1
|
Salgado-Bautista DA, Callegari E, Riquelme M. Optimizing fungal extracellular vesicle proteomic profiling through combined analysis of in-solution and in-gel digestion. Fungal Genet Biol 2024; 175:103935. [PMID: 39313129 DOI: 10.1016/j.fgb.2024.103935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Proteomics offers a powerful tool to identify proteins within diverse microbial organisms, environments, and organelles, including extracellular vesicles (EVs). Fungal EVs are of particular interest due to their roles in cellular development and communication. While several methods exist to isolate EVs from cells, a universally accepted approach for EV protein characterization is lacking. This study investigated in-solution digestion (SD) and in-gel digestion (GD), for characterizing proteins from Neurospora crassa EVs, followed by LC-MS/MS analysis. GD identified three to four-times more proteins than SD while using the same number of unique peptides. Although GD requires a higher amount of starting sample, it offers a more comprehensive protein identification for fungal EVs, potentially preventing the omission of crucial data.
Collapse
Affiliation(s)
- Daniel A Salgado-Bautista
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Mexico.
| | - Eduardo Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| |
Collapse
|
2
|
Dwamena A, Asadi Y, Gilstrap E, Wang H. Impaired proteasome induces mitochondrial DNA release to activate the cGAS-STING signaling pathway and cause necroptosis in mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623442. [PMID: 39605734 PMCID: PMC11601397 DOI: 10.1101/2024.11.13.623442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Impaired proteasome function is consistently associated with many neurodegenerative disorders, including Alzheimer's disease (AD), showing neuroinflammation and neurodegeneration; however, how impaired proteasome causes neuroinflammation and neuronal death remains less understood. Here, we studied the effect of impaired proteasome on neuroinflammation and neuronal death in a knockout (KO) mouse model with reduced proteasome activity in the brain. We discovered that impaired proteasome led to the release of mitochondrial dsDNA into the cytosol, activating the cGAS-STING signaling pathway, and upregulating pro-inflammatory cytokines in the KO mouse brain relative to the control brain. Importantly, we also observed reduced brain weight, elevation of the mixed lineage kinase domain-like (MLKL) protein, phosphorylated MLKL, and receptor-interactive protein kinases (RIPK) 1 and 3 in the KO mouse brain compared to the control brain, suggesting activation of necroptosis in the KO brains. These data indicate that impaired proteasome activates the cGAS-STING pathway to induce neuroinflammation and neurodegeneration via a necroptotic manner. Our results suggest that neuroinflammation and necroptosis may be generalized factors caused by reduced proteasome activity observed in diverse neurodegenerative disorders.
Collapse
|
3
|
Huber C, Callegari E, Paez D, Li X, Wang H. Impaired 26S proteasome causes learning and memory deficiency and induces neuroinflammation mediated by NF-κB in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579699. [PMID: 38405714 PMCID: PMC10888903 DOI: 10.1101/2024.02.09.579699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A reduction in proteasome activity, loss of synapses and increased neuroinflammation in the brain are hallmarks of aging and many neurodegenerative disorders, including Alzheimer disease (AD); however, whether proteasome dysfunction is causative to neuroinflammation remains less understood. In this study, we investigated the impact of 26S proteasome deficiency on neuroinflammation in the Psmc1 knockout (KO) mice deficient in a 19S proteasome subunit limited to the forebrain region. Our results revealed that impaired 26S proteasome led to reduced learning and memory capability and overt neuroinflammation in the synapses of the Psmc1 KO brain at eight weeks of age. Moreover, pronounced neuroinflammation was also found in the whole brain cortex, which was confirmed by increased levels of several key immune response-related proteins, including Stat1, Trem2 and NF-κB, and by activation of astrocytes and microglia in the KO brain. To validate NF-κB mediating neuroinflammation, we administered a selective NF-κB inhibitor to the KO animals at 5 weeks of age for three weeks, and then, animal behaviors and neuroinflammation were assessed when they reached eight weeks of age. Following the treatment, the KO mice exhibited improved behaviors and reduced neuroinflammation compared to the control animals. These data indicate that impaired 26S proteasome causes AD-like cognitive deficiency and induces neuroinflammation mediated largely by NF-κB. These results may aid development of effective therapeutics and better understanding of the pathogenesis of AD and many other neurodegenerative disorders where impaired proteasome is consistently coupled with neuroinflammation.
Collapse
|
4
|
Guo H, Li W, Yang Z, Xing X. E3 ubiquitin ligase MARCH1 reduces inflammation and pyroptosis in cerebral ischemia-reperfusion injury via PCSK9 downregulation. Mamm Genome 2024; 35:346-361. [PMID: 39115562 DOI: 10.1007/s00335-024-10055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
Pyroptosis has been regarded as caspase-1-mediated monocyte death that induces inflammation, showing a critical and detrimental role in the development of cerebral ischemia-reperfusion injury (IRI). MARCH1 is an E3 ubiquitin ligase that exerts potential anti-inflammatory functions. Therefore, the study probed into the significance of MARCH1 in inflammation and pyroptosis elicited by cerebral IRI. Middle cerebral artery occlusion/reperfusion (MCAO/R)-treated mice and oxygen glucose deprivation/reoxygenation (OGD/R)-treated hippocampal neurons were established to simulate cerebral IRI in vivo and in vitro. MARCH1 and PCSK9 expression was tested in MCAO/R-operated mice, and their interaction was identified by means of the cycloheximide assay and co-immunoprecipitation. The functional roles of MARCH1 and PCSK9 in cerebral IRI were subsequently determined by examining the neurological function, brain tissue changes, neuronal viability, inflammation, and pyroptosis through ectopic expression and knockdown experiments. PCSK9 expression was increased in the brain tissues of MCAO/R mice, while PCSK9 knockdown reduced brain damage and neurological deficits. Additionally, inflammation and pyroptosis were inhibited in OGD/R-exposed hippocampal neurons upon PCSK9 knockdown, accompanied by LDLR upregulation and NLRP3 inflammasome inactivation. Mechanistic experiments revealed that MARCH1 mediated ubiquitination and degradation of PCSK9, lowering PCSK9 protein expression. Furthermore, it was demonstrated that MARCH1 suppressed inflammation and pyroptosis after cerebral IRI by downregulating PCSK9 both in vivo and in vitro. Taken together, the present study demonstrate the protective effect of MARCH1 against cerebral IRI through PCSK9 downregulation, which might contribute to the discovery of new therapies for improving cerebral IRI.
Collapse
Affiliation(s)
- Hongmei Guo
- Department of Neurology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan City, Hubei Province, 430080, China
| | - Wanli Li
- Department of Neurology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan City, Hubei Province, 430080, China
| | - Zhigang Yang
- Department of Neurology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan City, Hubei Province, 430080, China
| | - Xiaobin Xing
- Department of Neurology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, 1 Benxi Street, Qingshan District, Wuhan City, Hubei Province, 430080, China.
| |
Collapse
|
5
|
Wang XP, Yan D, Jin XP, Zhang WY, Shi T, Wang X, Song W, Xiong X, Guo D, Chen S. The role of amino acid metabolism alterations in acute ischemic stroke: From mechanism to application. Pharmacol Res 2024; 207:107313. [PMID: 39025169 DOI: 10.1016/j.phrs.2024.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Acute ischemic stroke (AIS) is the most prevalent type of stroke, and due to its high incidence, disability rate, and mortality rate, it imposes a significant burden on the health care system. Amino acids constitute one of the most crucial metabolic products within the human body, and alterations in their metabolic pathways have been identified in the microenvironment of AIS, thereby influencing the pathogenesis, severity, and prognosis of AIS. The amino acid metabolism characteristics in AIS are complex. On one hand, the dynamic progression of AIS continuously reshapes the amino acid metabolism pattern. Conversely, changes in the amino acid metabolism pattern also exert a double-edged effect on AIS. This interaction is bidirectional, dynamic, heterogeneous, and dose-specific. Therefore, the distinctive metabolic reprogramming features surrounding amino acids during the AIS process are systematically summarized in this paper, aiming to provide potential investigative strategies for the early diagnosis, treatment approaches, and prognostic enhancement of AIS.
