7 and 14 days after photothrombotic impact. Main Outcomes and Results: Harmine and 4-chlorophenylalanine did not influence infarct volume and morphology of peri-infarct area in the mouse brain cortex after photothrombotic stroke. However, LIMK2 inhibitor T56-LIMKi significantly reduced infarct volume 7 and 14 days after photothrombotic stroke. It also increased the percent of normochromic neurons and decreased the fraction of altered cortical cells (hypochromic, hyperchromic and pyknotic neurons). Conclusions: T56-LIMK2i may be considered as a promising anti-stroke agent.
Collapse
Affiliation(s)
- Svetlana V Demyanenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Anatoly Uzdensky
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|