Collapse
Affiliation(s)
- Xiang-Ping Wang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Dan Yan
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311202, China
| | - Xia-Ping Jin
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Wen-Yan Zhang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Tao Shi
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Xiang Wang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Wenjuan Song
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Xing Xiong
- Traditional Chinese Medical Hospital of Xiaoshan, The Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 311200, China
| | - Duancheng Guo
- Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Sheng Chen
- First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang Province 311200, China.
| |
Collapse
|
6
|
Chai Z, Zheng J, Shen J. Mechanism of ferroptosis regulating ischemic stroke and pharmacologically inhibiting ferroptosis in treatment of ischemic stroke. CNS Neurosci Ther 2024; 30:e14865. [PMID: 39042604 PMCID: PMC11265528 DOI: 10.1111/cns.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Ferroptosis is a newly discovered form of programmed cell death that is non-caspase-dependent and is characterized by the production of lethal levels of iron-dependent lipid reactive oxygen species (ROS). In recent years, ferroptosis has attracted great interest in the field of cerebral infarction because it differs morphologically, physiologically, and genetically from other forms of cell death such as necrosis, apoptosis, autophagy, and pyroptosis. In addition, ROS is considered to be an important prognostic factor for ischemic stroke, making it a promising target for stroke treatment. This paper summarizes the induction and defense mechanisms associated with ferroptosis, and explores potential treatment strategies for ischemic stroke in order to lay the groundwork for the development of new neuroprotective drugs.
Collapse
Affiliation(s)
- Zhaohui Chai
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| | - Jiesheng Zheng
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| | - Jian Shen
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| |
Collapse
|
7
|
Gu X, Xie Y, Cao Q, Hou Z, Zhang Y, Wang W. Fisetin alleviates cerebral ischemia/reperfusion injury by regulating Sirt1/Foxc1/Ubqln1 pathway-mediated proteostasis. Int Immunopharmacol 2024; 130:111742. [PMID: 38452414 DOI: 10.1016/j.intimp.2024.111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury (IRI) is pathologically associated with protein damage. The flavonoid fisetin has good therapeutic effects on cerebral IRI. However, the role of fisetin in regulating protein damage during cerebral IRI development remains unclear. This study investigated the pharmacological effects of fisetin on protein damage during cerebral IRI progression and defined the underlying mechanism of action. METHODS In vivo and in vitro models of cerebral IRI were established by middle cerebral artery occlusion/reperfusion (MACO/R) and oxygen-glucose deprivation/reperfusion (OGD/R) treatment, respectively. Triphenyl tetrazolium chloride staining was performed to detect cerebral infarct size, and the modified neurologic severity score was used to examine neurological deficits. LDH activity and protein damage were assessed using kits. HT22 cell vitality and apoptosis were examined using CCK-8 assay and TUNEL staining, respectively. Interactions between Foxc1, Ubqln1, Sirt1, and Ezh2 were analyzed using CoIP, ChIP and/or dual-luciferase reporter gene assays. RESULTS Fisetin alleviated protein damage and ubiquitinated protein aggregation and neuronal death caused by MCAO/R and OGD/R. Ubqln1 knockdown abrogated the inhibitory effect of fisetin on OGD/R-induced protein damage, ubiquitinated protein aggregation, and neuronal death in HT22 cells. Further experiments demonstrated that Foxc1 functions as a transcriptional activator of Ubqln1 and that Sirt1 promotes Foxc1 expression by deacetylating Ezh2 and inhibiting its activity. Furthermore, Sirt1 knockdown abrogated fisetin-mediated biological effects on OGD/R-treated HT22 cells. CONCLUSION Fisetin improved proteostasis during cerebral IRI by regulating the Sirt1/Foxc1/Ubqln1 signaling axis. Our findings strongly suggest that fisetin-mediated inhibition of protein damage after ischemic stroke is a part of the mechanism through which fisetin is neuroprotective in cerebral IRI.
Collapse
Affiliation(s)
- Xunhu Gu
- Department of Neurology, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yuqin Xie
- Department of Laboratory Medicine, Nanchang medical College, Nanchang 330006, Jiangxi, China
| | - Qian Cao
- Department of Neurology, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zhuo Hou
- Department of Neurology, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yan Zhang
- Department of Neurosurgery, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Wei Wang
- Department of Neurology, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
8
|
Mohan S, Alhazmi HA, Hassani R, Khuwaja G, Maheshkumar VP, Aldahish A, Chidambaram K. Role of ferroptosis pathways in neuroinflammation and neurological disorders: From pathogenesis to treatment. Heliyon 2024; 10:e24786. [PMID: 38314277 PMCID: PMC10837572 DOI: 10.1016/j.heliyon.2024.e24786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Ferroptosis is a newly discovered non-apoptotic and iron-dependent type of cell death. Ferroptosis mainly takes place owing to the imbalance of anti-oxidation and oxidation in the body. It is regulated via a number of factors and pathways both inside and outside the cell. Ferroptosis is closely linked with brain and various neurological disorders (NDs). In the human body, the brain contains the highest levels of polyunsaturated fatty acids, which are known as lipid peroxide precursors. In addition, there is also a connection of glutathione depletion and lipid peroxidation with NDs. There is growing evidence regarding the possible link between neuroinflammation and multiple NDs, such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, and stroke. Recent studies have demonstrated that disruptions of lipid reactive oxygen species (ROS), glutamate excitatory toxicity, iron homeostasis, and various other manifestations linked with ferroptosis can be identified in various neuroinflammation-mediated NDs. It has also been reported that damage-associated molecular pattern molecules including ROS are generated during the events of ferroptosis and can cause glial activation via activating neuroimmune pathways, which subsequently leads to the generation of various inflammatory factors that play a role in various NDs. This review summarizes the regulation pathways of ferroptosis, the link between ferroptosis as well as inflammation in NDs, and the potential of a range of therapeutic agents that can be used to target ferroptosis and inflammation in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Rym Hassani
- Department of Mathematics, University College AlDarb, Jazan University, Jazan, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - V P Maheshkumar
- Department of Pharmacy, Annamalai University, Annamalai Nagar 608002, Tamil Nadu, India
| | - Afaf Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
9
|
Jiang Y, Ji Y, Zhou IY, Liu N, Sun PZ, Ning M, Dumont AS, Wang X. Effects of the New Thrombolytic Compound LT3001 on Acute Brain Tissue Damage After Focal Embolic Stroke in Rats. Transl Stroke Res 2024; 15:30-40. [PMID: 36445611 DOI: 10.1007/s12975-022-01107-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022]
Abstract
LT3001 is a novel synthetic small molecule with thrombolytic and free radical scavenging activities. In this study, we tested the effects of LT3001 as a potential alternative thrombolytic in focal embolic ischemic stroke rat model. Stroked rats received intravenous injection of 10 mg/kg LT3001 or tPA at 1.5, 3, or 4.5 h after stroke, respectively, and the outcomes were measured at different time points after stroke by performing multi-parametric MRI, 2,3,5-triphenyltetrazolium chloride (TTC) staining, and modified neurological severity score. Lastly, we assessed the effect of LT3001 on the tPA activity in vitro, the international normalized ratio (INR), and the serum levels of active tPA and plasminogen activator inhibitor-1 (PAI-1). LT3001 treated at 1.5 h after stroke is neuroprotective by reducing the CBF lesion size and lowering diffusion and T2 lesion size measured by MRI, which is consistent with the reduction in TTC-stained infarction. When treated at 3 h after stroke, LT3001 had significantly better therapeutic effects regarding reduction of infarct size, swelling rate, and hemorrhagic transformation compared to tPA. When treated at 4.5 h after stroke, tPA, but not LT3001, significantly increased brain swelling and intracerebral hemorrhagic transformation. Lastly, LT3001 did not interfere with tPA activity in vitro, or significantly alter the INR and serum levels of active tPA and PAI-1 in vivo. Our data suggests that LT3001 is neuroprotective in focal embolic stroke rat model. It might have thrombolytic property, not interfere with tPA/PAI-1 activity, and cause less risk of hemorrhagic transformation compared to the conventional tPA. Taken together, LT3001 might be developed as a novel therapy for treating thrombotic ischemic stroke.
Collapse
Affiliation(s)
- Yinghua Jiang
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, LA, USA.
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA, USA.
| | - Yang Ji
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, LA, USA
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mingming Ning
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Aaron S Dumont
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, LA, USA.
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Liu C, Chen H, Tao X, Li C, Li A, Wu W. ALKBH5 protects against stroke by reducing endoplasmic reticulum stress-dependent inflammation injury via the STAT5/PERK/EIF2α/CHOP signaling pathway in an m 6A-YTHDF1-dependent manner. Exp Neurol 2024; 372:114629. [PMID: 38056583 DOI: 10.1016/j.expneurol.2023.114629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress causes neuroinflammation and neuronal apoptosis during ischemic stroke progression. This study has investigated the role of ALKBH5 in ER stress during ischemic stroke progression. METHODS In vivo and in vitro models of ischemic stroke were established by middle cerebral artery occlusion (MCAO) and OGD/R treatment, respectively. Cerebral infarct size was detected using triphenyltetrazolium chloride staining (TTC), and pathological changes were examined using histological staining. The levels of inflammatory factors were analyzed using Enzyme-linked immunosorbent assay. Cell counting kit-8 assay and flow cytometry were used to measure cell viability and apoptosis, respectively. The global m6A level was detected using the commercial kit, and STAT5 mRNA m6A level was determined using methylated RNA binding protein immunoprecipitation (Me-RIP). ALKBH5, YTHDF1, and STAT5 interactions were analyzed using RIP and RNA pull-down assays. RESULTS ALKBH5 was upregulated in MCAO animals and OGD/R cell models. ALKBH5 knockdown exacerbated ER stress, neuroinflammation, and neuronal apoptosis in brain tissues and neuronal cells. ALKBH5 inhibited STAT5 mRNA stability and expression in an m6A-YTHDF1-dependent manner. STAT5 promoted ER stress by activating the PERK/eIF2/CHOP signaling pathway. Furthermore, STAT5 knockdown reversed the effects of ALKBH5 knockdown on OGD/R-induced ER stress and neuroinflammation in HT22 cells. CONCLUSION ALKBH5 knockdown exacerbated ischemic stroke by increasing ER stress-dependent neuroinflammation and neuronal apoptosis via the STAT5/PERK/EIF2α/CHOP signaling pathway in an m6A-YTHDF1-dependent manner.
Collapse
Affiliation(s)
- Chujuan Liu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, PR China; Department of Rehabilitation, Hunan Provincial People's Hospital, The First Affifiliated Hospital of Hunan Normal University, Changsha 410006, Hunan Province, PR China
| | - Hui Chen
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, PR China
| | - Xi Tao
- Department of Rehabilitation, Hunan Provincial People's Hospital, The First Affifiliated Hospital of Hunan Normal University, Changsha 410006, Hunan Province, PR China
| | - Chen Li
- Department of Rehabilitation, Hunan Provincial People's Hospital, The First Affifiliated Hospital of Hunan Normal University, Changsha 410006, Hunan Province, PR China
| | - Aiping Li
- Department of Neurological Neurology, Hunan Provincial People's Hospital, The First Affifiliated Hospital of Hunan Normal University, Changsha 410006, Hunan Province, PR China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, PR China.
| |
Collapse
|
11
|
Aziz N, Wal P, Sinha R, Shirode PR, Chakraborthy G, Sharma MC, Kumar P. A Comprehensive Review on the Significance of Cysteine in Various Metabolic Disorders; Particularly CVD, Diabetes, Renal Dysfunction, and Ischemic Stroke. Curr Protein Pept Sci 2024; 25:682-707. [PMID: 38766817 DOI: 10.2174/0113892037287215240424090908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 05/22/2024]
Abstract
Metabolic disorders have long been a challenge for medical professionals and are a leading cause of mortality in adults. Diabetes, cardiovascular disorders (CVD), renal dysfunction, and ischemic stroke are the most prevalent ailments contributing to a high mortality rate worldwide. Reactive oxygen species are one of the leading factors that act as a fundamental root cause of metabolic syndrome. All of these disorders have their respective treatments, which, to some degree, sabotage the pathological worsening of the disease and an inevitable death. However, they pose a perilous health hazard to humankind. Cysteine, a functional amino acid shows promise for the prevention and treatment of metabolic disorders, such as CVD, Diabetes mellitus, renal dysfunction, and ischemic stroke. In this review, we explored whether cysteine can eradicate reactive oxygen species and subsequently prevent and treat these diseases.
Collapse
Affiliation(s)
- Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | - Rishika Sinha
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | | | | | | | - Pankaj Kumar
- Department of Pharmacology, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh 6 University, NH-7, Barnala Road, Bathinda 151001, India
| |
Collapse
|
12
|
Kang X, Cao Y, Sun G, Fei D, Kang K, Meng X, Zhao M. CircPTP4A2 Promotes Microglia Polarization in Cerebral Ischemic Stroke via miR-20b-5p/YTHDF1/TIMP2 Axis. Neuromolecular Med 2023; 25:501-515. [PMID: 37704831 DOI: 10.1007/s12017-023-08751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/12/2023] [Indexed: 09/15/2023]
Abstract
Activated microglia play dual roles in ischemic stroke (IS) according to its polarization states. Herein, we investigated the function of circPTP4A2 in regulating microglia polarization in IS. IS models were established by MACO/R and OGD/R treatment. TTC staining was employed to detect cerebral infarct size. Cell vitality was measured using CCK-8 assay. CD16 and CD206 levels were examined using flow cytometry. The interactions between circPTP4A2, miR-20b-5p, and YTHDF1 were analyzed by dual-luciferase reporter gene, RIP, or RNA pull-down assays. circPTP4A2 was upregulated in IS patients. circPTP4A2 knockdown alleviated MCAO/R-induced cerebral injury in mice. circPTP4A2 knockdown promoted microglia M2 polarization after OGD/R. circPTP4A2 promoted YTHDF1 expression by sponging miR-20b-5p. The promoting effect of circPTP4A2 knockdown on microglia M2 polarization was abrogated by miR-20b-5p inhibition. YTHDF1 activated the NF-κB pathway by increasing TIMP2 mRNA stability and expression. circPTP4A2 downregulation promoted microglia M2 polarization to inhibit IS development by regulating the miR-20b-5p/YTHDF1/TIMP2/NF-κB axis.
Collapse
Affiliation(s)
- Xianxin Kang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Yanhui Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Guodong Sun
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Dongsheng Fei
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Kai Kang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Xianglin Meng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
13
|
Yang Y, Ma M, Shen L, An J, Kim E, Liu H, Jin M, Wang S, Zhang J, Kim JS, Yin C. A Fluorescent Probe for Investigating the Role of Biothiols in Signaling Pathways Associated with Cerebral Ischemia-Reperfusion Injury. Angew Chem Int Ed Engl 2023; 62:e202310408. [PMID: 37584948 DOI: 10.1002/anie.202310408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is intimately associated with the redox regulation of biothiol, a crucial antioxidant marker that precludes the onset of ROS. We designed a novel fluorescent probe, DCI-Ac-Py, showing various physicochemical properties, such as high selectivity, exceptional signal-to-noise ratio, near-infrared (NIR) optical window, and blood-brain barrier (BBB) penetrability, for detecting biothiols in the brain. The picolinate serves as a specific recognition group that is rapidly activated by biothiol and undergoes nucleophilic substitution with the adjacent acrylic ester to yield the desired NIR probe. Additionally, the probe's lipid solubility is improved through the inclusion of halogen atoms, which aids in penetrating the BBB. Using DCI-Ac-Py, we investigated changes of biothiols in vivo in the brains of mice during CIRI. We found that biothiol-mediated NF-kB classical (P65-related) and nonclassical (RelB-related) pathways contribute to abundant ROS production induced by CIRI and that biothiols are involved in redox regulation. These findings provide new insights into the study of CIRI and shed light on the physiological and pathological mechanisms of biothiols in the brain.
Collapse
Affiliation(s)
- Yutao Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Ming Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Lei Shen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Jusung An
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Eunji Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Hongmei Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Ming Jin
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Shuxiang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
14
|
Fernandez M, Callegari EA, Paez MD, González PS, Agostini E. Proteomic analysis to unravel the biochemical mechanisms triggered by Bacillus toyonensis SFC 500-1E under chromium(VI) and phenol stress. Biometals 2023; 36:1081-1108. [PMID: 37209221 DOI: 10.1007/s10534-023-00506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/24/2023] [Indexed: 05/22/2023]
Abstract
Bacillus toyonensis SFC 500-1E is a member of the consortium SFC 500-1 able to remove Cr(VI) and simultaneously tolerate high phenol concentrations. In order to elucidate mechanisms utilized by this strain during the bioremediation process, the differential expression pattern of proteins was analyzed when it grew with or without Cr(VI) (10 mg/L) and Cr(VI) + phenol (10 and 300 mg/L), through two complementary proteomic approaches: gel-based (Gel-LC) and gel-free (shotgun) nanoUHPLC-ESI-MS/MS. A total of 400 differentially expressed proteins were identified, out of which 152 proteins were down-regulated under Cr(VI) and 205 up-regulated in the presence of Cr(VI) + phenol, suggesting the extra effort made by the strain to adapt itself and keep growing when phenol was also added. The major metabolic pathways affected include carbohydrate and energetic metabolism, followed by lipid and amino acid metabolism. Particularly interesting were also ABC transporters and the iron-siderophore transporter as well as transcriptional regulators that can bind metals. Stress-associated global response involving the expression of thioredoxins, SOS response, and chaperones appears to be crucial for the survival of this strain under treatment with both contaminants. This research not only provided a deeper understanding of B. toyonensis SFC 500-1E metabolic role in Cr(VI) and phenol bioremediation process but also allowed us to complete an overview of the consortium SFC 500-1 behavior. This may contribute to an improvement in its use as a bioremediation strategy and also provides a baseline for further research.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina.
- CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina.
| | - Eduardo A Callegari
- Division of Basic Biomedical Sciences Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - María D Paez
- Division of Basic Biomedical Sciences Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
- CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
- CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| |
Collapse
|
15
|
Wang Y, Wu S, Li Q, Sun H, Wang H. Pharmacological Inhibition of Ferroptosis as a Therapeutic Target for Neurodegenerative Diseases and Strokes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300325. [PMID: 37341302 PMCID: PMC10460905 DOI: 10.1002/advs.202300325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Emerging evidence suggests that ferroptosis, a unique regulated cell death modality that is morphologically and mechanistically different from other forms of cell death, plays a vital role in the pathophysiological process of neurodegenerative diseases, and strokes. Accumulating evidence supports ferroptosis as a critical factor of neurodegenerative diseases and strokes, and pharmacological inhibition of ferroptosis as a therapeutic target for these diseases. In this review article, the core mechanisms of ferroptosis are overviewed and the roles of ferroptosis in neurodegenerative diseases and strokes are described. Finally, the emerging findings in treating neurodegenerative diseases and strokes through pharmacological inhibition of ferroptosis are described. This review demonstrates that pharmacological inhibition of ferroptosis by bioactive small-molecule compounds (ferroptosis inhibitors) could be effective for treatments of these diseases, and highlights a potential promising therapeutic avenue that could be used to prevent neurodegenerative diseases and strokes. This review article will shed light on developing novel therapeutic regimens by pharmacological inhibition of ferroptosis to slow down the progression of these diseases in the future.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care MedicineAerospace Center HospitalPeking University Aerospace School of Clinical MedicineBeijing100049P. R. China
| | - Shuang Wu
- Department of NeurologyZhongnan Hospital of Wuhan UniversityWuhan430000P. R. China
| | - Qiang Li
- Department of NeurologyThe Affiliated Hospital of Chifeng UniversityChifeng024005P. R. China
| | - Huiyan Sun
- Chifeng University Health Science CenterChifeng024000P. R. China
| | - Hongquan Wang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060P. R. China
| |
Collapse
|
16
|
Fernandez M, Callegari EA, Paez MD, González PS, Agostini E. Functional response of Acinetobacter guillouiae SFC 500-1A to tannery wastewater as revealed by a complementary proteomic approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118333. [PMID: 37320920 DOI: 10.1016/j.jenvman.2023.118333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/22/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
Acinetobacter guillouiae SFC 500-1 A is a promising candidate for the bioremediation of tannery wastewater. In this study, we applied shotgun proteomic technology in conjunction with a gel-based assay (Gel-LC) to explore the strain's intracellular protein profile when grown in tannery wastewater as opposed to normal culture conditions. A total of 1775 proteins were identified, 52 of which were unique to the tannery wastewater treatment. Many of them were connected to the degradation of aromatic compounds and siderophore biosynthesis. On the other hand, 1598 proteins overlapped both conditions but were differentially expressed in each. Those that were upregulated in wastewater (109) were involved in the processes mentioned above, as well as in oxidative stress mitigation and intracellular redox state regulation. Particularly interesting were the downregulated proteins under the same treatment (318), which were diverse but mainly linked to the regulation of basic cellular functions (replication, transcription, translation, cell cycle, and wall biogenesis); metabolism (amino acids, lipids, sulphate, energetic processes); and other more complex responses (cell motility, exopolysaccharide production, biofilm formation, and quorum sensing). The findings suggest that SFC 500-1 A engages in survival and stress management strategies to cope with the toxic effects of tannery wastewater, and that such strategies may be mostly oriented at keeping metabolic processes to a minimum. Altogether, the results might be useful in the near future to improve the strain's effectiveness if it will be applied for bioremediation.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Río Cuarto, Córdoba, Argentina.
| | - Eduardo A Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA.
| | - María D Paez
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA.
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Río Cuarto, Córdoba, Argentina.
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
17
|
Li Y, Chen L, Zheng D, Liu JX, Liu C, Qi SH, Hu PC, Yang XF, Min JW. Echinocystic acid alleviated hypoxic-ischemic brain damage in neonatal mice by activating the PI3K/Akt/Nrf2 signaling pathway. Front Pharmacol 2023; 14:1103265. [PMID: 36843928 PMCID: PMC9947717 DOI: 10.3389/fphar.2023.1103265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is considered a major cause of death and long-term neurological injury in newborns. Studies have demonstrated that oxidative stress and apoptosis play a major role in the progression of neonatal HIE. Echinocystic acid (EA), a natural plant extract, shows great antioxidant and antiapoptotic activities in various diseases. However, it has not yet been reported whether EA exerts a neuroprotective effect against neonatal HIE. Therefore, this study was undertaken to explore the neuroprotective effects and potential mechanisms of EA in neonatal HIE using in vivo and in vitro experiments. In the in vivo study, a hypoxic-ischemic brain damage (HIBD) model was established in neonatal mice, and EA was administered immediately after HIBD. Cerebral infarction, brain atrophy and long-term neurobehavioral deficits were measured. Hematoxylin and eosin (H&E), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and dihydroethidium (DHE) staining were performed, and the contents of malondialdehyde (MDA) and glutathione (GSH) were detected. In the in vitro study, an oxygen-glucose deprivation/reperfusion (OGD/R) model was employed in primary cortical neurons, and EA was introduced during OGD/R. Cell death and cellular ROS levels were determined. To illustrate the mechanism, the PI3K inhibitor LY294002 and Nrf2 inhibitor ML385 were used. The protein expression levels of p-PI3K, PI3K, p-Akt, Akt, Nrf2, NQO1, and HO-1 were measured by western blotting. The results showed that EA treatment significantly reduced cerebral infarction, attenuated neuronal injury, and improved brain atrophy and long-term neurobehavioral deficits in neonatal mice subjected to HIBD. Meanwhile, EA effectively increased the survival rate in neurons exposed to OGD/R and inhibited oxidative stress and apoptosis in both in vivo and in vitro studies. Moreover, EA activated the PI3K/Akt/Nrf2 pathway in neonatal mice following HIBD and in neurons after OGD/R. In conclusion, these results suggested that EA alleviated HIBD by ameliorating oxidative stress and apoptosis via activation of the PI3K/Akt/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Ling Chen
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Da Zheng
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Jian-Xia Liu
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Chao Liu
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Shao-Hua Qi
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Weill Cornell Medicine, Houston, TX, United States
| | - Peng-Chao Hu
- Department of Oncology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiao-Fei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Jia-Wei Min
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China,*Correspondence: Jia-Wei Min,
| |
Collapse
|
18
|
Xu Y, Li K, Zhao Y, Zhou L, Liu Y, Zhao J. Role of Ferroptosis in Stroke. Cell Mol Neurobiol 2023; 43:205-222. [PMID: 35102454 DOI: 10.1007/s10571-022-01196-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/18/2022] [Indexed: 01/07/2023]
Abstract
Stroke is a common and serious nervous system disease caused by the rupture or blockage of the cardiovascular system. It causes millions of deaths and disabilities every year, which is a huge burden on humanity. It may be induced by thrombosis, hypertension, hyperlipidemia, hyperglycemia, smoking, advanced age and so on. According to different causes, stroke can be generally divided into hemorrhagic stroke and ischemic stroke, whose pathogenesis and treatment are quite different. Ferroptosis is a new type of cell death first defined in 2012, which is characterized by non-apoptotic, iron-dependent, and over-accumulated lipid peroxides. Excess lipid reactive oxygen species produced during ferroptosis eventually leads to oxidative cell death. Ferroptosis has been shown to occur and play an important role in tumors, neurological diseases, kidney injury, and ischemia-reperfusion injury. Ferroptosis is also closely related to the pathogenesis of stroke. Moreover, scientists have successfully intervened in the process of stroke in animal models by regulating ferroptosis, indicating that ferroptosis is a new potential target for the treatment of stroke. This paper systematically summarizes the involvement and role of ferroptosis in the pathogenesis of stroke and predicts the potential of ferroptosis in the treatment of stroke. Ferroptosis in stroke. Stroke induces iron overload and lipid metabolism disorders. Elevated iron catalyzes lipid peroxidation and eventually triggers ferroptosis. Conversely, the GSH/GPX4 pathway, as well as CoQ10, Fer-1, and Lip-1, inhibits lipid peroxidation and, thus, alleviates ferroptosis. GSH glutathione; GPX4 glutathione peroxidase 4; CoQ10 coenzyme Q10; Lip-1 liproxstatin-1; Fer-1 ferostatin-1.
Collapse
Affiliation(s)
- Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Kexin Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Lin Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China. .,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China. .,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China.
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
19
|
Huber CC, Callegari EA, Paez MD, Romanova S, Wang H. Heat Shock-Induced Extracellular Vesicles Derived from Neural Stem Cells Confer Marked Neuroprotection Against Oxidative Stress and Amyloid-β-Caused Neurotoxicity. Mol Neurobiol 2022; 59:7404-7412. [PMID: 36190693 PMCID: PMC10088367 DOI: 10.1007/s12035-022-03055-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and a leading cause of dementia. Although the amyloid-β (Aβ) peptide is deemed a crucial driver of AD, there are no effective therapeutics available to treat Aβ-caused neurotoxicity. Extracellular vesicles (EVs) are membrane-bound small particles mediating intercellular traffic of nucleic acids, lipids, proteins, and metabolites. Exosomes are a subtype of EVs with a size range of 30-150 nm in diameter. Stem cell-derived EVs are a potential therapeutic for AD, while EVs isolated from normal stem cell cultures generally have a low yield. Here, we studied the EVs secreted by the rat neural stem cells in the presence of heat shock (HS) stimulus. Nanoparticle tracking analysis confirmed that HS-derived EVs exhibit significantly higher concentration and larger diameter in comparison to the non-heat shock (NHS)-derived EVs. Mass spectrometric studies of EV proteins revealed that HS-derived EVs contained fewer diverse proteins than NHS-derived exosomes. GO enrichment analysis of the proteins suggested that the top two biological functions of the proteins in HS-derived EVs are involved in the negative regulation of apoptotic process and positive modulation of DNA repair. Importantly, the therapeutic efficacy of the NHS- and HS-derived EVs were tested in a cell culture model of AD: HS-derived EVs exhibited greater neuroprotection against not only oxidative stress but also amyloid-β (Aβ) induced neurotoxicity compared to NHS-derived EVs. Moreover, HS-derived EVs were also able to dramatically attenuate Aβ-induced apoptosis and oxidative stress. These data indicate that in response to HS, neural stem cells increase EV production and alter EV morphology and cargo to confer better neuroprotection against oxidative stress and Aβ-caused neurotoxicity, suggesting that HS-induced EVs from neural stem cells can be a therapeutic agent for AD and possibly other neurological disorders.
Collapse
Affiliation(s)
- Christa C Huber
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Eduardo A Callegari
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Maria D Paez
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Svetlana Romanova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
20
|
Huber CC, Wang X, Wang H. Impact of Cardiovascular Diseases on Ischemic Stroke Outcomes. J Integr Neurosci 2022; 21:138. [PMID: 36137958 PMCID: PMC9721101 DOI: 10.31083/j.jin2105138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 11/06/2022] Open
Abstract
Stroke induces complex pathological cascades in the affected brain area, leading to brain injury and functional disability. To fight against cerebral ischemia/reperfusion-induced neuronal death, numerous neuroprotective strategies and reagents have been studied. However, translation of these neuroprotective drugs to clinical trials has been unsuccessful. To date, the tissue plasminogen activator is still the only FDA-approved drug for treating ischemic stroke. Thus, it is obligatory to identify and validate additional therapeutic strategies for stroke. A stroke rarely occurs without any other pathophysiological condition; but instead, it often has multi-morbidity conditions, one of which is cardiac disease. Indeed, up to half of the stroke cases are associated with cardiac and large artery diseases. As an adequate blood supply is essential for the brain to maintain its normal function, any pathophysiological alterations in the heart are frequently implicated in stroke outcomes. In this review, we summarize some of the cardiovascular factors that influence stroke outcomes and propose that considering these factors in designing stroke therapies should enhance success in clinical trials. We also highlight the recent advances regarding the potential effect of protein aggregates in a peripheral organ, such as in the heart, on ischemic stroke-caused brain injury and functional recovery. Including these and other comorbidity factors in the future therapeutic strategy designs should facilitate translational success toward developing effective combinational therapies for the disorder.
Collapse
Affiliation(s)
- Christa C. Huber
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
21
|
Arango-Rodríguez ML, Solarte-David VA, Becerra-Bayona SM, Callegari E, Paez MD, Sossa CL, Vera MEO, Mateus LC, Eduardo Serrano S, Ardila-Roa AK, Viviescas LTG. Role of mesenchymal stromal cells derivatives in diabetic foot ulcers: a controlled randomized phase 1/2 clinical trial. Cytotherapy 2022; 24:1035-1048. [PMID: 36084965 DOI: 10.1016/j.jcyt.2022.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Diabetes-related foot complications have been identified as the most common isolated cause of morbidity among patients with diabetes and the leading cause of amputation. Therefore, new strategies to stimulate skin regeneration may provide a novel therapeutic approach to reduce non-healing ulcer disease. Recently, we demonstrated in proof-of-concept in humans that administration of allogeneic bone marrow mesenchymal stromal cellss derivatives (allo-hBM-MSCDs) is effective in a similar way to the use of allogeneic bone marrow mesenchymal stromal cellss (allo-hBM-MSCs) in grade 2 diabetic foot ulcers (DFUs). AIM To assess the safety and efficacy profile of the allo-hBM-MSCDs relative to the conventional approach (PolyMen® dressing) in 1/2 clinical trial phases in patients with grade 1 and 2 DFUs. METHODS In the present study, we used 2 doses of allo-hBM-MSCDs (1 mL) or 1 dose of allo-hBM-MSCs (1 × 106 cells) intradermally injected around wounds and assessed their safety and effectiveness, relative to the conventional approach (PolyMem dressing). Allo-hBM-MSCDs and allo-hBM-MSCs were produced in a certified Good Manufacturing Practice-type Laboratory. Patients with grade 1 and 2 DFUs were randomized to receive allo-hBM-MSCDs (n=12), allo-hBM-MSCs (n=6) or conventional treatment (PolyMem dressing) (n=10). The wound-healing process was macroscopically evaluated until the complete closure of the ulcers. RESULTS No adverse events were reported. Patients with grade 1 and 2 DFUs treated with either allo-hBM-MSCDs or allo-hBM-MSCs, achieved greater percentages of wound closure, enhanced skin regeneration in shorter times and a greater ulcer-free survival relative to the patients who received conventional treatment. Finally, through proteomic analysis, we elucidated the proteins and growth factors that are secreted by allo-hBM-MSCs and relevant to the wound-healing process. In addition, by combining proteomics with Gene Ontology analysis, we comprehensively classified secreted proteins on both biological process and molecular function. CONCLUSIONS In this phase 1/2 trial, our cumulative results suggest that 2 doses of allo-hBM-MSCDs combined with a wound dressing are a safe and effective treatment for grade 1 and 2 DFUs.
Collapse
Affiliation(s)
- Martha L Arango-Rodríguez
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, Floridablanca, Colombia.
| | - Víctor Alfonso Solarte-David
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia; Facultad de Ingeniería, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia 680003
| | - Silvia M Becerra-Bayona
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia
| | - Eduardo Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Maria D Paez
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Claudia L Sossa
- Fundación Oftalmológica de Santander Carlos Ardila Lulle Floridablanca, Colombia; Programa para el Tratamiento y Estudio de Enfermedades Hematológicas y Oncológicas de Santander (PROTEHOS), 681004153 Floridablanca, Colombia
| | | | - Ligia C Mateus
- Fundación Oftalmológica de Santander Carlos Ardila Lulle Floridablanca, Colombia
| | - Sergio Eduardo Serrano
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia
| | - Andrea K Ardila-Roa
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, Floridablanca, Colombia
| | - Lady T Giratá Viviescas
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, Floridablanca, Colombia
| |
Collapse
|
22
|
Zhou Y, Lin W, Rao T, Zheng J, Zhang T, Zhang M, Lin Z. Ferroptosis and Its Potential Role in the Nervous System Diseases. J Inflamm Res 2022; 15:1555-1574. [PMID: 35264867 PMCID: PMC8901225 DOI: 10.2147/jir.s351799] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is a novel regulated cell death characterized by metabolic disorders and iron-dependent oxidative destruction of the lipid bilayer. It is primarily caused by the imbalance of oxidation and anti-oxidation in the body and is precisely regulated by numerous factors and pathways inside and outside the cell. Recent studies have indicated that ferroptosis plays a vital role in the pathophysiological process of multiple systems of the body including the nervous system. Ferroptosis may be closely linked to the occurrence and development of neurodegenerative diseases, strokes, and brain tumors. It may also be involved in the development, maturation, and aging of the nervous system. Therefore, this study aims to investigate ferroptosis’s occurrence and regulatory mechanism and summarize its research progress in the pathogenesis and treatment of neurological diseases. This would allow for novel ideas for basic and clinical research of neurological diseases.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Tian Rao
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Jinyu Zheng
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Tianlei Zhang
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
- Correspondence: Zhenlang Lin, Email
| |
Collapse
|
23
|
Cysteine Donor-Based Brain-Targeting Prodrug: Opportunities and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4834117. [PMID: 35251474 PMCID: PMC8894025 DOI: 10.1155/2022/4834117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022]
Abstract
Overcoming blood-brain barrier (BBB) to improve brain bioavailability of therapeutic drug remains an ongoing concern. Prodrug is one of the most reliable approaches for delivering agents with low-level BBB permeability into the brain. The well-known antioxidant capacities of cysteine (Cys) and its vital role in glutathione (GSH) synthesis indicate that Cys-based prodrug could potentiate therapeutic drugs against oxidative stress-related neurodegenerative disorders. Moreover, prodrug with Cys moiety could be recognized by the excitatory amino acid transporter 3 (EAAT3) that is highly expressed at the BBB and transports drug into the brain. In this review, we summarized the strategies of crossing BBB, properties of EAAT3 and its natural substrates, Cys and its donors, and Cys donor-based brain-targeting prodrugs by referring to recent investigations. Moreover, the challenges that we are faced with and future research orientations were also addressed and proposed. It is hoped that present review will provide evidence for the pursuit of novel Cys donor-based brain-targeting prodrug.
Collapse
|
24
|
Li Y, Zhang JJ, Chen RJ, Chen L, Chen S, Yang XF, Min JW. Genistein mitigates oxidative stress and inflammation by regulating Nrf2/HO-1 and NF-κB signaling pathways in hypoxic-ischemic brain damage in neonatal mice. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:32. [PMID: 35282070 PMCID: PMC8848430 DOI: 10.21037/atm-21-4958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/26/2021] [Indexed: 01/26/2023]
Abstract
Background Oxidative stress and neuroinflammation play crucial roles in the progression of neonatal hypoxic-ischemic brain damage (HIBD). Genistein, a natural phytoestrogen, has been found to protect against ischemic brain injury. However, its effects and potential mechanisms in HIBD have not yet been explored. Methods A neonatal mouse model of hypoxia-ischemia (HI) and a cell model of oxygen-glucose deprivation/reperfusion (OGD/R) were employed. In the in vivo study, genistein (10 mg/kg; ip) was administered in mice once daily for 3 consecutive days before the operation and once immediately after HI. The effects of genistein treatment on acute brain damage and long-term responses were evaluated. Neuronal injury and apoptosis were estimated using hematoxylin and eosin (H&E) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, respectively. The expression of apoptosis-related proteins were also measured by Western blot analysis. Dihydroethidium (DHE) staining and glutathione (GSH) and malondialdehyde (MDA) production were determined to assess the extent of oxidative stress. The messenger RNA (mRNA) levels of proinflammatory cytokines were detected using real-time quantitative polymerase chain reaction (RT-qPCR) to evaluate the extent of neuroinflammation. In the in vitro study, cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) assays, as well as propidium iodide (PI) staining, were performed to analyse the neuroprotective effects of genistein on primary cortical neurons. Western blot assays were used to detect the levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), phosphorylated inhibitor kappa B-α (p-IκB-α) and phosphorylated nuclear factor-kappa B (p-NF-κB) both in vivo and in vitro. Results Our results showed that genistein treatment effectively reduced cerebral infarction, attenuated neuronal injury and apoptosis, and contributed to the long-term recovery of neurological outcomes and brain atrophy in neonatal HIBD mice. Moreover, genistein ameliorated HIBD-induced oxidative stress and neuroinflammation. Meanwhile, genistein significantly increased cell viability, reversed neuronal injury and decreased cell apoptosis after OGD/R injury. Finally, the activation of the Nrf2/HO-1 pathway and inhibition of the NF-κB pathway by genistein were verified in the brain tissues of neonatal mice subjected to HIBD and in primary cortical neurons exposed to OGD/R. Conclusions Genistein exerted neuroprotective effects on HIBD by attenuating oxidative stress and neuroinflammation through the Nrf2/HO-1 and NF-κB signalling pathways.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Jin-Jia Zhang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Ru-Jia Chen
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Ling Chen
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Su Chen
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Xiao-Fei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Jia-Wei Min
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
25
|
He W, Wang J, Jin Q, Zhang J, Liu Y, Jin Z, Wang H, Hu L, Zhu L, Shen M, Huang L, Huang S, Li W, Zhuge Q, Wu J. Design, green synthesis, antioxidant activity screening, and evaluation of protective effect on cerebral ischemia reperfusion injury of novel monoenone monocarbonyl curcumin analogs. Bioorg Chem 2021; 114:105080. [PMID: 34225164 DOI: 10.1016/j.bioorg.2021.105080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022]
Abstract
Antioxidants with high efficacy and low toxicity have the potential to treat cerebral ischemia reperfusion injury (CIRI). Dienone monocarbonyl curcumin analogs (DMCA) capable of overcoming the instability and pharmacokinetic defects of curcumin possess notable antioxidant activity but are found to be significantly toxic. In this study, a novel skeleton of the monoenone monocarbonyl curcumin analogue sAc possessing reduced toxicity and improved stability was designed on the basis of the DMCA skeleton. Moreover, 32 sAc analogs were obtained by applying a green, simple, and economical synthetic method. Multiple sAc analogs with an antioxidant protective effect in PC12 cells were screened using an H2O2-induced oxidative stress damage model, and quantitative evaluation of structure-activity relationship (QSAR) model with regression coefficient of R2 = 0.918921 was built through random forest algorithm (RF). Among these compounds, the optimally active compound sAc15 elicited a potent protective effect on cell growth of PC12 cells by effectively eliminating ROS generation in response to oxidative stress injury by activating the Nrf2/HO-1 antioxidant signaling pathway. In addition, sAc15 exhibited good protection against CIRI in the mice middle cerebral artery occlusion (MCAO) model. In this paper, we provide a novel class of antioxidants and a potential compound for stroke treatment.
Collapse
Affiliation(s)
- Wenfei He
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingsong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qiling Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiafeng Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yugang Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zewu Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hua Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linya Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lu Zhu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengya Shen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lili Huang
- Department of Pharmacy, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315041, China
| | - Shengwei Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wulan Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Qichuan Zhuge
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Jianzhang Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
26
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
27
|
Bushueva O, Barysheva E, Markov A, Belykh A, Koroleva I, Churkin E, Polonikov A, Ivanov V, Nazarenko M. DNA Hypomethylation of the MPO Gene in Peripheral Blood Leukocytes Is Associated with Cerebral Stroke in the Acute Phase. J Mol Neurosci 2021; 71:1914-1932. [PMID: 33864596 DOI: 10.1007/s12031-021-01840-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/03/2021] [Indexed: 01/15/2023]
Abstract
Dysregulation of the oxidant-antioxidant system contributes to the pathogenesis of cerebral stroke (CS). Epigenetic changes of redox homeostasis genes, such as glutamate-cysteine ligase (GCLM), glutathione-S-transferase-P1 (GSTP1), thioredoxin reductase 1 (TXNRD1), and myeloperoxidase (MPO), may be biomarkers of CS. In this study, we assessed the association of DNA methylation levels of these genes with CS and clinical features of CS. We quantitatively analyzed DNA methylation patterns in the promoter or regulatory regions of 4 genes (GCLM, GSTP1, TXNRD1, and MPO) in peripheral blood leukocytes of 59 patients with CS in the acute phase and in 83 relatively healthy individuals (controls) without cardiovascular and cerebrovascular diseases. We found that in both groups, the methylation level of CpG sites in genes TXNRD1 and GSTP1 was ≤ 5%. Lower methylation levels were registered at a CpG site (chr1:94,374,293, GRCh37 [hg19]) in GCLM in patients with ischemic stroke compared with the control group (9% [7%; 11.6%] (median and interquartile range) versus 14.7% [10.4%; 23%], respectively, p < 0.05). In the leukocytes of patients with CS, the methylation level of CpG sites in the analyzed region of MPO (chr17:56,356,470, GRCh3 [hg19]) on average was significantly lower (23.5% [19.3%; 26.7%]) than that in the control group (35.6% [30.4%; 42.6%], p < 0.05). We also found increased methylation of MPO in smokers with CS (27.2% [23.5%; 31.1%]) compared with nonsmokers with CS (21.7% [18.1%; 24.8%]). Thus, hypomethylation of CpG sites in GCLM and MPO in blood leukocytes is associated with CS in the acute phase.
Collapse
Affiliation(s)
- Olga Bushueva
- Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia. .,Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia.
| | - Ekaterina Barysheva
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Anton Markov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Andrey Belykh
- Department of Pathophysiology, Kursk State Medical University, Kursk, Russia
| | - Iuliia Koroleva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Egor Churkin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexey Polonikov
- Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia.,Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Vladimir Ivanov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Maria Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
28
|
Liu Y, Subedi K, Baride A, Romanova S, Callegari E, Huber CC, Wang X, Wang H. Peripherally misfolded proteins exacerbate ischemic stroke-induced neuroinflammation and brain injury. J Neuroinflammation 2021; 18:29. [PMID: PMID:33472658 PMCID: PMC7818745 DOI: 10.1186/s12974-021-02081-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Protein aggregates can be found in peripheral organs, such as the heart, kidney, and pancreas, but little is known about the impact of peripherally misfolded proteins on neuroinflammation and brain functional recovery following ischemic stroke. METHODS Here, we studied the ischemia/reperfusion (I/R) induced brain injury in mice with cardiomyocyte-restricted overexpression of a missense (R120G) mutant small heat shock protein, αB-crystallin (CryABR120G), by examining neuroinflammation and brain functional recovery following I/R in comparison to their non-transgenic (Ntg) littermates. To understand how peripherally misfolded proteins influence brain functionality, exosomes were isolated from CryABR120G and Ntg mouse blood and were used to treat wild-type (WT) mice and primary cortical neuron-glia mix cultures. Additionally, isolated protein aggregates from the brain following I/R were isolated and subjected to mass-spectrometric analysis to assess whether the aggregates contained the mutant protein, CryABR120G. To determine whether the CryABR120G misfolding can self-propagate, a misfolded protein seeding assay was performed in cell cultures. RESULTS Our results showed that CryABR120G mice exhibited dramatically increased infarct volume, delayed brain functional recovery, and enhanced neuroinflammation and protein aggregation in the brain following I/R when compared to the Ntg mice. Intriguingly, mass-spectrometric analysis of the protein aggregates isolated from CryABR120G mouse brains confirmed presence of the mutant CryABR120G protein in the brain. Importantly, intravenous administration of WT mice with the exosomes isolated from CryABR120G mouse blood exacerbated I/R-induced cerebral injury in WT mice. Moreover, incubation of the CryABR120G mouse exosomes with primary neuronal cultures induced pronounced protein aggregation. Transduction of CryABR120G aggregate seeds into cell cultures caused normal CryAB proteins to undergo dramatic aggregation and form large aggregates, suggesting self-propagation of CryABR120G misfolding in cells. CONCLUSIONS These results suggest that peripherally misfolded proteins in the heart remotely enhance neuroinflammation and exacerbate brain injury following I/R likely through exosomes, which may represent an underappreciated mechanism underlying heart-brain crosstalk.
Collapse
Affiliation(s)
- Yanying Liu
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Kalpana Subedi
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Aravind Baride
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | - Svetlana Romanova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Eduardo Callegari
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Christa C Huber
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
29
|
Mohammed Thangameeran SI, Tsai ST, Hung HY, Hu WF, Pang CY, Chen SY, Liew HK. A Role for Endoplasmic Reticulum Stress in Intracerebral Hemorrhage. Cells 2020; 9:cells9030750. [PMID: 32204394 PMCID: PMC7140640 DOI: 10.3390/cells9030750] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an intracellular organelle that performs multiple functions, such as lipid biosynthesis, protein folding, and maintaining intracellular calcium homeostasis. Thus, conditions wherein the ER is unable to fold proteins is defined as ER stress, and an inbuilt quality control mechanism, called the unfolded protein response (UPR), is activated during ER stress, which serves as a recovery system that inhibits protein synthesis. Further, based on the severity of ER stress, the response could involve both proapoptotic and antiapoptotic phases. Intracerebral hemorrhage (ICH) is the second most common subtype of cerebral stroke and many lines of evidence have suggested a role for the ER in major neurological disorders. The injury mechanism during ICH includes hematoma formation, which in turn leads to inflammation, elevated intracranial pressure, and edema. A proper understanding of the injury mechanism(s) is required to effectively treat ICH and closing the gap between our current understanding of ER stress mechanisms and ICH injury can lead to valuable advances in the clinical management of ICH.
Collapse
Affiliation(s)
| | - Sheng-Tzung Tsai
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan; (S.I.M.T.); (S.-T.T.); (C.-Y.P.); (S.-Y.C.)
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Hsiang-Yi Hung
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Wei-Fen Hu
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan;
| | - Cheng-Yoong Pang
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan; (S.I.M.T.); (S.-T.T.); (C.-Y.P.); (S.-Y.C.)
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- CardioVascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Shin-Yuan Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan; (S.I.M.T.); (S.-T.T.); (C.-Y.P.); (S.-Y.C.)
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Hock-Kean Liew
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan;
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- CardioVascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Correspondence: or ; Tel.: +886-3-856-1825 (ext. 15911); Fax: +886-3-8560-2019
| |
Collapse
|
30
|
The Role of Ubiquitin-Proteasome Pathway and Autophagy-Lysosome Pathway in Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5457049. [PMID: 32089771 PMCID: PMC7016479 DOI: 10.1155/2020/5457049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Abstract
The ubiquitin-proteasome pathway and autophagy-lysosome pathway are two major routes for clearance of aberrant cellular components to maintain protein homeostasis and normal cellular functions. Accumulating evidence shows that these two pathways are impaired during cerebral ischemia, which contributes to ischemic-induced neuronal necrosis and apoptosis. This review aims to critically discuss current knowledge and controversies on these two pathways in response to cerebral ischemic stress. We also discuss molecular mechanisms underlying the impairments of these protein degradation pathways and how such impairments lead to neuronal damage after cerebral ischemia. Further, we review the recent advance on the understanding of the involvement of these two pathways in the pathological process during many therapeutic approaches against cerebral ischemia. Despite recent advances, the exact role and molecular mechanisms of these two pathways following cerebral ischemia are complex and not completely understood, of which better understanding will provide avenues to develop novel therapeutic strategies for ischemic stroke.
Collapse
|
31
|
Abstract
Ischemic stroke is a global epidemic condition due to an inadequate supply of blood and oxygen to a specific area of brain either by arterial blockage or by narrowing of blood vessels. Despite having advancement in the use of thrombolytic and clot removal medicine, significant numbers of stroke patients are still left out without option for treatment. In this review, we summarize recent research work on the activation of δ-opioid receptor as a strategy for treating ischemic stroke-caused neuronal injury. Moreover, as activation of δ-opioid receptor by a non-peptidic δ-opioid receptor agonist also modulates the expression, maturation and processing of amyloid precursor protein and β-secretase activity, the potential role of these effects on ischemic stroke caused dementia or Alzheimer's disease are also discussed.
Collapse
Affiliation(s)
- Kalpana Subedi
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
32
|
Li G, Zheng Y, Yao J, Hu L, Liu Q, Ke F, Feng W, Zhao Y, Yan P, He W, Deng H, Qiu P, Li W, Wu J. Design and Green Synthesis of Piperlongumine Analogs and Their Antioxidant Activity against Cerebral Ischemia-Reperfusion Injury. ACS Chem Neurosci 2019; 10:4545-4557. [PMID: 31491086 DOI: 10.1021/acschemneuro.9b00402] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The supplementation of exogenous antioxidants to scavenge excessive reactive oxygen species (ROS) is an effective treatment for cerebral ischemia-reperfusion injury (CIRI) in stroke. Piperlongumine (PL), a natural alkaloid, has a great potential as a neuroprotective agent, but it also has obvious toxicity. Moreover, its neuroprotective effects remain to be improved. In this study, we designed a series of novel PL analogs by hybridizing the screened low-toxicity diketene skeleton with antioxidant effect and the 3,4,5-trimethoxyphenyl group, which may increase the antioxidant activity of PL. The intermediate was synthesized by a novel green synthesis method, and 34 compounds were obtained. The compounds without obvious cytotoxicity have remarkable antioxidant effects, especially compared with diketene skeletons and PL. The cytoprotection of the active compound decreased significantly by reduction of the carbon-carbon double bonds of the Michael acceptor in the diketene skeleton. More importantly, further study revealed that compound A9, which has the best activity, can confer protection for cells against oxidative stress and attenuate brain injury in vivo. Overall, this study provided a promising drug candidate for the treatment of CIRI and guided the further development of drug research in oxidative stress-mediated diseases.
Collapse
Affiliation(s)
- Ge Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Yuantie Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jiali Yao
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Linya Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Qunpeng Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou , Zhejiang 325035 , China
| | - Furong Ke
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Weixiao Feng
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
- The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Ya Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
- Department of Periodontics, Hospital & School of Stomatology , Wenzhou Medical University , No. 373 West Xueyuan Road , Wenzhou , Zhejiang 325035 , China
| | - Pencheng Yan
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Wenfei He
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Hui Deng
- Department of Periodontics, Hospital & School of Stomatology , Wenzhou Medical University , No. 373 West Xueyuan Road , Wenzhou , Zhejiang 325035 , China
| | - Peihong Qiu
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Wulan Li
- The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jianzhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| |
Collapse
|
33
|
Liu Y, Feng S, Subedi K, Wang H. Attenuation of Ischemic Stroke-Caused Brain Injury by a Monoamine Oxidase Inhibitor Involves Improved Proteostasis and Reduced Neuroinflammation. Mol Neurobiol 2019; 57:937-948. [PMID: 31620993 PMCID: PMC7035161 DOI: 10.1007/s12035-019-01788-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
Mitochondrial dysfunction and oxidative stress play a key role in ischemia/reperfusion (I/R) induced brain injury. We previously showed that ubiquilin-1 (Ubqln1), a ubiquitin-like protein, improves proteostasis and protects brains against oxidative stress and I/R induced brain injury. We demonstrate here that nialamide (NM), a non-selective monoamine oxidase (MAO) inhibitor, upregulated Ublqn1 and protected neurons from oxygen-glucose deprivation- and I/R-caused cell death in in vitro and in vivo, respectively. Post-ischemic administration of the NM in a stroke mouse model even at 3 h following I/R still reduced neuronal injury and improved functional recovery and survival. Treating stroke animals with NM also increased the association of Ubqln1 with mitochondria and decreased the total oxidized and polyubiquitinated protein levels. Intriguingly, NM-enhanced proteostasis was also associated with reduced I/R-caused neuroinflammation, as reflected by attenuated activation of microglia and astrocytes as well as reduced TNF-α level. Thus, our results suggest that MAO inhibition-induced neuroprotection following I/R involves improved proteostasis and reduced neuroinflammation.
Collapse
Affiliation(s)
- Yanying Liu
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Shelley Feng
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Kalpana Subedi
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|